A New Recursive Two Dimensional Pattern On Kolakoski Sequence
N Jansi Rani1 , L Vigneswaran2 , V R Dare3
Section:Research Paper, Product Type: Journal Paper
Volume-07 ,
Issue-05 , Page no. 203-207, Mar-2019
CrossRef-DOI: https://doi.org/10.26438/ijcse/v7si5.203207
Online published on Mar 10, 2019
Copyright © N Jansi Rani, L Vigneswaran, V R Dare . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: N Jansi Rani, L Vigneswaran, V R Dare, “A New Recursive Two Dimensional Pattern On Kolakoski Sequence,” International Journal of Computer Sciences and Engineering, Vol.07, Issue.05, pp.203-207, 2019.
MLA Style Citation: N Jansi Rani, L Vigneswaran, V R Dare "A New Recursive Two Dimensional Pattern On Kolakoski Sequence." International Journal of Computer Sciences and Engineering 07.05 (2019): 203-207.
APA Style Citation: N Jansi Rani, L Vigneswaran, V R Dare, (2019). A New Recursive Two Dimensional Pattern On Kolakoski Sequence. International Journal of Computer Sciences and Engineering, 07(05), 203-207.
BibTex Style Citation:
@article{Rani_2019,
author = {N Jansi Rani, L Vigneswaran, V R Dare},
title = {A New Recursive Two Dimensional Pattern On Kolakoski Sequence},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {3 2019},
volume = {07},
Issue = {05},
month = {3},
year = {2019},
issn = {2347-2693},
pages = {203-207},
url = {https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=833},
doi = {https://doi.org/10.26438/ijcse/v7i5.203207}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i5.203207}
UR - https://www.ijcseonline.org/full_spl_paper_view.php?paper_id=833
TI - A New Recursive Two Dimensional Pattern On Kolakoski Sequence
T2 - International Journal of Computer Sciences and Engineering
AU - N Jansi Rani, L Vigneswaran, V R Dare
PY - 2019
DA - 2019/03/10
PB - IJCSE, Indore, INDIA
SP - 203-207
IS - 05
VL - 07
SN - 2347-2693
ER -
Abstract
An efficient infinite Kolakoski sequence that’s not even in any particular order can be generated in two dimensional [2D] array of size (3x3) over a binary alphabet Ʃ={1,2} is introduced and it is denoted by K_((i,j))^3c- (i-blocks, j – positions, 3c- 3rd column). In this paper first 66 blocks with 100 positions from Kolakoski sequence is considered and 2D arrays are analyzed. Also combinatorial properties of the basis arrays are studied.
Key-Words / Index Term
2D word, Block, Fibonacci, Kolakoski, Palindrome
References
[1] Valerie Berthe, Srecko Brlek, Philippe Choquette, “Smooth words over arbitrary alphabets:Theoretical Computer Science, volume 341, issues 1-3, (2005) 293-310
[2] Bernd Sing, “Kolakoski-(2m,2n) are Limit-Periodic Model Sets: J. Math.Phys. 44, No 2, 899-912 (2003).
[3] Genevieve Paquin, Srecko Brlek, “Extremal Generalized Smooth Words: Computer Science [cs] / Discrete Mathematics [cs.DM], 2009.
[4] Bernd Sing, “More Kolakoski Sequences: [Math.CO], 2010.
[5] S. Brlek, A. Ladouceur, A note on differentiable palindromes, Theoret. Comput. Sci., 302 (2003) 167–178
[6] S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth infinite words, MFCS’04, Prague, Czech Republic (2004) submitted.
[7] F. M. Dekking, What is the long range order in the Kolakoski sequence, in R. V. Moody (ed.), The mathematics of Long-Range Aperiodic Order, Kluwer Academic Publishers (1997) 115–125.
[8] S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth infinite words, Theoret. Comput. Sci. 352 (2006) 306–317.
[9] V. Chv´atal, Notes on the Kolakoski Sequence, DIMACS Techn. Rep. 93-84, February 1994. [8] F. M. Dekking, On the structure of self generating sequences, S´eminaire de th´eorie des nombres de Bordeaux, expos´e 31 (1980–1981).
[10] R. Steacey, Structure in the Kolakoski sequence, Bull. EATCS 59: 173–182 (1996).
[11] B. Steinsky, A recursive formula for the Kolakoski sequence A000002, J. Integer Sequences 9(3): 06.3.7 (2006), 5pp. The corresponding numerical study of the letter frequencies is available at http://www.lirmm.fr/ monteil/blog/BruteForceKolakoski.
[12] E.J. Kupin and E.S. Rowland, Bounds on the frequency of 1 in the Kolakoski word, preprint. http://arxiv.org/abs/0809.2776/.