Diabetic Disease Prediction System using Supervised Machine Learning Approaches
Ommi Ramu1 , Brahmaji Godi2 , Om Prakash Samantray3
Section:Research Paper, Product Type: Journal Paper
Volume-9 ,
Issue-9 , Page no. 75-82, Sep-2021
CrossRef-DOI: https://doi.org/10.26438/ijcse/v9i9.7582
Online published on Sep 30, 2021
Copyright © Ommi Ramu, Brahmaji Godi, Om Prakash Samantray . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Ommi Ramu, Brahmaji Godi, Om Prakash Samantray, “Diabetic Disease Prediction System using Supervised Machine Learning Approaches,” International Journal of Computer Sciences and Engineering, Vol.9, Issue.9, pp.75-82, 2021.
MLA Style Citation: Ommi Ramu, Brahmaji Godi, Om Prakash Samantray "Diabetic Disease Prediction System using Supervised Machine Learning Approaches." International Journal of Computer Sciences and Engineering 9.9 (2021): 75-82.
APA Style Citation: Ommi Ramu, Brahmaji Godi, Om Prakash Samantray, (2021). Diabetic Disease Prediction System using Supervised Machine Learning Approaches. International Journal of Computer Sciences and Engineering, 9(9), 75-82.
BibTex Style Citation:
@article{Ramu_2021,
author = {Ommi Ramu, Brahmaji Godi, Om Prakash Samantray},
title = {Diabetic Disease Prediction System using Supervised Machine Learning Approaches},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {9 2021},
volume = {9},
Issue = {9},
month = {9},
year = {2021},
issn = {2347-2693},
pages = {75-82},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5402},
doi = {https://doi.org/10.26438/ijcse/v9i9.7582}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v9i9.7582}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5402
TI - Diabetic Disease Prediction System using Supervised Machine Learning Approaches
T2 - International Journal of Computer Sciences and Engineering
AU - Ommi Ramu, Brahmaji Godi, Om Prakash Samantray
PY - 2021
DA - 2021/09/30
PB - IJCSE, Indore, INDIA
SP - 75-82
IS - 9
VL - 9
SN - 2347-2693
ER -
VIEWS | XML | |
305 | 308 downloads | 150 downloads |
Abstract
In the present study Diabetics is one of the critical diseases which can fall at any group of age and gender. The major causes lead to diabetics is mostly inheritance, in a proper healthy lifestyle, Irregular food habits, stress, and no physical exercise. Prediction of Diabetics is a very important study since it is one of the leading causes of sudden kidney failures, heart attacks, and brain stroke etc. The diabetic patient treatment can be done through patient health history. The Doctor can find hidden information about the patient through healthcare applications and it will be used for effective decision-making for the patient’s health condition. The healthcare industry is also collecting a large amounts of patient health information from different data warehouses. Using these healthcare databases researchers used to extract information for predicting the diabetics of the patient. Researchers are focused on developing software with the help of machine learning methods that can help clinicians to make better decisions about a patient`s health based on their prediction and diagnosis. The main purpose of this program is to diagnose a patient`s diabetes using machine learning methods. A relative study of the various competences of machine learning approaches will be done through a graphical representation of the results. The goal and objective of this project is to predict the chances of diabetics then provide early treatment to patients, which will reduce the life-risk and cost of treatment. For this purpose a probability modeling and machine learning approach like Support Vector Machine algorithm Decision tree algorithm, Naive Bayes algorithm, Logistic regression algorithm are used to predict diabetics.
Key-Words / Index Term
SVM (Support Vector Machine), Decision Tree, Naïve Bayes, Linear Regression, accuracy comparison, machine learning techniques, predicting data values, analysis and results.
References
[1] S.Deepti, S.Dilip Singh, “Prediction of Diabetes using Classification Algorithms”, Procedia Computer Science, Vol.132, pp. 1578-1585, 2018.
[2] Larabi-Marie-Sainte, S, Aburahmah, L, Almohaini, R, & Saba, T, “Current techniques for diabetes prediction review and case study”, Applied Sciences, Vol.9, Issue.21, pp.460, 2019.
[3] Rodríguez-Rodríguez, I Rodríguez, J.V.Woo, W. L, Wei, B, & Pardo-Quiles, D. J, “A Comparison of Feature Selection and Forecasting Machine Learning Algorithms for Predicting Glycaemia in Type 1 Diabetes Mellitus”, Applied Sciences, Vol.11, Issue.4, pp.1742, 2021.
[4] Nedyalkova, M., Madurga, S., & Simeonov, V. Combinatorial “k-means clustering as a machine learning tool applied to diabetes mellitus type 2”, International Journal of Environmental Research and Public Health, Vol.18, Issue 4, pp.1919, 2021.
[5] Daniel, P. “An application of the free moment for the diabetic patients` classification-a pilot study”, E-Health and Bioengineering Conference (EHB), pp. 1-4, IEEE, 2015.
[6] Taser, P.Y, “Application of Bagging and Boosting Approaches Using Decision Tree-Based Algorithms in Diabetes Risk Prediction”, Multidisciplinary Digital Publishing Institute Proceedings Vol. 74, No. 1, p. 6, 2021.
[7] Kanchan, B. D, & Kishor, M.M, “Study of machine learning algorithms for special disease prediction using principal of component analysis”, International conference on global trends in signal processing, information computing and communication (ICGTSPICC), pp. 5-10, IEEE 2016.
[8] Mohanty, K. K, Barik, P. K, Barik, R. C, & Bhuyan, K. C, “An efficient prediction of diabetic from retinopathy using machine learning and signal processing approach”, International Conference on Information Technology (ICIT) pp. 103-108, IEEE, 2019.
[9] Shi, G, Zou, S, & Huang, A, “Glucose-tracking: A postprandial glucose prediction system for diabetic self-management”, 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare Ubi-HealthTech pp. 1-9, IEEE 2015.
[10] www.kaggle.com/uciml/pima-indians-diabetes-database.
[11] Godi, B, Viswanadham, S, Muttipati A. S, Samantray O. P, & Gadiraju S. R, “E-healthcare monitoring system using IoT with machine learning approaches”, International Conference on Computer Science, Engineering and Applications (ICCSEA), pp. 1-5, IEEE 2020.