Open Access   Article Go Back

Statistical Evaluation of Image Quality Measures for Improving Iris Recognition Performance

Sonali S. Gaikwad1 , Jyotsna S. Gaikwad2 , Ramesh R. Manza3

Section:Research Paper, Product Type: Journal Paper
Volume-9 , Issue-9 , Page no. 1-5, Sep-2021

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v9i9.15

Online published on Sep 30, 2021

Copyright © Sonali S. Gaikwad, Jyotsna S. Gaikwad, Ramesh R. Manza . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Sonali S. Gaikwad, Jyotsna S. Gaikwad, Ramesh R. Manza, “Statistical Evaluation of Image Quality Measures for Improving Iris Recognition Performance,” International Journal of Computer Sciences and Engineering, Vol.9, Issue.9, pp.1-5, 2021.

MLA Style Citation: Sonali S. Gaikwad, Jyotsna S. Gaikwad, Ramesh R. Manza "Statistical Evaluation of Image Quality Measures for Improving Iris Recognition Performance." International Journal of Computer Sciences and Engineering 9.9 (2021): 1-5.

APA Style Citation: Sonali S. Gaikwad, Jyotsna S. Gaikwad, Ramesh R. Manza, (2021). Statistical Evaluation of Image Quality Measures for Improving Iris Recognition Performance. International Journal of Computer Sciences and Engineering, 9(9), 1-5.

BibTex Style Citation:
@article{Gaikwad_2021,
author = {Sonali S. Gaikwad, Jyotsna S. Gaikwad, Ramesh R. Manza},
title = {Statistical Evaluation of Image Quality Measures for Improving Iris Recognition Performance},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {9 2021},
volume = {9},
Issue = {9},
month = {9},
year = {2021},
issn = {2347-2693},
pages = {1-5},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5387},
doi = {https://doi.org/10.26438/ijcse/v9i9.15}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v9i9.15}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5387
TI - Statistical Evaluation of Image Quality Measures for Improving Iris Recognition Performance
T2 - International Journal of Computer Sciences and Engineering
AU - Sonali S. Gaikwad, Jyotsna S. Gaikwad, Ramesh R. Manza
PY - 2021
DA - 2021/09/30
PB - IJCSE, Indore, INDIA
SP - 1-5
IS - 9
VL - 9
SN - 2347-2693
ER -

VIEWS PDF XML
345 453 downloads 170 downloads
  
  
           

Abstract

Iris image quality assessment is a strategy of estimating data substance of iris imagery at the phase of iris acquisition or at early preprocessing stage. The information substance might be taken to be utilized for iris identification dependent on a single image. The image might be disposed of, or joined with other imagery to improve recognition abilities of an iris system. Evaluate quality metrics would be the rules in settling on choices with respect to additional means regarding gained imagery. Implement this algorithm on open source iris databases (IIT Delhi, UBIRIS and UPOL Iris Database). We compare with the support of quality measure parameters with both original iris image and enhanced iris images. The consequential images quality is tested by using quality measures like PSNR, MSE, MAXERR, L2RAT, it is found that quality has been enhanced. Hence it is shown that the recognition rate is rises.

Key-Words / Index Term

Quality Measure, Iris Recognition System, Biometric, PSNR, MSE, MAXERR, L2RAT

References

[1] Feddaoui N, Mahersia H, & Hamrouni K, “Improving Iris Recognition Performance Using Quality Measures.”, Advanced Biometric Technologies, 2012.
[2] Inmaculada Tomeo-Reyes, Iván Rubio Polo, Judith Liu-Jimenez, Belen Fernandez-Saavedra, “Quality metrics influence on iris recognition systems performance”, IEEE International Carnahan Conference on Security Technology (ICCST), 2011.
[3] R. Hentati, B. Dorizzi, Y. Aoudni and M. Abid, "Measuring the Quality of IRIS Segmentation for Improved IRIS Recognition Performance", Eighth International Conference on Signal Image Technology and Internet Based Systems, Naples, 2012, pp. 110-117, doi: 10.1109/SITIS.2012.27.
[4] E. Krichen, S. Garcia-Salicetti and B. Dorizzi, "A new probabilistic Iris Quality Measure for comprehensive noise detection", First IEEE International Conference on Biometrics: Theory, Applications, and Systems, Crystal City, VA, 2007, pp. 1-6, doi: 10.1109/BTAS.2007.4401906.
[5] Nathan D. Kalka, Jinyu Zuo, Natalia Schmid, Bojan Cukic, “Image quality assessment for iris biometric”, 6Proceedings of SPIE - The International Society for Optical Engineering 6202, DOI: 10.1117/12.666448, 2006.
[6] N. Nelufule, A. de Kock, G. Mabuza-Hocquet and Y. Moolla, "Image Quality Assessment for Iris Biometrics for Minors", Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 2019, pp. 1-6, doi: 10.1109/ICTAS.2019.8703520, 2019.
[7] Makinana S., Malumedzha T., Nelwamondo F.V., “Iris Image Quality Assessment Based on Quality Parameters”, Intelligent Information and Database Systems. Lecture Notes in Computer Science, vol 8397. Springer, Cham. https://doi.org/10.1007/978-3-319-05476-6_58, 2014.
[8] Starovoitov V., Goli?ska A.K., Predko-Maliszewska A., Goli?ski M., “Image Quality Assessment for Iris Biometrics”. Processing and Communications Challenges 4. Advances in Intelligent Systems and Computing, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32384-3_12, 2013.
[9] Archana Hombalimath, Manjula H T, Amreen Khanam, Krishna Girish, “Image Quality Assessment for Iris Recognition”, International Journal of Scientific and Research Publications, Volume 8, Issue 6, ISSN 2250-3153, 2018.
[10] Jenadeleh, M.; Pedersen, M.; Saupe, D. Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition. Sensors 1308, 2020.
[11] Schmid N.A. “Iris Image Quality”, In: Li S.Z., Jain A. (eds) Encyclopedia of Biometrics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73003-5_166, 2009.