Food Image Classification Using Machine Learning Techniques: A Review
Yash Baid1 , Avinash Dhole2
Section:Review Paper, Product Type: Journal Paper
Volume-9 ,
Issue-5 , Page no. 31-36, May-2021
CrossRef-DOI: https://doi.org/10.26438/ijcse/v9i5.3136
Online published on May 31, 2021
Copyright © Yash Baid, Avinash Dhole . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Yash Baid, Avinash Dhole, “Food Image Classification Using Machine Learning Techniques: A Review,” International Journal of Computer Sciences and Engineering, Vol.9, Issue.5, pp.31-36, 2021.
MLA Style Citation: Yash Baid, Avinash Dhole "Food Image Classification Using Machine Learning Techniques: A Review." International Journal of Computer Sciences and Engineering 9.5 (2021): 31-36.
APA Style Citation: Yash Baid, Avinash Dhole, (2021). Food Image Classification Using Machine Learning Techniques: A Review. International Journal of Computer Sciences and Engineering, 9(5), 31-36.
BibTex Style Citation:
@article{Baid_2021,
author = {Yash Baid, Avinash Dhole},
title = {Food Image Classification Using Machine Learning Techniques: A Review},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {5 2021},
volume = {9},
Issue = {5},
month = {5},
year = {2021},
issn = {2347-2693},
pages = {31-36},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5333},
doi = {https://doi.org/10.26438/ijcse/v9i5.3136}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v9i5.3136}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5333
TI - Food Image Classification Using Machine Learning Techniques: A Review
T2 - International Journal of Computer Sciences and Engineering
AU - Yash Baid, Avinash Dhole
PY - 2021
DA - 2021/05/31
PB - IJCSE, Indore, INDIA
SP - 31-36
IS - 5
VL - 9
SN - 2347-2693
ER -
VIEWS | XML | |
399 | 476 downloads | 162 downloads |
Abstract
The recognition of image is one of the most important fields in the image processing and computer vision. Image recognition has many branches but the food image classification is very unique. In today’s world people are very conscious about their health. Many people around the world use some dietary assessment system for planning of their diet. In dietary assessment system people make the use of food image classification to classify the food from the image and provide the total amount of calories present in the food. The classification of food images is a very difficult task as the dataset of food images is highly non-linear. In this paper, we are going to use different types of neural network models to show, which neural network provides the best accuracy result in the recognition of food images and is most efficient to use. We are using a food image dataset (food-11) which contains 16643 images in it.
Key-Words / Index Term
Deep Learning, CNN, RNN, Computer Vision, Image processing, DCNN
References
[1] Md Tohidul Islam, Sagidur Rahman, B.M. Nafiz Karim Siddique, Taskeed Jabid, “Image Recognition with Deep Learning,” 2018 International Conference on Intelligent Informatics and Biomedical, Bangkok, Thailand, pp. 106-110, 2018.
[2] “Health effects of overweight and obesity in 195 countries over 25 years,”, New England Journal of Medicine 377, no. 1, 13–27, PMID: 28604169, 2017.
[3] Y. He, C. Xu, N. Khanna, C. J. Boushey and E. J. Delp, "Analysis of food images: Features and classification," IEEE International Conference on Image Processing (ICIP), Paris, pp. 2744-2748, 2014.
[4] Z. Zong, D. T. Nguyen, P. Ogunbona and W. Li, "On the Combination of Local Texture and Global Structure for Food Classification," IEEE International Symposium on Multimedia, Taichung, pp. 204- 211, 2010.
[5] S. J. Minija and W. R. S. Emmanuel, "Food image classification using sphere shaped — Support vector machine," International Conference on Inventive Computing and Informatics (ICICI), Coimbatore , pp. 109-113, 2017.
[6] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool, “Food-101 – mining discriminative components with random forests,” Computer Vision – ECCV (Cham) (David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, eds.), Springer International Publishing, pp. 446–461, 2014.
[7] Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod Vokkarane, and Yunsheng Ma, “Deepfood: Deep learning-based food image recognition for computer-aided dietary assessment,” CoRR abs/1606.05675, 2016.
[8] K. Yanai and Y. Kawano, "Food image recognition using deep convolutional network with pre-training and fine-tuning," IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Turin, pp. 1-6, 2015.
[9] N. Hnoohom and S. Yuenyong, "Thai fast food image classification using deep learning," International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI-NCON), Chiang Rai, pp. 116-119, 2018.
[10] G. Özsert Yi??i?t and B. M. Özyildirim, "Comparison of convolutional neural network models for food image classification," IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Gdynia, pp. 349-353, 2017.
[11] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna, “Rethinking the inception architecture for computer vision,” CoRR abs/1512.00567 ,2015.
[12] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database," IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 248- 255, 2009.
[13] D. Ciregan, U. Meier and J. Schmidhuber, "Multi-column deep neural networks for image classification," IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, pp. 3642-3649, 2012.
[14] Kiyoharu Aizawa, Makoto Ogawa, “FoodLog: Smartphone based Multimedia Food Recording Tool” International Conference on Artificial Reality and Telexistence (ICAT), Tokyo, Japan, pp.143-144, 2013.
[15] Keigo Kitamura, Toshihiko Yamasaki, Kiyoharu Aizawa, “FoodLog: Capture, Analysis and Retrieval of Personal Food Images via Web” CEA, Beijing, China, pp. 23-29, 2009.
[16] Fengqing Zhu, Marc Bosch, Insoo Woo, SungYe Kim, Carol J. Boushey, David S. Ebert & Edward J. Del, “The Use of Mobile Devices in Aiding Dietary Assessment & Evaluation”, IEEE Journal of Selected Topics In Signal Processing, pp. 756-766, 2010.
[17] Mei Chen, Kapil Dhingra, Wen Wu, Lei Yang, Rahul Sukthankar, Jie Yang, “PFID: PITTSBURGH FAST-FOOD IMAGE DATASET”, ICIP, pp. 289-292, 2009.
[18] Wen Wu, Jie Yang, “FAST FOOD RECOGNITION FROM VIDEOS OF EATING FOR CALORIE ESTIMATION”, ICME, pp.1210-1213, 2009.
[19] Parisa Pouladzadeh, Shervin Shirmohammadi, Rana Al-Maghrabi, “Measuring Calorie and Nutrition from Food Image”, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, pp. 1-10, 2014.
[20] Natta Tammachat, Natapon Pantuwong “Calories Analysis of Food Intake Using Image Recognition,” International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2014
[21] Yoshiyuki Kawano and Keiji Yanai, “Real-time Mobile Food Recognition System”, IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1-7, 2013.
[22] Alex Krizhevsky, Iiya Sutskever, Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, ImageNet LSVRC-2010, pp.1-9, 2010.