EEG Based Epilepsy Seizure Analysis and Classification Methods: An Overview
Amit Kukker1 , Rajneesh Sharma2
Section:Review Paper, Product Type: Journal Paper
Volume-7 ,
Issue-8 , Page no. 328-346, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijcse/v7i8.328346
Online published on Aug 31, 2019
Copyright © Amit Kukker, Rajneesh Sharma . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Amit Kukker, Rajneesh Sharma, “EEG Based Epilepsy Seizure Analysis and Classification Methods: An Overview,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.8, pp.328-346, 2019.
MLA Style Citation: Amit Kukker, Rajneesh Sharma "EEG Based Epilepsy Seizure Analysis and Classification Methods: An Overview." International Journal of Computer Sciences and Engineering 7.8 (2019): 328-346.
APA Style Citation: Amit Kukker, Rajneesh Sharma, (2019). EEG Based Epilepsy Seizure Analysis and Classification Methods: An Overview. International Journal of Computer Sciences and Engineering, 7(8), 328-346.
BibTex Style Citation:
@article{Kukker_2019,
author = {Amit Kukker, Rajneesh Sharma},
title = {EEG Based Epilepsy Seizure Analysis and Classification Methods: An Overview},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {8 2019},
volume = {7},
Issue = {8},
month = {8},
year = {2019},
issn = {2347-2693},
pages = {328-346},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4833},
doi = {https://doi.org/10.26438/ijcse/v7i8.328346}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i8.328346}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4833
TI - EEG Based Epilepsy Seizure Analysis and Classification Methods: An Overview
T2 - International Journal of Computer Sciences and Engineering
AU - Amit Kukker, Rajneesh Sharma
PY - 2019
DA - 2019/08/31
PB - IJCSE, Indore, INDIA
SP - 328-346
IS - 8
VL - 7
SN - 2347-2693
ER -
VIEWS | XML | |
494 | 228 downloads | 162 downloads |
Abstract
Epilepsy has always baffled humans, in particular, the approach one needs to take for curing or at least subside its severity. Epilepsy is a continual lingering neurological ataxia generated by intermittent, transient, superfluous, wanton and unfounded seizures. Epilepsy never indicates cause of a person`s seizures or their severity. Electroencephalogram (EEG) is the tool of choice for analysis and diagnosis of epilepsy along with different automatic and visual inspection techniques. Several researchers have proposed diverse techniques for classification and analysis of epilepsy. Different pre-processing, feature extraction and classification approaches are presented. This paper attempts to catalogue various techniques and algorithms proposed so far for epileptic seizure analysis along with shortcomings thereof to facilitate further research in this complex area. This will help in online seizure detection and timely diagnosis.
Key-Words / Index Term
Epilepsy, Seizure, Electroencephalogram (EEG), Brain, Wavelet, Hilbert-Huang Transform
References
[1] https://www.cureepilepsy.org/what-is-epilepsy
[2] http://www.who.int/mediacentre/factsheets/fs999/en
[3] http://www.epilepsy.com/learn/epilepsy-101/what-epilepsy
[4] Nasser Omer Sahel Ba-Karait et al., "Swarm Negative Selection Algorithm for Electroencephalogram Signals Classification", Journal of Computer Science 5 (12): 998-1005, 2009. Doi: 10.3844/jcssp.2009.995.1002
[5] M. Bedeeuzzaman, ThasneemFathima, Yusuf U. Khan and Omar Farooq, "Mean Absolute Deviation and Wavelet Entropy for Seizure Prediction", Journal of Medical Imaging and Health Informatics, Vol. 2, 2012, pp. 238–243. Doi: 10.1166/jmihi.2012.1090
[6] S. Nasehi and H. Pourghassem, "Seizure Detection Algorithms Based on Analysis of EEG and ECG Signals: a Survey", Neurophysiology, Vol. 44, No. 2, June, 2012. Doi: 10.1007/s11062-012-9285-x
[7] Luigi Chisci, Antonio Mavino, Guido Perferi, Marco Sciandrone, Carmelo Anile, Gabriella Colicchio and Filomena Fuggetta, "Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines", IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, May 2010, pp. 1124-1132. Doi: 10.1109/TBME.2009.2038990
[8] Semih Altunay, Ziya Telatar and Osman Erogul , "Epileptic EEG detection using the linear prediction error energy", Expert Systems with Applications, Vol. 37, 2010, pp. 5661–5665. Doi: 10.1016/j.eswa.2010.02.045
[9] Serkan Kiranyaz, TurkerInce, Morteza Zabihi and Dilek Ince, "Automated patient-specific classification of long-term Electroencephalography", Journal of Biomedical Informatics, 43, pp. 16-31, June 2014. Doi: 10.1016/j.jbi.2014.02.005
[10] Mojtaba Bandarabadi et al., "Epileptic Seizure Prediction Using Relative Spectral Power Features", Clinical Neurophysiology, 2014. Doi: 10.1016/j.clinph.2014.05.022
[11] Gang Wang et al., "Epileptic Seizure Detection Based on Partial Directed Coherence Analysis", IEEE Journal of Biomedical and Health Informatics, Vol. 20, No. 3, May 2016, pp. 873-879. Doi: 10.1109/JBHI.2015.2424074
[12] L. Murali, D. Chitra, T. Manigandan and B. Sharanya, "An Efficient Adaptive Filter architecture for Improving the Seizure Detection in EEG Signal", Circuits, Systems, and Signal Processing, Vol. 35, Issue 8, August 2016, pp. 2914–2931. Doi: 10.1007/s00034-015-0178-2
[13] M.J. van der Heyden et al.," Non-linear analysis of intracranial human EEG in temporal lobe epilepsy", Clinical Neurophysiology, Vol. 110, 1999, pp. 1726-1740.
[14] Leonardo Duque-Munoz, Jairo Jose Espinosa-Oviedo and Cesar German Castellanos-Dominguez, "Identification and monitoring of brain activity based on stochastic relevance analysis of short–time EEG rhythms", BioMedical Engineering OnLine, 13:123, 2014. Doi: 10.1186/1475-925X-13-123
[15] T. Baranidharan, and D. K. Ghosh. "Classification of medical images using fast Hilbert transform and decision tree algorithms." International Journal on Computer Science and Engineering 3.4 (2011): 1497-1500.
[16] Piotr J. Franaszczuk, Gregory K. Bergey, Piotr J. Durka and Howard M. Eisenberg, "Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe", Electroencephalography and Clinical Neurophysiology, 106(6), pp. 513-521. Doi: 10.1016/S0013-4694(98)00024-8
[17] Weiting Chen et al., "A random forest model based classification scheme for neonatal amplitude-integrated EEG", BioMedical Engineering OnLine 2014, 13(Suppl 2):S4. Doi: 10.1186/1475-925X-13-S2-S4
[18] Ahmet Alkan and M. Kemal Kiymik, "Comparison of AR and Welch Methods in Epileptic Seizure Detection", Journal of Medical Systems, Vol. 30, Issue 6, Dec. 2006, pp. 413-419. Doi: 10.1007/s10916-005-9001-0
[19] Shiliang Sun and Changshui Zhang, "Adaptive feature extraction for EEG signal classification", Medical & Biological Engineering & Computing, 44(10), 2006, pp. 931-935. Doi: 10.1007/s11517-006-0107-4
[20] Nihal Fatma Guler, Elif Derya Ubeyli and Inan Guler, "Recurrent neural networks employing Lyapunov exponents for EEG signals classification", Expert Systems with Applications, Vol. 29, 2005, pp. 506–514. Doi: 10.1016/j.eswa.2005.04.011
[21] Abhishek Kumar, Rajneesh Sharma, "Fuzzy Lyapunov Reinforcement Learning for Non-linear Systems", ISA Transactions, Vol. 67, Mar. 2017, pp.151-159. Doi:10.1016/j.isatra.2017.01.026
[22] Alan WL Chiu et al., "Wavelet-based Gaussian-mixture hidden Markov model for the detection of multistage seizure dynamics: A proof-of-concept study", Biomedical Engineering Online, Vol. 10, No. 29, 2011.Doi: 10.1186/1475-925X-10-29
[23] L. Murali, D. Chitra, T. Manigandan and B. Sharanya, "An Efficient Adaptive Filter Architecture for Improving the Seizure Detection in EEG Signal", Circuits, Systems, and Signal Processing, Vol. 35, Issue 8, Aug. 2016, pp. 2914–2931. Doi: 10.1007/s00034-015-0178-2
[24] Abdulhamit Subasi and M. Ismail Gursoy, "EEG signal classification using PCA, ICA, LDA and support vector machines", Expert Systems with Applications 37 (2010) 8659–8666. Doi: 10.1016/j.eswa.2010.06.065
[25] Yucel Kocyigit, Ahmet Alkan and Halil Erol, "Classification of EEG Recordings by Using Fast Independent Component Analysis and Artificial Neural Network", Journal of Medical Systems, Vol. 32, pp. 17–20. Doi: 10.1007/s10916-007-9102-z
[26] Rajeev Sharma and Ram Bilas Pachori, "Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions", Expert Systems with Applications, 42 (3), Aug. 2014, pp. 1106–1117. Doi: 10.1016/j.eswa.2014.08.030
[27] Felix Achilles et al., “Convolutional neural networks for real-time epileptic seizure detection", Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 01:13, 2016. Doi: 10.1080/21681163.2016.1141062
[28] Abdulhamit Subasi, "Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients", Expert Systems with Applications 28 (2005) 701–711 Doi: 10.1016/j.eswa.2004.12.027
[29] Shang-Ming Zhou, John Q. Gan and Francisco Sepulveda, "Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface", Information Sciences, Vol. 178, 2008, pp. 1629–1640. Doi: 10.1016/j.ins.2007.11.012
[30] Shengkun Xie and Sridhar Krishnan, "Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis", Medical & Biological Engineering & Computing, Vol. 51, 2013, pp. 49-60. Doi: 10.1007/s11517-012-0967-8
[31] Tapan Gandhi, Bijay Ketan Panigrahi and Sneh Anand, "A comparative study of wavelet families for EEG signal classification ", Neurocomputing , Vol.74, 2011, pp. 3051–3057. Doi:10.1016/j.neucom.2011.04.029
[32] Amir B. Geva and Dan H. Kerem, "Forecasting Generalized Epileptic Seizures from the EEG Signal by Wavelet Analysis and Dynamic Unsupervised Fuzzy Clustering", IEEE Transactions on Biomedical Engineering, Vol. 45, No. 10, Oct.1998 Doi: 10.1109/10.720198
[33] Carmen Vidaurre , Nicole Krämer, Benjamin Blankertz , Alois Schlögl, "Time Domain Parameters as a feature for EEG-based Brain Computer Interfaces", Neural Networks, Vol. 22, 2009, pp. 1313-1319. Doi: 10.1016/j.neunet.2009.07.020
[34] Wu Ting, Yan Guo-zheng, Yang Bang-hua and Sun Hong, "EEG feature extraction based on wavelet packet decomposition for brain computer interface", Measurement vol. 41, year 2008, pp. 618–625. Doi: 10.1016/j.measurement.2007.07.007
[35] Kavya Devarajan, E. Jyostna, K. Jayasri and Vinitha Balasampath, “EEG-Based Epilepsy Detection and Prediction", IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014. Doi: 10.7763/IJET.2014.V6.698
[36] M. Anil kumar et al., " Real time Epileptic Seizures Detection and Alert System Using NI Lab-View ", International Journal of Scientific and Research Publications, Volume 5, Issue 5, May 2015.
[37] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, IvanovPCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysoNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220. [Circulation Electronic Page; htttp://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 13)
[38] Andrzejak RG, Schindler K, Rummel C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E, 86, 046206, 2012. Available at:http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-nonlinear-dependence
[39] http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database
[40] Ali Shahidi Zandi, Manouchehr Javidan, Guy A. Dumont and Reza Tafreshi, "Automated Real-Time Epileptic Seizure Detection in Scalp EEG Recordings Using an Algorithm Based on Wavelet Packet Transform", IEEE Transactions on Biomedical Engineering, Vol. 57, No. 7, July 2010. Doi: 10.1109/TBME.2010.2046417
[41] Abdulhamit Subasi, Ahmet Alkan, Etem Koklukaya and M. Kemal Kiymik, "Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing", Neural Networks, Vol. 18, 2005, pp. 985–997. Doi: 10.1016/j.neunet.2005.01.006
[42] Sharanreddy and P.K. Kulkarni, "EEG signal classification for Epilepsy Seizure Detection using Improved Approximate Entropy", International Journal of Public Health Science (IJPHS), Vol. 2, No. 1, March 2013, pp. 23-32. Doi: 10.11591/ijphs.v2i1.1836
[43] Sharanreddyand P.K. Kulkarni,"Automated EEG signal analysis for identification of epilepsy seizures and brain tumour", Journal of Medical Engineering & Technology, 37(8), 2013, pp. 511–519. Doi: 10.3109/03091902.2013.837530
[44] Ling Guo, Daniel Rivero, Julián Dorado, Cristian R. Munteanu and Alejandro Pazos, "Automatic feature extraction using genetic programming: An application to epileptic EEG classification", Expert Systems with Applications, Vol. 38, 2011, pp. 10425–10436. Doi: 10.1016/j.eswa.2011.02.118
[45] Anindya Bijoy Das et al., "Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection", Signal, Image and Video Processing, Volume 10, Issue 2, Feb. 2016, pp. 259–266. Doi: 10.1007/s11760-014-0736-2
[46] Samanwoy Ghosh-Dastidar, Hojjat Adeli and Nahid Dadmehr, "Mixed-Band Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection", IEEE Transactions on Biomedical Engineering, Vol. 54, No. 9, Sept., 2007. Doi: 10.1109/TBME.2007.891945
[47] Lee SH, Lim JS, Kim JK, Yang J and Lee Y, "Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance", Computer Methods and Programs Biomedicine, 116(1), Aug. 2014, pp.10-25. Doi: 10.1016/j.cmpb.2014.04.012
[48] Yusuf U Khan, Omar Farooq and Priyanka Sharma, "Automatic Detection of Seizure Onset in Pediatric EEG", International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.3, September 2012. Doi: 10.5121/ijesa.2012.2309
[49] Isa Conradsen, Sándor Beniczky, Peter Wolf, Troels W. Kjaer, Thomas Sams, Helge B.D. Sorensen, " Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data", Computer Methods and Programs in Biomedicine, Vol. 107, No. 2, 2012, pp. 97–110. Doi: 10.1016/j.cmpb.2011.06.005
[50] Yong Zhang ,Yuting Zhang ,Jianying Wang and Xiaowei Zheng, "Comparison of classification methods on EEG signals based on wavelet packet decomposition", Neural Computing and Applications, Vol. 26 Issue 5, July 2015, pp. 1217-1225. Doi: 10.1007/s00521-014-1786-7
[51] Musa Peker, BahaSen and Dursun Delen, "A Novel Method for Automated Diagnosis of Epilepsy Using Complex Valued Classifiers", IEEE Journal of Biomedical and Health Informatics, Vol. 20, No. 1, Jan.2016, pp. 108-118. Doi: 10.1109/JBHI.2014.2387795
[52] Yatindra Kumar, M. L. Dewal and R. S. Anand, "Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network", Signal, Image and Video Processing, Volume 8, Issue 7, October 2014, pp 1323–1334. Doi: 10.1007/s11760-012-0362-9
[53] Ling Guo, Daniel Rivero, Julián Dorado, Juan R. Rabu˜nal and Alejandro Pazos, "Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks", Journal of Neuroscience Methods 191 (2010) 101–109. Doi: 10.1016/j.jneumeth.2010.05.020
[54] Abdulhamit Subasi and Ergun Erc¸elebi, "Classification of EEG signals using neural network and logistic regression", Computer Methods and Programs in Biomedicine (2005) 78, 87—99. Doi: 10.1016/j.cmpb.2004.10.009
[55] Elif Derya Ubeyli, " Wavelet/mixture of experts network structure for EEG signals classification", Expert Systems with Applications 34 (2008) 1954–1962. Doi: 10.1016/j.eswa.2007.02.006
[56] Abdulhamit Subasi," EEG signal classification using wavelet feature extraction and a mixture of expert model", Expert Systems with Applications 32 (2007) 1084–1093 Doi: 10.1016/j.eswa.2006.02.005
[57] Alan W. L. Chiu, Eunji E. Kang, Miron Derchansky, Peter L. Carlen and Berj L. Bardakjian, "Online prediction of Onsets of Seizure-like Events in Hippocampal Neural Networks Using Wavelet Artificial Neural Networks", Annals of Biomedical Engineering, Vol. 34, No. 2, pp. 282–294, Feb 2006 Doi: 10.1007/s10439-005-9029-9
[58] Thasneem Fathima, M. Bedeeuzzaman and Paul K. Joseph, "Wavelet Based Features for Classification of Normal, Ictal and Inter-ictal EEG Signals", Journal of Medical Imaging and Health Informatics, Vol. 3, No. 2, 2013, pp. 301–305. Doi: 10.1166/jmihi.2013.1161
[59] Weidong Zhou, Yinxia Liu, Qi Yuan and Xueli Li, "Epileptic Seizure Detection Using Lacunarity and Bayesian Linear Discriminant Analysis in Intracranial EEG ", IEEE Transactions on Biomedical Engineering, Vol. 60, No. 12, Dec. 2013. Doi: 10.1109/TBME.2013.2254486
[60] Amir Ahangi, Mehdi Karamnejad, Nima Mohammadi, Reza Ebrahimpour and Nasoor Bagheri, " Multiple classifier system for EEG signal classification with application to brain–computer interfaces", Neural Computing and Applications, Volume 23, Issue 5, Oct. 2013, pp. 1319–1327. Doi: 10.1007/s00521-012-1074-3
[61] P Bhuvaneswari and J Satheesh Kumar, "Support Vector Machine Technique for EEG Signals", International Journal of Computer Applications, Vol. 63, No.13, Feb. 2013. Doi: 10.1.1.278.7542
[62] U. RAJENDRA ACHARYA, "Automated Diagnosis of Epilepsy Using CWT, HOS and Texture Parameters", International Journal of Neural Systems, Vol. 23, No. 3, 2013, pp. 1350009-[1-15]. Doi: 10.1142/S0129065713500093
[63] Piyush Swami, Tapan K. Gandhi Bijaya K. Panigrahi, Manjari Tripathi and Sneh Anand, "A novel robust diagnostic model to detect seizures in electroencephalography", Expert Systems with Applications, Vol.56, Issue C, Sept. 2016, pp. 116-130. Doi: 10.1016/j.eswa.2016.02.040
[64] Akshata Patted, Srushti Bekal and Veena Desai, " EEG Signal Classification into Seizure and Non-Seizure Class using Discrete Wavelet Transform and Artificial Neural Network", International Journal of Innovative Research in Computer and Communication Engineering, Vol. 4, Issue 7, July 2016, pp. 14541-14547. Doi: 10.15680/IJIRCCE.2016. 0407207
[65] M. Yusaf, R. Nawaz and J. Iqbal, "Robust seizure detection in EEG using 2D DWT of time-frequency distributions", Electronics Letters, Vol. 52, No. 11, May 2016, pp. 902–903. Doi: 10.1049/el.2016.0630
[66] Jayavardhana Gubbi, Shitanshu Kusmakar, Aravinda S. Rao, Bernard Yan, Terence O’Brien and Marimuthu Palaniswami, "Automatic Detection and Classification of Convulsive Psychogenic Non-epileptic Seizures Using a Wearable Device", IEEE Journal of Biomedical and Health Informatics, Vol. 20, No. 4, Jul. 2016, pp. 1061-1072. Doi: 10.1109/JBHI.2015.2446539
[67] Ram Bilas Pachori, "Discrimination between Ictal and Seizure-Free EEG Signals Using Empirical Mode Decomposition", Research Letters in Signal Processing, Vol. 2008, Article ID 293056. Doi:10.1155/2008/293056
[68] Ram Bilas Pachori and Shivnarayan Patidar, "Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions ", Computer Methods and Programs in Biomedicines, 113(2), Feb. 2014, pp. 494-502. Doi: 10.1016/j.cmpb.2013.11.014
[69] Mohammad Zavid Parvez and Manoranjan Paul, "Novel Approaches of EEG Signal Classification Using IMF Bandwidth and DCT Frequency", Biomedical Engineering: Applications, Basis and Communications, Vol. 27, No. 3 2015, pp. 1550027 - [1-9]. Doi: 10.4015/S1016237215500271
[70] S. M. Shafiul Alam, M. I. H. Bhuiyan, , Aurangozeb and Syed Tarek Shahriar, "EEG Signal Discrimination using Non-linear Dynamics in the EMD Domain", International Journal of Computer and Electrical Engineering, Vol. 4, No. 3, June 2012, pp. 326-330. Doi: 10.7763/IJCEE.2012.V4.505
[71] S. M. Shafiul Alam and M. I. H. Bhuiyan, "Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain", IEEE Journal of Biomedical and Health Informatics, Vol. 17, No. 2, Mar. 2013, pp. 312-318. Doi: 10.1109/JBHI.2012.2237409
[72] Alexandros T. Tzallas, , Markos G. Tsipouras and Dimitrios I. Fotiadis, "Epileptic Seizure Detection in EEGs Using Time–Frequency Analysis", IEEE Transactions on Information Technology in Biomedicine, Vol. 13, No. 5, Sept. 2009, pp. 703-710. Doi: 10.1109/TITB.2009.2017939
[73] Varun Bajaj and Ram Bilas Pachori, "Epileptic Seizure Detection Based on the Instantaneous Area of Analytic Intrinsic Mode Functions of EEG Signals", Biomedical Engineering Letters, Vol. 3, Issue 1, Mar. 2013, pp 17–21. Doi: 10.1007/s13534-013-0084-0
[74] Rajeev Sharma and Ram Bilas Pachori, "Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions", Expert Systems with Applications, 42, 2015, pp. 1106–1117. Doi: 10.1016/j.eswa.2014.08.030
[75] Khushnandan Rai, Varun Bajaj, and Anil Kumar, "Features extraction for classification of focal and non-focal EEG signals", Information Science and Applications, Lecture Notes in Electrical Engineering , 339, pp. 599-605. Doi: 10.1007/978-3-662-46578-3_70
[76] Boualem Boashash and Samir Ouelha, "Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study ", Knowledge-Based Systems, Vol. 106, Issue C, Aug. 2016, pp. 38-50. Doi: 10.1016/j.knosys.2016.05.027
[77] Sabrina Belhadj, Abedlouaheb Attia, Bachir Ahmed Adnane, Zoubir Ahmed-Foitih and Abdelmalik Taleb Ahmed, "A Novel Epileptic Seizure Detection Using Fast Potential-based Hierarchical Agglomerative Clustering Based on EMD", International Journal of Computer Science and Network Security, Vol.16, No.5, May 2016, pp. 7-12.
[78] N.B. Karayiannis, A. Mukherjee, J.R. Glover, J.D. Frost, Jr R.A. Hrachovy and E.M. Mizrahi, "An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram", Soft Computing, Vol. 10, Issue 4, Feb. 2006, pp 382–396. Doi: 10.1007/s00500-005-0498-4
[79] Alex Van Esbroeck et al., "Multi-task seizure detection: addressing intra-patient variation in seizure morphologies", Machine Learning, Vol. 102, Issue 3, Mar. 2016, pp. 309–321. Doi: 10.1007/s10994-015-5519-7
[80] S Behbahani et al., "Classification of ictal and seizure-free HRV signals with focus on lateralization of epilepsy ", Technology and Health Care, 24(1), 2016, pp. 43-56. Doi: 10.3233/THC-151072
[81] Maria Tito, Mercedes Cabrerizo, Melvin Ayala, Armando Barreto, Ian Miller, Prasanna Jayakar and Malek Adjouadi, "Classification of electroencephalographic seizure recordings into ictal and inter-ictal files using correlation sum", Computers in Biology and Medicine, Vol. 39, Aug. 2009, pp. 604-614. Doi: 10.1016/j.compbiomed.2009.04.005
[82] Vivek Prakash Nigam and Daniel Graupe, "A neural-network-based detection of epilepsy", Neurological Research, Vol. 26, Jan 2004, pp.55-60. Doi: 10.1179/016164104773026534
[83] Amal Feltane, G. Faye Boudreaux-Bartels, and Walter Besio, "Automatic Seizure Detection in Rats Using Laplacian EEG and Verification with Human Seizure Signals", Annals of Biomedical Engineering, Vol. 41, No. 3, March 2013, pp. 645–654. Doi: 10.1007/s10439-012-0675-4
[84] Emigdio Z-Flores et al., “Regularity and Matching Pursuit Feature Extraction for the Detection of Epileptic Seizures", Journal of Neuroscience Methods, 15; 266, 2016, pp. 107-25. Doi: 10.1016/j.jneumeth.2016.03.024
[85] Umut Orhan, Mahmut Hekim and Mahmut Ozer, "Epileptic Seizure Detection Using Probability Distribution Based On Equal Frequency Discretization", Journal of Medical Systems, Vol. 36, Issue 4, August 2012, pp 2219–2224. Doi: 10.1007/s10916-011-9689-y
[86] S. Divya and S. Suja Priyadharsini, "Classification of EEG Signal for Epileptic Seizure Detection Using EMD and ELM ", International Journal for Trends in Engineering & Technology, Vol. 3, Issue 2, Feb. 2015, pp. 68-74.
[87] Khaled A. Abuhasel et al., "A Hybrid Particle Swarm Optimization and Neural Network with Fuzzy Membership Function Technique for Epileptic Seizure Classification", Journal of Advance computational Intelligence and Intelligent Informatics, Vol. 19, No.3, 2015. Doi: 10.20965/jaciii.p0447
[88] Ashwani Kumar Tiwari, Ram Bilas Pachori, Vivek Kanhangad, and B. K. Panigrahi, Automated Diagnosis of Epilepsy using Keypoint Based Local Binary Pattern of EEG Signals", IEEE Journal of Biomedical and Health Informatics, Issue: 99, 2016. Doi: 10.1109/JBHI.2016.2589971
[89] Milica Miloševic et al., "Feature selection methods for accelerometry based seizure detection in children", Medical & Biological Engineering & Computing, Vol. 55, No. 1, April 2016, pp. 151–165. Doi: 10.1007/s11517-016-1506-9
[90] M. Bedeeuzzaman, Omar Farooq and Yusuf U Khan, "Automatic Seizure Detection using Inter Quartile Range", International Journal of Computer Applications ,Vol. 44, No. 11, April 2012. Doi: 10.5120/6304-8614
[91] M. Bedeeuzzaman et al., "Seizure prediction using statistical dispersion measures of intracranial EEG ", Biomedical Signal Processing and Control, Vol. 10, 2014, pp. 338–341. Doi: 10.1016/j.bspc.2012.12.001
[92] Yueming Wang et al., "A Cauchy-Based State-Space Model for Seizure Detection in EEG Monitoring Systems", IEEE Intelligent Systems, Vol. 30, Issue: 1, 2015, pp. 6-12. Doi: 10.1109/MIS.2014.36
[93] P. E. McSharry, T. He, L.A. Smith and L. Tarassenko, "Linear and non-linear methods for automatic seizure detection in scalp electro-encephalogram recordings", Med. Biol. Eng. Comput., 40, 2002, pp. 447-461.
[94] Wanpracha Art Chaovalitwongse, Oleg A. Prokopyev and Panos M. Pardalos, "Electroencephalogram (EEG) time series classification: Applications in epilepsy", Annals of Operations Research, Vol. 148, Issue 1, Nov. 2006, pp. 227–250. Doi: 10.1007/s10479-006-0076-x
[95] A. Aarabi, F. Wallois and R. Grebe, "Automated neonatal seizure detection: A multistage classification system through feature selection based on relevance and redundancy analysis", Clinical Neurophysiology, Vol. 117, 2006, pp. 328–340. Doi: 10.1016/j.clinph.2005.10.006
[96] Ram Bilas Pachori and Pradip Sircar, "EEG signal analysis using FB expansion and second-order linear TVAR process", Signal Processing, Vol. 88, 2008, pp. 415–420. Doi: 10.1016/j.sigpro.2007.07.022
[97] H. Khamis , A. Mohamed and S. Simpson, "Seizure state detection of temporal lobe seizures by autoregressive spectral analysis of scalp EEG", Clinical Neurophysiology, Vol. 120, 2009, pp. 1479–1488. Doi: 10.1016/j.clinph.2009.05.016
[98] Levin Kuhlmann, Anthony N. Burkitt, Mark J. Cook, Karen Fuller, David B. Grayden, Linda Seiderer and Iven M. Y. Mareels, "Seizure Detection Using Seizure Probability Estimation: Comparison of Features Used to Detect Seizures", Annals of Biomedical Engineering, Vol. 37, No. 10, Oct. 2009, pp. 2129–2145. Doi: 10.1007/s10439-009-9755-5
[99] Xian Du, Sumeet Dua, Rajendra U. Acharya and Chua Kuang Chua, "Classification of Epilepsy Using High Order Spectra Features and Principle Component Analysis", Journal of Medical Systems, Vol. 36 Issue 3, June 2012, pp. 1731-1743. Doi: 10.1007/s10916-010-9633-6
[100] Soroor Behbahani et al., "A new algorithm for detection of epileptic seizures based on HRV signal", Journal of Experimental & Theoretical Artificial Intelligence, 2014. Doi: 10.1080/0952813X.2013.861874
[101] Md. Z. Parvez and Manoranjan Paul, "Epileptic Seizure Detection by Analyzing EEG Signals using Different Transformation Techniques", Neurocomputing, 145:12, May 2014. Doi: 10.1016/j.neucom.2014.05.044
[102] Ammama Furrukh Gill et al., "Analysis of EEG Signals for Detection of Epileptic Seizure Using Hybrid Feature Set", Theory and Applications of Applied Electromagnetics, Lecture Notes in Electrical Engineering 344, pp.49-57. Doi: 10.1007/978-3-319-17269-9_6
[103] Kaveh Samiee, P´eter Kov´acs and Moncef Gabbouj," Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform", IEEE Transactions on Biomedical Engineering, vol. 62, No. 2, Feb. 2015, pp. 541-552. Doi: 10.1109/TBME.2014.2360101
[104] Vladimir Golovko et al., "Towards Automatic Epileptic Seizure Detection in EEGs Based on Neural Networks and Largest Lyapunov Exponent", International Journal of Computing, Vol. 14, No. 1, 2015, pp. 36-47.
[105] Ammama Furrukh Gill, Syeda Alishbah Fatima, M. Usman Akram, Sajid Gul Khawaja and Saqib Ejaz Awan, "Analysis of EEG Signals for Detection of Epileptic Seizure Using Hybrid Feature Set", Theory and Applications of Applied Electromagnetics, May 2015, pp 49-57. Doi: 10.1007/978-3-319-17269-9_6
[106] Guangxu Xun, Xiaowei Jia and Aidong Zhang, "Detecting epileptic seizures with electroencephalogram via a context-learning model", BMC Medical Informatics and Decision Making 2016, 16 (Suppl 2):70. Doi: 10.1186/s12911-016-0310-7
[107] Enamul Kabir Siuly and Yanchun Zhang, "Epileptic seizure detection from EEG signals using logistic model trees", Brain Informatics, Vol. 3, 2016, pp. 93–100. Doi: 10.1007/s40708-015-0030-2
[108] Nabeel A. Khan and Sadiq Ali, "Classification of EEG Signals Using Adaptive Time-Frequency Distributions", Metrology and Measurement Systems, Vol. 23, No. 2, 2016, pp. 251‒260. Doi: 10.1515/mms-2016-0021
[109] Yuan Zou et al., “Automatic Identification of Artifact-Related Independent Components for Artifact Removal in EEG Recordings", IEEE Journal of Biomedical and Health Informatics, Vol. 20, No. 1, Jan. 2016, pp. 73-81. Doi: 10.1109/JBHI.2014.2370646
[110] Muhammad Awais Bin Altaf and Jerald Yoo, " A 1.83 J/Classification, 8-Channel, Patient-Specific Epileptic Seizure Classification SoC Using a Non-Linear Support Vector Machine", IEEE Transactions on Biomedical circuits and Systems, Vol. 10, No. 1, Feb. 2016, pp. 49-60. Doi: 10.1109/TBCAS.2014.2386891
[111] Peng Li et al., "Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy", Front Physiology, 7: 136, 2016. Doi: 10.3389/fphys.2016.00136
[112] Chen Zhang et al., "Design and Implementation of an On-Chip Patient-Specific Closed-Loop Seizure Onset and Termination Detection System", IEEE Journal of Biomedical and Health Informatics, Vol. 20, No. 4, 2016, pp. 996-1007. Doi: 10.1109/JBHI.2016.2553368