Open Access   Article Go Back

On Lukasiewicz Disjunction and Conjunction of Pythagorean Fuzzy Matrices

D. Venkatesan1 , S. Sriram2

Section:Research Paper, Product Type: Journal Paper
Volume-7 , Issue-6 , Page no. 861-865, Jun-2019

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v7i6.861865

Online published on Jun 30, 2019

Copyright © D. Venkatesan, S. Sriram . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: D. Venkatesan, S. Sriram, “On Lukasiewicz Disjunction and Conjunction of Pythagorean Fuzzy Matrices,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.6, pp.861-865, 2019.

MLA Style Citation: D. Venkatesan, S. Sriram "On Lukasiewicz Disjunction and Conjunction of Pythagorean Fuzzy Matrices." International Journal of Computer Sciences and Engineering 7.6 (2019): 861-865.

APA Style Citation: D. Venkatesan, S. Sriram, (2019). On Lukasiewicz Disjunction and Conjunction of Pythagorean Fuzzy Matrices. International Journal of Computer Sciences and Engineering, 7(6), 861-865.

BibTex Style Citation:
@article{Venkatesan_2019,
author = {D. Venkatesan, S. Sriram},
title = {On Lukasiewicz Disjunction and Conjunction of Pythagorean Fuzzy Matrices},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {6 2019},
volume = {7},
Issue = {6},
month = {6},
year = {2019},
issn = {2347-2693},
pages = {861-865},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4644},
doi = {https://doi.org/10.26438/ijcse/v7i6.861865}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i6.861865}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4644
TI - On Lukasiewicz Disjunction and Conjunction of Pythagorean Fuzzy Matrices
T2 - International Journal of Computer Sciences and Engineering
AU - D. Venkatesan, S. Sriram
PY - 2019
DA - 2019/06/30
PB - IJCSE, Indore, INDIA
SP - 861-865
IS - 6
VL - 7
SN - 2347-2693
ER -

VIEWS PDF XML
370 265 downloads 118 downloads
  
  
           

Abstract

In this paper, the algebraic properties of two operations disjunction and conjunction from Lukasiewicz type over Pythagorean fuzzy matries are studied. Also, using the relation between disjunction and conjunction certain results are obtained using modal operators.

Key-Words / Index Term

Intuitionistic Fuzzy Matrix, Pythagorean Fuzzy Set, Pythagorean, Fuzzy Matrix, Disjunction, Conjunction

References

[1] K. Atanassov and R. Tcvetkov, On Lukasiewicz intuitionistic fuzzy disjunction and conjunction, Annual of Informatics Section, Union of Scientists in Bulgaria, Vol.3, pp.90-94, 2010.
[2] E. G. Emam and M. A. Fndh, Some results associated wiith the max-min and min-max compositions of bifuzzy matrices, Journal of the Egyption Mathematical Society, Vol. 24, Issue.4, pp. 515-521. 2016.
[3] Y.B.Im, E.B.Lee and S.W.Park, The determinant of square intuitionistic fuzzy matrices, Far East Journal of Mathematical Sciences, Vol.3, Issue.5 pp.789-796. 2001.
[4] M.Pal, S.K.Khan and A.K.Shyamal., Intuitionistic Fuzzy Matrices, Notes on Intuitionistic Fuzzy Sets, Vol.8, Issue.2, pp.51-62. 2002.
[5] P.Murugadas, S.Sriram, T.Muthuraji, Modal operators in intuitionistic fuzzy matrices, International Journal of Computer Application, Vol.90, Issue.17, pp.1-4. 2014.
[6] T.Muthuraji, S.Sriram and P.Murugadas, Decomposition of intuitionistic fuzzy matrices, Fuzzy Information and Engineering,Vol. 8 , pp. 345-354. 2016.
[7] T. Muththuraji and S. Sriram, Some Remarks on Lukasiwicz disjunction and conjunction operators On Intuitionistic Fuzzy Matrices, J. of advances in Mathematics, Vol.11, Issue.3, pp.5000-5006, 2015.
[8] T. Muthuraji, S. Sriram, Commutative monoids and monoid homomorphism on Lukasiwicz conjunction and disjunction operators over intuitionistic fuzzy matrices, Int. J. of Pure and Engg. Mathematics, Vol.3, Issue.2, pp.63-75, 2015.
[9] A.K.Shyamal and M.Pal, Distances between intuitionistic fuzzy matrices, V.U.J. Physical Sciences, Vol.8, pp.81-91.2002.
[10] I.Silambarasan and S.Sriram, Algebraic operations on Pythagorean fuzzy matrices, Mathematical Sciences International Research Journal, Vol.7, Issue.2, pp.406-414. 2018.
[11] M.G.Thomason, Convergence of powers of fuzzy matrix, J. Mathematical Analysis and Applications, Vol.57, pp.476-480.1977.
[12] D. Venkatesan and S. Sriram, Multiplicative operations of Intuitionistic Fuzzy Matrices, Annals of pure and Applied Mathematics, Vol.14, Issue.1, pp.173-181, 2017.
[13] D. Venkatesan and S. Sriram, Further multiplicative operations of Intuitionistic Fuzzy Matrices, Int. J. Fuzzy Mathematical Archive, Vol.12, Issue.2, pp.105-113, 2017.
[14] R.R.Yager, Pythagorean membership grades in multi-criteria decision making, IEEE Transactions on Fuzzy Systems, Vol.22, pp.958-965. 2014.
[15] X.L.Zhang and Z.S.Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J.of Intelligent Systems, Vol.29 , pp. 1061-1078. 2014.