Reconstructing Fingerprint Images Using Deep Learning
Kuntesh 1 , Raj Kumar2
Section:Research Paper, Product Type: Journal Paper
Volume-7 ,
Issue-5 , Page no. 1221-1224, May-2019
CrossRef-DOI: https://doi.org/10.26438/ijcse/v7i5.12211224
Online published on May 31, 2019
Copyright © Kuntesh, Raj Kumar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Kuntesh, Raj Kumar, “Reconstructing Fingerprint Images Using Deep Learning,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.5, pp.1221-1224, 2019.
MLA Style Citation: Kuntesh, Raj Kumar "Reconstructing Fingerprint Images Using Deep Learning." International Journal of Computer Sciences and Engineering 7.5 (2019): 1221-1224.
APA Style Citation: Kuntesh, Raj Kumar, (2019). Reconstructing Fingerprint Images Using Deep Learning. International Journal of Computer Sciences and Engineering, 7(5), 1221-1224.
BibTex Style Citation:
@article{Kumar_2019,
author = {Kuntesh, Raj Kumar},
title = {Reconstructing Fingerprint Images Using Deep Learning},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {5 2019},
volume = {7},
Issue = {5},
month = {5},
year = {2019},
issn = {2347-2693},
pages = {1221-1224},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4390},
doi = {https://doi.org/10.26438/ijcse/v7i5.12211224}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i5.12211224}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4390
TI - Reconstructing Fingerprint Images Using Deep Learning
T2 - International Journal of Computer Sciences and Engineering
AU - Kuntesh, Raj Kumar
PY - 2019
DA - 2019/05/31
PB - IJCSE, Indore, INDIA
SP - 1221-1224
IS - 5
VL - 7
SN - 2347-2693
ER -
VIEWS | XML | |
209 | 163 downloads | 122 downloads |
Abstract
In today’s technology world, a majority of users across the world have access to Internet for communication via fingerprint ,images, audio and video. It is a need to understand and recognize the behavior of such larger text information on people by analysing their finger. This Paper focuses on collect a database of fingerprint images, we design a neural network algorithm for fingerprint recognition.In one experiment, the neural network is trained using a few hundred pairs of images and its performance is subsequently tested using several thousand pairs of images originated from a subset of the data base corressponding to 20 individuals. At the end, a comparative study of the performance of different classifiers is discussed.
Key-Words / Index Term
Sentiment analysis , deep learning , fingerprint detection
References
[1]. J. Abraham, P.Kwan, and J.Gao. Fingerprint Matching using A Hybrid Shape and Orientation Descriptor. State of the art in biometrics. InTech,2011.
[2]. A.H. Ansari. Generation and storage of large syntheticfingerfrint datasets. Master’s thesis,IISc, 72011 . M.E. Thesis .
[3]. D. R. Ashbaugh. Handbook of fingerprint Recognition. CRC Press, 1999.
[4]. J.SBartunek, M. Nilsson, J. Nordberg, and I. Claesson. Adaptive fingerprint binarization by frequency domain analysis. In Proc. ACSSC, pages 598-602-, Oct 2006.
[5]. K.Cao, E Liu, and A. K. Jain. Segmentation and enchancement of latent fingerprint : A Coarse to fine ridge structure dictionary. PAMI, 36(9): 1847-1859, sept 2014.
[6]. R. Cappelli, M. Ferrara, and D. Maltoni. Finger-Print indexing based on minutia cylinder-code.PAMI, 33(5): 1051-1057, 2011.
[7]. R. Cappelli, M. Ferrara, and D. Maltoni. Minutia Cylinder code : A new representation and matching technique for fingerprint recognition.PAMI, 32(12),2010.
[8]. R. Cappelli, D. Maio. And D. Maltoni. Synthetic Fingerprint image generation. Pages 475-478, 2000.
[9]. A.Dosovitskiy, J.T. Springenberg, and T. Brox. Learning to generate chairs with convolutional Neural networks. CoRR, 2014.
[10]. M.K. Hu. Visual Pattern Recognition by Moment Invariants.IRE Trans. On Information. Theory , IT-8: 179-187, Feb. 1962.
[11]. S.Hong, H. Noh, and B.Han. Decoupled deep neural network for semi-supervised semantic segmentation. CoRR, 2015.
[12]. D.PKingma and J.Ba. Adam: A method for Stochastic optimization. CoRR, 2014.
[13]. P. Komarinski. Automated fingerprint identi- Fication Systems (AFIS). Academic Press, 2004.
[14]. J. Masci ,U.Meier, D.Ciresan, and J.Schmidhuber. Stacked convolutional Auto-Encoders for Hierarchical Feature Extraction,pages 52-59. Springer Berlin Heidelberg, Berlin,Heidelberg, 2011.
[15] A. L. Maas, A. Y. Hannum, and A. Y. Ng.Rectifier nonlinearities improve neural network Acoustic models. In Proc. ICML, volume 30,2013
[16]. S. Yoon, J. Feng, and A.K. Jain. On latent finger-print enchancement. 2010.
[17]. J.J. Zhao, M. Mathoeu, R.Goroshin, and Y.LeCun . Stacked what-where auto-encoders.CoRR, 2015.
[18]. NIST. Nbis (nist biometric image software).
[20]. P.Schuch,S. Schulz, and C. Busch. De-Convolutional Autoencoder for enchancement of fingerprint samples. In Proc.IPTA, Pages 1-7,Dec 2016.
[21]. A. Radford, L. Metz, and S. Chintala.Unsupervised representation learning with Deep convolutional generative adversarial network. CoRR, 2015.
[22]. Anil Jain, SharathPankanti, 1988, “Automated Fingerprint Identification and Imaging Systems”. Technical Report 500-89, National.Bureau of Standards.
[23]. Anil K. Jain, Arun Ross and SalilPrabhakar, “An Introduction to Biometrics”, IEEE Transactions. on Circuits and Systems for Video Technology,special issue on Image- and Video-Based Bio-metrics, Vol 14, No. 1, January 2004.
[24]. Rahman, M.M. , Akhand , M.A., H., Islam, S., Shill , P.C., and Rahman, M.H., Bangla Hand-Written character recognition using convoltional Neural network, I.J.Images, Graphics ang signal Processing.
[25]. LeCun, Y., “LeNet-5, convolutional neural Network.”,2015.[online]. Available: [Accessed: 20-Oct-2016].
[26]. J. S. Bartunek, M. Nilsson, J. Nordberg, and I.Claesson. Adaptive fingerprintbinarization by frequency domain analysis. In Proc. ACSSC, pages 598–602, Oct 2006.
[27]. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Handbook of Fingerprint Recognition. Springer Publishing Company, Incorporated, 2nd edition, 2009.
[28]. J.Masci,U.Meier,D.Cires¸an, andJ.Schmidhuber. Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction, pages 52–59. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
[29]. A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, 2015.
[30]. P. Schuch, S. Schulz, and C. Busch. De-convolutional autoencoderfor enhancement of fingerprint samples. In Proc. IPTA, pages 1–7, Dec 2016.