Open Access   Article Go Back

Electrical Characterization of (70PEO:30AgNO3)(1-x)(TiO2)x Nanocomposite Polymer Electrolyte for Energy Storage Devices used in HEV

Manish Kurrey1 , Satpreet Singh Gill2 , Nirbhay K Singh3 , Ggandeep Singh Gill4 , O. P. Verma5

Section:Research Paper, Product Type: Journal Paper
Volume-7 , Issue-5 , Page no. 932-936, May-2019

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v7i5.932936

Online published on May 31, 2019

Copyright © Manish Kurrey, Satpreet Singh Gill, Nirbhay K Singh, Ggandeep Singh Gill, O. P. Verma . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Manish Kurrey, Satpreet Singh Gill, Nirbhay K Singh, Ggandeep Singh Gill, O. P. Verma, “Electrical Characterization of (70PEO:30AgNO3)(1-x)(TiO2)x Nanocomposite Polymer Electrolyte for Energy Storage Devices used in HEV,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.5, pp.932-936, 2019.

MLA Style Citation: Manish Kurrey, Satpreet Singh Gill, Nirbhay K Singh, Ggandeep Singh Gill, O. P. Verma "Electrical Characterization of (70PEO:30AgNO3)(1-x)(TiO2)x Nanocomposite Polymer Electrolyte for Energy Storage Devices used in HEV." International Journal of Computer Sciences and Engineering 7.5 (2019): 932-936.

APA Style Citation: Manish Kurrey, Satpreet Singh Gill, Nirbhay K Singh, Ggandeep Singh Gill, O. P. Verma, (2019). Electrical Characterization of (70PEO:30AgNO3)(1-x)(TiO2)x Nanocomposite Polymer Electrolyte for Energy Storage Devices used in HEV. International Journal of Computer Sciences and Engineering, 7(5), 932-936.

BibTex Style Citation:
@article{Kurrey_2019,
author = {Manish Kurrey, Satpreet Singh Gill, Nirbhay K Singh, Ggandeep Singh Gill, O. P. Verma},
title = {Electrical Characterization of (70PEO:30AgNO3)(1-x)(TiO2)x Nanocomposite Polymer Electrolyte for Energy Storage Devices used in HEV},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {5 2019},
volume = {7},
Issue = {5},
month = {5},
year = {2019},
issn = {2347-2693},
pages = {932-936},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4341},
doi = {https://doi.org/10.26438/ijcse/v7i5.932936}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i5.932936}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4341
TI - Electrical Characterization of (70PEO:30AgNO3)(1-x)(TiO2)x Nanocomposite Polymer Electrolyte for Energy Storage Devices used in HEV
T2 - International Journal of Computer Sciences and Engineering
AU - Manish Kurrey, Satpreet Singh Gill, Nirbhay K Singh, Ggandeep Singh Gill, O. P. Verma
PY - 2019
DA - 2019/05/31
PB - IJCSE, Indore, INDIA
SP - 932-936
IS - 5
VL - 7
SN - 2347-2693
ER -

VIEWS PDF XML
273 201 downloads 136 downloads
  
  
           

Abstract

Poly (ethylene oxide) (PEO) based Nano-Composite Polymer Electrolyte (NPE) membranes (70PEO:30AgNO3)(100-x)(TiO2)x, where x = 0≤x≤10 wt% have been casted by hot-press/solution free technique. Solid Polymer Electrolyte (SPE) composition 70PEO:30AgNO3 (wt. %), has highest conducting film with room temperature conductivity σrt ~ 3.6 x 10-6 Scm-1, has been used as the first phase host matrix and TiO2 filler particles of nano-dimension (< 100 nm) as second phase dispersion. The fractional dispersal of TiO2 filler (viz. x = 3 wt. %) in SPE host results increase in room temperature conductivity. This NPE film (70PEO:30AgNO3)97(TiO2)3 referred as Optimum Conducting Composition NPE(OCC) film. The morphological analysis performed by Scanning Electron Microscopy (SEM) techniques. The ionic transport properties characterized by basic ionic parameters viz. conductivity (σ), mobility(µ), mobile ion concentration (n), ionic transference number (tion) and cationic transport number (t+). Using these electrolytes a thin symmetric capacitor has been prepared which shows capacitance about 5 F/g of in the cycling in the range of 0−1.5 V at 0.5 A g−1 .

Key-Words / Index Term

Solid polymer electrolyte, Energy Storage devices, Supercapacitor, Hybrid electric Vehicle

References

[1] D. E. Fenton, J. M. Parker, P. V. Wrigth, Polymer 14 (1973) 589.
[2] M. P. Armand, J. M. Chabagno, M. Diadat, „Fast Ion Transport in Solids‟ (Eds.) Vashistha P., Mundy J. M. and Sheny G. K. (North Holland 1979) p. 135.
[3] M. B. Armand, Ann. Rev. Mater. Sci. 16 (1986) 245.
[4] M. A. Ratner, D. F. Shriver, Int. J. Electrochem. Sci., Vol. 6, 2011 881
[5] J. R. Mac Callum, C. A. Vincent, (Eds.) Polymer Electrolyte Reviews, Vol. 1, 2 (Elsevier Applied Science Publisher, London 1987 & 1989).
[6] K. Murata, Electrochimica Acta, 40 (1995) 2177.
[7] P. G. Bruce, Solid State Chemistry, (Cambridge University Press, Cambridge 1995).
[8] F. M. Gray, Polymer Electrolytes (Royal Society of Chemistry Monographs, Cambridge 1997).
[9] F. Capuano, F. Croce, B. Scrosati, J. Electrochem. Soc. 138 (1991) 1918.
[10] F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature 394 (1998) 456.
[11] G. B. Appetecchi, F. Croce, et al., Electrochem. Acta 45 (2000) 1481.
[12] G. B. Appetecchi, J. Hassoun, B. Scrosati et al., J. Power Sources 124 (2003) 246.
[13] R. C. Agrawal, Angesh Chandra, J. Physics D: Appl. Phys. 40 (2007) 7024.
[14] G. P. Pandey, S. A. Hashmi, R. C. Agrawal, Solid Sttae Ionics 179 (2008) 543.
[15] R. C. Agrawal, A. Bhatt, Y. K. Mahipal, New J. Phys. 10 (2008) 043023.
[16 G. P. Pandey, S. A. Hashmi, et al., J. Phys. D: Appl. Phys. 41 (2008) 055409.
[17] A. Chandra, R. C. Agrawal, et al., J. Phys. D: Appl. Phys. 42 (2009) 135107.
[18] G. P. Pandey, R. C. Agrawal, et al.,, J. Phys. D: Appl. Phys. 43 (2010) 25550;
[19] R. C. Agrawal, Y. K. Mahipal, Rehana Ashrafi, Solid State Ionics (2010) (in press).
[20] R. C. Agrawal, G. P. Pandey , J. Phys. D: Appl. Phys. 41 (2008) 223001.
[21] M. L. Verma,. and N. K. Singh, CSVTU Reaserch Journal. (2012). 5: 22-26.
[22] M. L. Verma M Minakshi, and N K Singh , Electrochimica Acta 137 (2014) 497–503.
[23] M. L. Verma M Minakshi, and N K Singh ‘American Chemical Society’ 2014.
[24] J. B. Wager, C. Wagner, J. Chem. Phys. 26 (1957) 1597.
[25]. J. Evans, C. A. Vincent, P. G. Bruce, Polymer 28 (1987) 2324.
[26] A. Lewandowski, P. Jakobczyk, M. Galinski, M. Biegun, Self-discharge of elec-trochemical double layer capacitors, Phys. Chem. Chem. Phys. 15 (2013) 8692.
[27] J. Kang, J. Wen, S.H. Jayaram, A. Yu, X. Wang, Development of an equivalentcircuit model for electrochemical double layer capacitors (EDLCs) with distinctelectrolytes, Electrochim. Acta 115 (2014) 587.
[28] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible all solid state paper likepolymer supercapacitors, Nano Lett. 10 (2010) 4025.
[29] J. Black, H.A. Andreas, Effects of charge redistribution on self-discharge of elec-trochemical capacitors, Electrochim. Acta 54 (2009) 3568.