Homology Modeling:Protein Structure Prediction
Nehal V.Rami1 , Jil Dedania2
Section:Review Paper, Product Type: Journal Paper
Volume-7 ,
Issue-4 , Page no. 1017-1023, Apr-2019
CrossRef-DOI: https://doi.org/10.26438/ijcse/v7i4.10171023
Online published on Apr 30, 2019
Copyright © Nehal V.Rami, Jil Dedania . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Nehal V.Rami, Jil Dedania, “Homology Modeling:Protein Structure Prediction,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.4, pp.1017-1023, 2019.
MLA Style Citation: Nehal V.Rami, Jil Dedania "Homology Modeling:Protein Structure Prediction." International Journal of Computer Sciences and Engineering 7.4 (2019): 1017-1023.
APA Style Citation: Nehal V.Rami, Jil Dedania, (2019). Homology Modeling:Protein Structure Prediction. International Journal of Computer Sciences and Engineering, 7(4), 1017-1023.
BibTex Style Citation:
@article{V.Rami_2019,
author = {Nehal V.Rami, Jil Dedania},
title = {Homology Modeling:Protein Structure Prediction},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {4 2019},
volume = {7},
Issue = {4},
month = {4},
year = {2019},
issn = {2347-2693},
pages = {1017-1023},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4159},
doi = {https://doi.org/10.26438/ijcse/v7i4.10171023}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i4.10171023}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4159
TI - Homology Modeling:Protein Structure Prediction
T2 - International Journal of Computer Sciences and Engineering
AU - Nehal V.Rami, Jil Dedania
PY - 2019
DA - 2019/04/30
PB - IJCSE, Indore, INDIA
SP - 1017-1023
IS - 4
VL - 7
SN - 2347-2693
ER -
VIEWS | XML | |
1014 | 272 downloads | 157 downloads |
Abstract
Homology Modeling is an advance technique for the determination of protein structure. Here, we describe the necessary steps of computational technique for prediction of three dimensional protein structure and discuss various tools and techniques which are used for the same. Homology Modeling has an important role in Drug designing against various disease and we illustrate this by one example of ZIKA virus Protein. This article aims to introduce effortless technique for prediction of protein structure and the importance of known structure of ZIKA protein for drug discovery and ultimately for betterment of society.
Key-Words / Index Term
Homology Modeling,Computational Technique,ZIKA protein
References
[1]. J. C.Fuller, N. Burgoyne,R. Jackson “Predicting druggable binding sites at the protein–protein interface”, Drug Discovery Today,vol.14,issue.3-4,pp.155-161,2009.
[2]. H.M. Berman,J. Westbrook, Z. Feng, L. Chen, H.Yang, “The Protein Data Bank and structural genomics”, Nucleic Acids Research,vol.31,issue.1,pp.489-491,2003.
[3]. A. Ozlem Tastan Bishop, Tjaart A. P. de Beer,Fourie Joubert, “Protein homology modelling and its use in South Africa”, South African Journal of Science,Vol.14,2008.
[4]. W.C. Wong, S.Stroh, F. Eisenhaber “Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins”, Biology Direct, Vol.6, pp.57, 2011.
[5]. M.Hilbert ,G.Böhm,R.Jaenicke, “Structural relationships of homologous proteins as a fundamental principle in homology modelling”, Proteins,Vol.17,issue.2pp.138-151,1993.
[6]. K.Joo,J. Lee,J. Lee, “Methods for Accurate Homology Modeling by Global Optimization”, Methods Mol Biol,Vol.857,pp.175-188,2011.
[7]. M. Laureti , D. Narayanan,et.al., “Flavivirus Receptors: Diversity, Identity, and Cell Entry”,frontiers in immunology,Vol.9,pp.1-11,2018..
[8]. A.S. Fauci, D. Morens, “Zika Virus in the Americas — Yet Another Arbovirus Threat”, The NEW ENGLAND JOURNAL of MEDICINE,Vol.374,issue.7,pp.601-604,2016.
[9]. O. Faye, C. Freire, A. Iamarino, et al., “Molecular evolution of Zika virus during its emergence in the 20 th century”, PLoS Negl Trop Dis,Vol.8,issue.1,2014.
[10]. M.M.Alen, S.J.F.Kaptein, T. Burghgraeve, ET. “Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection”, Virology,Vol.387,issue.1,pp.67-75,2009.
[11]. S. F.Altschul, W. Gish1W.Miller, E.Myers,D.Lipman, “Basic local alignment search tool”,Journal of Molecular Biology,Vol.215,issue.3,pp.403-410,1990.
[12]. E.L. Sonnhammer, R. Eddy, R. Durbin, “Pfam: a comprehensive database of protein domain families based on seed alignments”, Proteins,Vol.28,issue.3,pp.405-420,1997.
[13]. J.M. Sauder, J.W. Arthur, R. Dunbrack, “Large-scale comparison of protein sequence alignment algorithms with structure alignments”, Proteins,Vol.40,issue.1,pp.6-22,2000.
[14]. K. Karplus, C. Barrett, R. Hughey, “Hidden Markov models for detecting remote protein homologies”, Bioinformatics,Vol.14,issue.10,pp.846-856,1998.
[15]. M. A. Marti-Renom, M. Madhusudhan, A.Sali, “Alignment of protein sequences by their profiles”, Protein Science, Vol.13, issue.4, pp.1071-1087, 2004.
[16]. M. Levitt, “Accurate modeling of protein conformation by automatic segment matching”,Journal of Molecular Biology,Vol.226,issue.2,pp.507-533,1992.
[17]. A.Sali, T. Blundell, “Comparative protein modelling by satisfaction of spatial restraints”, Journal of Molecular Biology,Vol.234,issue.3,pp.779-815,1993.
[18]. J. Greer, “Comparative modeling methods: application to the family of the mammalian serine proteases”, Proteins, Vol.7,issue.4,pp.317-334,1990.
[19]. B. Rost, “Twilight zone of protein sequence alignments”, Protein Engineering, Design and Selection, Vol.12, Issue.2, pp. 85–94, 1999.
[20]. R.E. Bruccoleri, M. Karplus, “Conformational sampling using high-temperature molecular dynamics”,Biopolymers,Vol.29, issue.14,pp.1847-1862,1990.
[21]. M. Levitt, “Accurate modeling of protein conformation by automatic segment matching”,journal of Molecular Biology, Vol.226,issue.2,pp.507-533,1992.
[22]. P. Benkert, S. Tosatto, D. Schomburg, “QMEAN: A comprehensive scoring function for model quality assessment”,Proteins,Vol.71, issue.1,pp.261-277,2008.
[23]. . R. Han,A. Leo-Macias , D. Zerbino,et.al, “ An efficient conformational sampling method for homology modeling”, Proteins,Vol.71,pp.175–88,2008.
[24]. M. Biasini, S. Bienert, A. Waterhouse, et al, “SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information” Nucleic Acids Res.,Vol.42,pp.252-258,2014.
[25]. K. Arnold, L. Bordoli, J. Kopp, T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling”,Bioinformatics,Vol.22,issue.2,pp.195-201,2006.
[26]. N. Guex, M. Peitsch, T. Schwede, “Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective”, Electrophoresis,Vol.30,issue.1,pp.162-173,2009.
[27]. D. Baker, A. Sali, “Protein structure prediction and structural genomics”,Science,Vol.294,issue.5540,2011.
[28]. A. Hillisch, L. Pineda F, R. Hilgenfeld, “Utility of homology models in the drug discovery process”, Drug Discov. Today,Vol.9,issue.15,pp.659-669,2004.
[29]. V. A. Kostyuchenko, P. Chew,S.Lok,et.al, “Near-atomic resolution cryo-electron microscopic structure of dengue serotype 4 virus”, J Virology,vol.88,issue.1,pp.477-482,2014
[30]. C.S.Ring,E. Sun, J. McKerrow, et.al., “Structure-based inhibitor design by using protein models for the development of antiparasitic agents”, Proc Natl Acad Sci U S A,Vol.90,issue.8,pp. 3583–3587,1993.
[31]. M.T.Mas, K.C.Smith, D.L.Yarmush, et.al, “Modeling the anti-CEA antibody combining site by homology and conformational search”, Proteins, Vol.14, issue.4, pp.483-498, 1992.
[32]. I.Vakser, “Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex”, Proteins,Vol.29.issue.1,pp.226-230,1997.
[33]. T. Weber, “ Evaluation of homology modeling of HIV protease”, Proteins,vol.7,pp.172–84,1990.
[34]. Y. Sheng, A. Sali, H. Herzog, J. Lahnstein, S. Krilis, “Modeling, expression and site-directed mutagenesis of human â2- glycoprotein I.Identification of the major phospholipid binding site”, J Immunol,Vol.157,issue.8,pp. 3744-51,1996.