A Survey on Salient Object Detection
T. Hemanth Kumar1 , P. Chandra Sekhar Reddy2
Section:Survey Paper, Product Type: Journal Paper
Volume-7 ,
Issue-4 , Page no. 991-994, Apr-2019
CrossRef-DOI: https://doi.org/10.26438/ijcse/v7i4.991994
Online published on Apr 30, 2019
Copyright © T. Hemanth Kumar, P. Chandra Sekhar Reddy . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: T. Hemanth Kumar, P. Chandra Sekhar Reddy, “A Survey on Salient Object Detection,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.4, pp.991-994, 2019.
MLA Style Citation: T. Hemanth Kumar, P. Chandra Sekhar Reddy "A Survey on Salient Object Detection." International Journal of Computer Sciences and Engineering 7.4 (2019): 991-994.
APA Style Citation: T. Hemanth Kumar, P. Chandra Sekhar Reddy, (2019). A Survey on Salient Object Detection. International Journal of Computer Sciences and Engineering, 7(4), 991-994.
BibTex Style Citation:
@article{Kumar_2019,
author = {T. Hemanth Kumar, P. Chandra Sekhar Reddy},
title = {A Survey on Salient Object Detection},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {4 2019},
volume = {7},
Issue = {4},
month = {4},
year = {2019},
issn = {2347-2693},
pages = {991-994},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4155},
doi = {https://doi.org/10.26438/ijcse/v7i4.991994}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i4.991994}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4155
TI - A Survey on Salient Object Detection
T2 - International Journal of Computer Sciences and Engineering
AU - T. Hemanth Kumar, P. Chandra Sekhar Reddy
PY - 2019
DA - 2019/04/30
PB - IJCSE, Indore, INDIA
SP - 991-994
IS - 4
VL - 7
SN - 2347-2693
ER -
VIEWS | XML | |
376 | 238 downloads | 160 downloads |
Abstract
Distinguishing and segmenting salient objects in like manner scenes, every now and again implied as salient object detection, has pulled in a huge amount of eagerness for PC vision. While various models have been proposed and a couple of utilizations have risen, yet a profound comprehensionof issues is insufficient. We hope to give a broad study of progressing in salient object identification and mastermind this area among other immovably related domains, for instance, regular picture segmentation, object recommendation age, and saliency for obsession forecast. Covering 228 distributions, we review i. Roots, key ideas, and assignments, ii.Center methods and principle displaying patterns, and iii.Datasets and assessment measurements in salient object identification. We likewise talk about open issues, for example, assessment measurements and dataset predisposition in model execution and propose future research bearings.
Key-Words / Index Term
Video-saliency, Spatio-temporal constraints, Reliableregions, global saliencyoptimization
References
[1] M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S. Hu,“Global contrast based salient region detection,” IEEE TPAMI,vol. 37, no. 3, pp. 569–582, 2015.
[2] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, andA. Torralba, “Mit saliency benchmark (2015),” 2015.
[3] Z. Bylinskii, A. Recasens, A. Borji, A. Oliva, A. Torralba, andF. Durand, “Where should saliency models look next?” inEuropean Conference on Computer Vision. Springer, 2016, pp.809–824.
[4] M. Spain and P. Perona, “Measuring and predicting objectimportance,” IJCV, vol. 91, no. 1, pp. 59–76, 2011.
[5] A. C. Berg, T. L. Berg, H. Daume, J. Dodge, A. Goyal,X. Han, A. Mensch, M. Mitchell, A. Sood, K. Stratoset al.,“Understanding and predicting importance in images,” inCVPR, 2012, pp. 3562–3569.
[6] B. M’t Hart, H. C. Schmidt, C. Roth, and W. Einh¨auser, “Fixationson objects in natural scenes: dissociating importancefrom salience,” Frontiers in psychology, vol. 4, 2013.
[7] P. Isola, J. Xiao, A. Torralba, and A. Oliva, “What makes animage memorable?” in CVPR, 2011, pp. 145–152.
[8] R. Rosenholtz, Y. Li, and L. Nakano, “Measuring visualclutter,” J. Vision, vol. 7, no. 2, 2007.
[9] H. Katti, K. Y. Bin, T. S. Chua, and M. Kankanhalli, “Preattentivediscrimination of interestingness in images,” in IEEEICME, 2008, pp. 1433–1436.
[10] M. Gygli, H. Grabner, H. Riemenschneider, F. Nater, andL. Van Gool, “The interestingness of images,” ICCV, 2013.
[11] S. Dhar, V. Ordonez, and T. L. Berg, “High level describableattributes for predicting aesthetics and interestingness,” inCVPR, 2011, pp. 1657–1664.
[12] Y.-G. Jiang, Y. Wang, R. Feng, X. Xue, Y. Zheng, and H. Yang,“Understanding and predicting interestingness of videos,”AAAI, 2013.
[13] L. Itti and P. Baldi, “Bayesian surprise attracts human attention,”in NIPS, 2005, pp. 547–554.
[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,“Image quality assessment: From error visibility to structuralsimilarity,” IEEE TIP, vol. 13, no. 4, pp. 600–612, 2004.
[15] Z. Wang, A. C. Bovik, and L. Lu, “Why is image qualityassessment so difficult?” in IEEE ICASSP, vol. 4, 2002.
[16] W. Zhang, A. Borji, Z. Wang, P. Le Callet, and H. Liu,“The application of visual saliency models in objective imagequality assessment: A statistical evaluation,” IEEE transactionson neural networks and learning systems, vol. 27, no. 6, pp. 1266–1278, 2016.
[17] J. Vogel and B. Schiele, “A semantic typicality measure fornatural scene categorization,” in Pattern Recognition, 2004.
[18] K. A. Ehinger, J. Xiao, A. Torralba, and A. Oliva, “Estimatingscene typicality from human ratings and image features,” inAnnual Cognitive Science Conference, 2011.
[19] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describingobjects by their attributes,” in CVPR, 2009, pp. 1778–1785.
[20] H. Liu, S. Jiang, Q. Huang, C. Xu, and W. Gao, “Regionbasedvisual attention analysis with its application in imagebrowsing on small displays,” in ACM Multimedia, 2007.
[21] A. K. Mishra, Y. Aloimonos, L. F. Cheong, and A. Kassim,“Active visual segmentation,” IEEE TPAMI, vol. 34, 2012.
[22] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “Thesecrets of salient object segmentation,” in CVPR, 2014.
[23] A. Borji, “What is a salient object? a dataset and a baselinemodel for salient object detection,” in IEEE TIP, 2014.
[24] L. Itti, C. Koch, and E. Niebur, “A model of saliency-basedvisual attention for rapid scene analysis,” IEEE TPAMI, no. 11,pp. 1254–1259, 1998.
[25] T. Liu, J. Sun, N. Zheng, X. Tang, and H.-Y.Shum, “Learningto detect a salient object,” in CVPR, 2007, pp. 1–8.
[26] A. Borji, D. N. Sihite, and L. Itti, “What stands out in a scene?a study of human explicit saliency judgment,” Vision research,vol. 91, pp. 62–77, 2013.
[27] F. Perazzi, P. Kr¨ahenb ¨ uhl, Y. Pritch, and A. Hornung,“Saliency filters: Contrast based filtering for salient regiondetection,” in CVPR. IEEE, 2012, pp. 733–740.
[28] D. Comaniciu and P. Meer, “Mean shift: A robust approachtoward feature space analysis,” IEEE TPAMI, vol. 24, 2002.
[29] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, andS. S ¨ usstrunk, “Slicsuper-pixels compared to state-of-the-artsuper-pixel methods,” IEEE TPAMI, vol. 34, no. 11, 2012
[30] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr, “BING:Binarized normed gradients for objectness estimation at300fps,” in CVPR, vol. 2, 2014, p. 4.
[31] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,”IEEE TPAMI, vol. 35, no. 1, pp. 185–207, 2013.
[32] A. Borji, H. R. Tavakoli, D. N. Sihite, and L. Itti, “Analysis ofscores, datasets, and models in visual saliency prediction,” inICCV, 2013, pp. 921–928.
[33] J. Hosang, R. Benenson, P. Doll´ar, and B. Schiele, “Whatmakes for effective detection proposals?” IEEE transactionson pattern analysis and machine intelligence, vol. 38, no. 4, pp.814–830, 2016.
[34] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?” inCVPR, 2010, pp. 73–80.
[35] P. Siva, C. Russell, T. Xiang, and L. Agapito, “Looking beyondthe image: Unsupervised learning for object saliency anddetection,” in CVPR, 2013, pp. 3238–3245.
[36] H.-D. Cheng, X. Jiang, Y. Sun, and J. Wang, “Color imagesegmentation: advances and prospects,” Pattern Recognition,vol. 34, no. 12, pp. 2259–2281, 2001.
[37] R. Achanta, S. Hemami, F. Estrada, and S. S ¨ usstrunk,“Frequency-tuned salient region detection,” in CVPR, 2009.
[38] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu, “Global contrast based salient region detection,” inCVPR, 2011.
[39] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-awaresaliency detection,” IEEE TPAMI, vol. 34, no. 10, 2012.
[40] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li,“Salient object detection: A discriminative regional featureintegration approach,” in IEEE CVPR, 2013, pp. 2083–2090.