Open Access   Article Go Back

Comparative Pattern Learning Framework for Seizure Prediction

Shivangini Patel1 , Bhavesh Tanawala2 , Kirti Sharma3

Section:Review Paper, Product Type: Journal Paper
Volume-7 , Issue-4 , Page no. 775-779, Apr-2019

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v7i4.775779

Online published on Apr 30, 2019

Copyright © Shivangini Patel, Bhavesh Tanawala, Kirti Sharma . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Shivangini Patel, Bhavesh Tanawala, Kirti Sharma, “Comparative Pattern Learning Framework for Seizure Prediction,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.4, pp.775-779, 2019.

MLA Style Citation: Shivangini Patel, Bhavesh Tanawala, Kirti Sharma "Comparative Pattern Learning Framework for Seizure Prediction." International Journal of Computer Sciences and Engineering 7.4 (2019): 775-779.

APA Style Citation: Shivangini Patel, Bhavesh Tanawala, Kirti Sharma, (2019). Comparative Pattern Learning Framework for Seizure Prediction. International Journal of Computer Sciences and Engineering, 7(4), 775-779.

BibTex Style Citation:
@article{Patel_2019,
author = {Shivangini Patel, Bhavesh Tanawala, Kirti Sharma},
title = {Comparative Pattern Learning Framework for Seizure Prediction},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {4 2019},
volume = {7},
Issue = {4},
month = {4},
year = {2019},
issn = {2347-2693},
pages = {775-779},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4114},
doi = {https://doi.org/10.26438/ijcse/v7i4.775779}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i4.775779}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4114
TI - Comparative Pattern Learning Framework for Seizure Prediction
T2 - International Journal of Computer Sciences and Engineering
AU - Shivangini Patel, Bhavesh Tanawala, Kirti Sharma
PY - 2019
DA - 2019/04/30
PB - IJCSE, Indore, INDIA
SP - 775-779
IS - 4
VL - 7
SN - 2347-2693
ER -

VIEWS PDF XML
302 223 downloads 155 downloads
  
  
           

Abstract

Epilepsy is neurological disorders affecting the quality of life by making people worry about future seizure events. Many of other seizure prediction research shows that some seizure prediction results are still need better and reliable prediction algorithm for helping to develop seizure prediction system. Electrocephalography (EEG) can be use for seizure analysis but using better algorithm we can create system that can give an alarm before seizure occur so patient or doctor can take appropriate action to overcome from the risk. In this study, few methods are compared to find better accuracy to find better algorithm. Using well mannered algorithm we can create automated seizure prediction system. Here, algorithms such as SVM (support vector machine), RA (Regression Analysis), and ANN (Artificial Neural Network) are compared. In this paper, we tried to compare the seizure prediction methods for getting more accurate results for the future work of predicting seizure type.

Key-Words / Index Term

Support vector machine (SVM), artificial neural network (ANN), EEG, EPILAB Tool, Seizure prediction

References

[1]Cao Xiao, Shouyi Wang,“An Adaptive Pattern Learning Framework to Personalize Online Seizure Prediction”, IEEE Transaction on Big Data, Vol. 10, Issue.10, pp.1-13, 2016.
[2] Chisci. L, Mayino. A Perferi. G, Sciandrone. M,Anile. C, Colicchio. G, Fuggetta. F,“Real-time Epileptic Seizure Prediction Using AR models and Support Vector Machinces”, IEEE transaction on Biomedical Engineering, Vol. 57, Issue. 5 pp. 1-9, 2010
[3] Feldwisch Drentrup. H, Schelter. B, Jachan. M, Nawrath. J, Timmer. J,Schulze-Bonhage. A, “Joining the Benefits: Combining Epileptic Seizure Prediction Methods”, International Epilepsia, Vol. 8, Issue. 51, pp 1-9, 2010
[4] L. Iasemidis, D. Shiau , W. Chaoyalitwongse, P. Sackellares , Pardalos P., J. Pricipe, P. Carney, Prasad A., B. Veeramani, K. Tsakalis, “Adaptive Epileptic Seizure Prediction System”, IEEE Tramsactions on Biomedical Engineering, Vol. 5, Issue. 50, pp.1-12, 2003
[5] L. Iasemidis, D. Shiau, P. Pardalos, W. Chaovalitwongse, K. Narayanana, A. Prasada, K. Tsakalis, P. Carney, J. Sackellares, “Long-term prospective online real-time seizure prediction”, Clinical Neurophysiology, Vol. 3, Issue. 11, 2005.
[6] P. Rajdev, M. Ward, J. Rickus, R. Worth, P. Irazoqui. “Realtime seizure prediction from local field potentials using an adaptive Wiener algorithm” Computers in biology and medicine, Vol. 1, Issue. 40, pp.1-7, 2010
[7] J.D. Bronzino,“Principles of electroencephalography,” The Biomedical Engineering Handbook, Vol. 3, Issue. 14, pp. 1-5, 2006
[8] J. Muthuswamy, N. V. Thakor,“Spectral analysis methods for neurological signals,” J. Neurosci. Methods, vol. 83, pp. 1–14, 1998
[9] N. Hazarika, J. Z. Chen, A. C. Tsoi, A. Sergejew, “Classification of EEG signals using the wavelet transform,” Signal Process., vol. 59, pp. 61–72, 1997.
[10] S. Murali, V. V. Kulish, “Mdeling of Evoked Potential of Electroencephalograms: Anoverview”, Digital signal Process, Vol. 17, pp. 665-674, 2007.
[11] H. Alnashah, Y. Assaf, J. Paul, N. Thakor,“EEG signal Modeling Using Adaptive Markov Process amplitude”, IEEE Transaction Biomedical Engineering, Vol. 51, Issue. 5, pp. 744-751, 2004
[12] A. Y. Kaplan, A. A. Fingelkurts, S. V. Borisoy, B. S. Darkhoysky, “Non-stationary Nature of the Brian Activity as Revealed By EEG/ MEG: Methodological practical and Conceptual Challenges”, Signal Process., Vol. 85, pp. 2190-2212, 2005.
[13]M. F. Harrison, M. G. Frei, I. Osorio, “accumulated energy revisited”, Clinical Neurophysiology, Vol. 3, pp. 527-531, 2005.
[14] F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger, K. Lehnertz, “Predictability of epileptic seizures”, Clinical Neurophysiology, Vol. 3, pp. 569-587, 2005.
[15] Leon D. Iasemidis, Deng-Shan Shiau, Wanpracha chaovalitwonge, J. Chris Sackellares, Panos M. Pardalos, Jose C., Paul R. Carney, Awadhesh Parasd, Balaji Veermani, Konstantinos Tsakalis, “Adaptive Epileptic Seizure Prediction System”, Vol. 12, pp.1-9, 2005.
[16] K. A. Helini Kulasuriya, M.U.S. Perera, “Forecasting Epileptic Seizure Using EEG Signals, Wavelet transform and Artificial Neural Network”, IEEE, Vol. 22, Issue. 51, pp. 1-8, 2011
[17] Morteza Behnam, Hossein Pourghassem,“Power Complexity Feature-Based Seizure Prediction Using DNN and Firefly BPNN Optimization Algorithm”, IEEE, Vol. 15, PP.1-13, 2015.