Open Access   Article Go Back

Clustering Methods Analysis on Low and High Dimensional Data

Smita Chormunge1 , Sudarson Jena2

Section:Research Paper, Product Type: Journal Paper
Volume-7 , Issue-4 , Page no. 658-661, Apr-2019

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v7i4.658661

Online published on Apr 30, 2019

Copyright © Smita Chormunge, Sudarson Jena . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Smita Chormunge, Sudarson Jena, “Clustering Methods Analysis on Low and High Dimensional Data,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.4, pp.658-661, 2019.

MLA Style Citation: Smita Chormunge, Sudarson Jena "Clustering Methods Analysis on Low and High Dimensional Data." International Journal of Computer Sciences and Engineering 7.4 (2019): 658-661.

APA Style Citation: Smita Chormunge, Sudarson Jena, (2019). Clustering Methods Analysis on Low and High Dimensional Data. International Journal of Computer Sciences and Engineering, 7(4), 658-661.

BibTex Style Citation:
@article{Chormunge_2019,
author = {Smita Chormunge, Sudarson Jena},
title = {Clustering Methods Analysis on Low and High Dimensional Data},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {4 2019},
volume = {7},
Issue = {4},
month = {4},
year = {2019},
issn = {2347-2693},
pages = {658-661},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=4094},
doi = {https://doi.org/10.26438/ijcse/v7i4.658661}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i4.658661}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=4094
TI - Clustering Methods Analysis on Low and High Dimensional Data
T2 - International Journal of Computer Sciences and Engineering
AU - Smita Chormunge, Sudarson Jena
PY - 2019
DA - 2019/04/30
PB - IJCSE, Indore, INDIA
SP - 658-661
IS - 4
VL - 7
SN - 2347-2693
ER -

VIEWS PDF XML
376 243 downloads 130 downloads
  
  
           

Abstract

This paper evaluates the performance efficiency of K-means clustering, Agglomerative hierarchical clustering and Density based clustering methods for low and high dimensional data. Efficiency concerns the computational time required to build up datasets. To evaluate the performance of clustering methods extensive experiments are carried out on different datasets. The results reveal that Agglomerative hierarchical clustering method is efficient in time as compared to other methods but results may vary when dataset instances are large in number.

Key-Words / Index Term

Clustering, K-means, Agglomerative hierarchical, Euclidean

References

[1] M. Steinbach, L. Ertöz, V. Kumar. “The Challenges of Clustering High Dimensional Data”, In: Wille L.T. (eds) New Directions in Statistical Physics. Springer, Berlin, Heidelberg, 2004.
[2] S. Xuan ,Y. Liu, “Sample constraint clustering and it`s applications in pattern recognition”, Fuzzy Systems and Knowledge Discovery (FSKD),Seventh International Conference on Vol 2 IEEE Conference Publication, pp. 602–606 , 2010, doi: 10.1109/FSKD.2010.5569457.
[3] N.Chitra Devia, V.Palanisamyb, K.Baskaranc, S.Prabeelad, “A Novel Distance for Clustering to Support Mixed Data Attributes and Promote Data Reliability and Network Lifetime in Large Scale Wireless Sensor Networks”, International Conference on Communication Technology and System Design, pp. 669-677, 2011.
[4] A. McCallum, K. Nigam, L. H. Ungar, “Efficient clustering of High Dimensional Data sets with Application to Reference Matching”. KDD, pp. 169-178, 2001.
[5] P. Berkhin, “A Survey of Clustering Data Mining Techniques”, Technical Report, Accrue Software, San Jose 2002.
[6] J. A. Hartigan. “Clustering Algorithms”. Wiley, 1975.
[7] T. Onoda, M. Sakai, “Independent Component Analysis based Seeding method for k-means Clustering”, IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2011, doi: 10.1109/WI-IAT.2011.29.
[8] L. Rokach, O. Maimon, “Clustering Methods”, Data Mining and Knowledge Discovery Handbook, Springer, 2005.
[9] I. Dhillon, D. Modha, “Concept Decompositi-on for Large Sparse Text Data Using Clustering”. Machine Learning. 42, pp.143-175, 2001.
[10] M. Ester, H. P. Kriegel, J. Sander, X. Xu. “A density-based algorithm for discovering clusters in large spatial databases with noise”. In Proceedings of the 2nd ACM, 1996.
[11] R. Remco, Bouckaert, Eibe Frank, Mark Hall, Richard Kirkby, Peter Reutemann, Alex Seewald, David Scuse, “WEKA Manual for Version 3-7-10”, July 31, 2013.
[12] M. Hassani, “Overview of Efficient Clustering Methods for High-Dimensional Big Data Streams”, Clustering Methods for Big Data Analytics, Springer Cham, pp.25-42, 2019.
[13] T. SenthilSelvi, R.Parimala, “Improving Clustering Accuracy using Feature Extraction Method”, International journal of scientific research in computer science and Engineering, vol. 6,Issue 2 ,pp. 15-19, 2018.