Open Access   Article Go Back

Denoising MRI images using NLM filter

Damini 1 , Prabhpreet Kaur2

Section:Research Paper, Product Type: Journal Paper
Volume-7 , Issue-3 , Page no. 1-11, Mar-2019

CrossRef-DOI:   https://doi.org/10.26438/ijcse/v7i3.111

Online published on Mar 31, 2019

Copyright © Damini, Prabhpreet Kaur . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View this paper at   Google Scholar | DPI Digital Library

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Damini, Prabhpreet Kaur, “Denoising MRI images using NLM filter,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.3, pp.1-11, 2019.

MLA Style Citation: Damini, Prabhpreet Kaur "Denoising MRI images using NLM filter." International Journal of Computer Sciences and Engineering 7.3 (2019): 1-11.

APA Style Citation: Damini, Prabhpreet Kaur, (2019). Denoising MRI images using NLM filter. International Journal of Computer Sciences and Engineering, 7(3), 1-11.

BibTex Style Citation:
@article{Kaur_2019,
author = {Damini, Prabhpreet Kaur},
title = {Denoising MRI images using NLM filter},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {3 2019},
volume = {7},
Issue = {3},
month = {3},
year = {2019},
issn = {2347-2693},
pages = {1-11},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3787},
doi = {https://doi.org/10.26438/ijcse/v7i3.111}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i3.111}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3787
TI - Denoising MRI images using NLM filter
T2 - International Journal of Computer Sciences and Engineering
AU - Damini, Prabhpreet Kaur
PY - 2019
DA - 2019/03/31
PB - IJCSE, Indore, INDIA
SP - 1-11
IS - 3
VL - 7
SN - 2347-2693
ER -

VIEWS PDF XML
828 1090 downloads 348 downloads
  
  
           

Abstract

This paper discusses the medical imaging and the noise present in the images. Different denoising and filtering techniques are also discussed. The paper focuses on the NLM filter and further types used to denoise rician noise present in MRI images.NLM filter enhances the textures and edges of an image. NLM filter provides a feasible method or ways to get the least results by reduction of geometrical configuration.

Key-Words / Index Term

Image Denoising, Noise, Filters, MRI, NLM filter

References

[1] Buades A.Coll B.Morel JM (2005). A review of image denoising algorithms with a new one, SIAM Multiscale Model Simul: 4(2):490-530 DOI: 10.1137/040616024.
[2]T. Kalaiselvi, N. Kalaichelvi, “Investigation on Image Denoising Techniques of Magnetic Resonance Images”, International Journal of Computer Sciences and Engineering, Vol.06, Issue.04, pp.104-111, 2018.
[3]Zhang, K., Zuo, W., & Zhang, L. (2018). FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Transactions on Image Processing, 27(9), 4608–4622. DOI: 10.1109/tip.2018.2839891.
[4]Diwakar, M., & Kumar, M. (2018). A review on CT image noise and its denoising. Biomedical Signal Processing and Control, 42, 73–88. DOI: 10.1016/j.bspc.2018.01.010.
[5]Rajneesh Mishra, Priyanka Pateriya, D.K. Rajoriya, Anand Vardhan Bhalla, “Comparative Analysis of Various Image Denoising Techniques: A Review Paper”, International Journal of Computer Sciences and Engineering, Vol.3, Issue.6, pp.35-39, 2015.
[6]Channoufi, I., Bourouis, S., Bouguila, N., & Hamrouni, K. (2018). Image and video denoising by combining unsupervised bounded generalized Gaussian mixture modeling and spatial information. Multimedia Tools and Applications. DOI: 10.1007/s11042-018-5808-9.
[7] Tulsi, Prabhpreet Kaur & Singh, Gurvinder & Kaur, Parminder. (2017). A Review of Denoising Medical Images Using Machine Learning Approaches. Current Medical Imaging Reviews. 13. 10.2174/1573405613666170428154156.
[8]Oulhaj, H., Amine, A., Rziza, M., & Aboutajdine, D. (2012). Noise Reduction in Medical Images - comparison of noise removal algorithms. 2012 International Conference on Multimedia Computing and Systems. DOI: 10.1109/icmcs.2012.6320218.
[9]Cruz, C., Mehta, R., Katkovnik, V., & Egiazarian, K. O. (2018). Single Image Super-Resolution Based on Wiener Filter in Similarity Domain. IEEE Transactions on Image Processing, 27(3), 1376–1389. DOI: 10.1109/tip.2017.2779265.
[10]Riji, R., Rajan, J., Sijbers, J., & Nair, M. S. (2014). Iterative bilateral filter for Rician noise reduction in MR images. Signal, Image and Video Processing, 9(7), 1543–1548. DOI: 10.1007/s11760-013-0611-6.
[11]Sharif, M., Hussain, A., Jaffar, M. A., & Choi, T.-S. (2015). Fuzzy-based hybrid filter for Rician noise removal. Signal, Image and Video Processing, 10(2), 215–224. DOI: 10.1007/s11760-014-0729-1.
[12]Sudeep, P. V., Palanisamy, P., Rajan, J., Baradaran, H., Saba, L., Gupta, A., & Suri, J. S. (2016). Speckle reduction in medical ultrasound images using an unbiased non-local means method. Biomedical Signal Processing and Control, 28, 1–8. DOI: 10.1016/j.bspc.2016.03.001.
[13]Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S. P., & Barillot, C. (2008). Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI. Lecture Notes in Computer Science, 171–179. DOI: 10.1007/978-3-540-85990-1_21.
[14]Shreyamsha Kumar, B. K. (2012). Image denoising based on non-local means filter and its method noise thresholding. Signal, Image and Video Processing, 7(6), 1211–1227. DOI: 10.1007/s11760-012-0389-y.
[15]Yang, J., Fan, J., Ai, D., Wang, X., Zheng, Y., Tang, S., & Wang, Y. (2016). Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing, 195, 88–95. DOI: 10.1016/j.neucom.2015.05.140.
[16]Singh, C., Ranade, S. K., & Singh, K. (2016). Invariant moments and transform-based unbiased nonlocal means for denoising of MR images. Biomedical Signal Processing and Control, 30, 13–24. DOI: 10.1016/j.bspc.2016.05.007.
[17]Xu, S., Yang, X., & Jiang, S. (2017). A fast nonlocally centralized sparse representation algorithm for image denoising. Signal Processing, 131, 99–112. DOI: 10.1016/j.sigpro.2016.08.006.