A Texonomy on Web Page Categorization
Bhavana 1 , Neeraj Raheja2
Section:Review Paper, Product Type: Journal Paper
Volume-7 ,
Issue-1 , Page no. 637-641, Jan-2019
CrossRef-DOI: https://doi.org/10.26438/ijcse/v7i1.637641
Online published on Jan 31, 2019
Copyright © Bhavana, Neeraj Raheja . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Bhavana, Neeraj Raheja, “A Texonomy on Web Page Categorization,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.1, pp.637-641, 2019.
MLA Style Citation: Bhavana, Neeraj Raheja "A Texonomy on Web Page Categorization." International Journal of Computer Sciences and Engineering 7.1 (2019): 637-641.
APA Style Citation: Bhavana, Neeraj Raheja, (2019). A Texonomy on Web Page Categorization. International Journal of Computer Sciences and Engineering, 7(1), 637-641.
BibTex Style Citation:
@article{Raheja_2019,
author = {Bhavana, Neeraj Raheja},
title = {A Texonomy on Web Page Categorization},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {1 2019},
volume = {7},
Issue = {1},
month = {1},
year = {2019},
issn = {2347-2693},
pages = {637-641},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3558},
doi = {https://doi.org/10.26438/ijcse/v7i1.637641}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i1.637641}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3558
TI - A Texonomy on Web Page Categorization
T2 - International Journal of Computer Sciences and Engineering
AU - Bhavana, Neeraj Raheja
PY - 2019
DA - 2019/01/31
PB - IJCSE, Indore, INDIA
SP - 637-641
IS - 1
VL - 7
SN - 2347-2693
ER -
VIEWS | XML | |
375 | 246 downloads | 137 downloads |
Abstract
Web Page Categorization becomes essential due to the increase in the information on the Internet. As pages on the web are growing regularly and can cover almost all types of information. However finding accurate and useful information from these large amounts of web pages for a user is difficult, so efficient and accurate methods for categorizing this large of information is very necessary. Web page categorization is to categorized web pages into specified categories. It improves the efficiency of search on the web. This paper discusses various methods, approaches & uses of web page categorization.
Key-Words / Index Term
Web Page Categorization, Web Mining, Web Content Mining, Naive Bayes, KNN, SVM
References
[1] Blockeel, R. k. " Web Mining Research:A survey". Vol. 2, PP. 1-15, 2000.
[2] R. Jain and Dr. G. N. Purohit,” Page Ranking Algorithms for Web Mining”,International Journal of Computer Applications, ISSN: 0975 – 8887, Vol. 13, No.5, pp. 22–25, 2011.
[3] Xiaoguang Qi and Brian d. Davison, “Web Page Classification: Features and Algorithms” ACM Computing Surveys, Vol. 41, No. 2, Article 12, 2009.
[4]P., R.B. Plastino, A. Zadrozny, B. and L.H. Merschmann, “Categorizing feature selection methods for multi-label classification”, Artificial Intelligence Review, 49(1): 57-78, 2018.
[5] A. Osanyin, O. Oladipupo and Ibukun Afolabi, “A Review on Web Page Classification”, Covenant Journal of Informatics & Communication Technology, Vol. 6, No. 2, Dec. 2018.
[6] S. Dixit, & R. K. Gupta, “Layered Approach to Classify Web Pages using Firefly Feature Selection by Support Vector Machine (SVM)”, International Journal of u-and e-Service, Science and Technology, vol. 8, No. 5, pp. 355-364, 2015.
[7] B. Tang, H. Haibo, M. Paul, ” A Bayesian Classification Approach Using Class-Specific Features for Text Categorization”, IEEE ,2015.
[8] W. A. Awad, ”Machine Learning Algorithms in Web Page Classification”, International Journal of Computer Science & Information Technology (IJCSIT), Vol. 4, No. 5, 2012.
[9]T. Joachims, “Text categorization with support vector machines: Learning with many relevant features”, In: Proceedings of European Conference on Machine Learning E, CML, vol. 1398, pp. 137–142, 2000,.
[10] M. B. Revanasiddappa, B. S. Harish, S. V. A. Kumar, ”Meta-cognitive Neural Network based Sequential Learning Framework for Text Categorization”, ICCIDS, 2018.
[11] Liu, C. Wang, W. Tu, G. Xiang, Y. Wang, S. and L, F. “A new Centroid-Based Classification model for text categorization.”, Knowledge-Based Systems, vol. 136, pp. 15-26, 2017.
[12] R., S., V., S.P. “Text categorization by backpropagation network”, International Journal of Computer Applications, vol. 8, No. 6, pp. 1-5, 2010.
[13] C. Chang, M. Kayed, M. R. Girgis and K. F. Shaalan, “A Survey of Web Information Extraction Systems”, in IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 10, pp. 1411-1428, Oct. 2006.
[14] K. Donghwa, S. Deokseong, S. Deokseong, C. Suhyoun, K. Pilsung, ”Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec”, 2018.
[15] Dıaz, A. B. Rios, J. H. Barron, T. Y. Guerrero, J. C. Elizondo, ”An automatic document classifier system based on genetic algorithm and taxonomy”, 2018.
[16] J. Hyoungil , K. Youngong , S. Jungyun, ”How to Improve Text Summarization and Classification by Mutual Cooperation on an Integrated Framework”, 2016.
[17] Qi Luo, ”Research on Paper Submission Management System by Using Automatic Text Categorization”, Springer International Publishing AG, 2018.
[18] J. Moorey, Eui-Hong (Sam) Han, “Web Page Categorization and Feature Selection Using Association Rule and Principal Component Clustering”, 2010.
[19] S. Roy, P. Shivakumara, N. Jain, V. Khare, A. Dutta, U. P. and Tong Lu, ”Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video” Pattern Recognition”, doi: 10.1016/j.patcog.2018.02.014, 2018.
[20] H. S. Gowda, M. Suhil(B), D.S. Guru, and L. N. Raju, “Semi-supervised Text Categorization Using Recursive K-means Clustering” Recent Trends in Image Processing and Pattern Recognition, Springer, 2016.
[21] A. Qaziaand R.H. Goudar, “An Ontology-based Term Weighting Technique for Web Document Categorization”, Science Direct, Procedia Computer Science vol. 133, pp. 75–81, 2018.
[22] D. L. sanchez, A. G. Arrieta and J. M. Corchado, “Deep neural networks and transfer learning applied to multimedia web mining”, Springer International Publishing AG, 2018.
[23] S. Shinde, J. Prasanna and S. Vanjale, “Web Document Classification using Support Vector Machine”, IEEE, 2017.