Semantically enriched OWL-S Files for Mathematical Web Services
Research Paper | Journal Paper
Vol.1 , Issue.2 , pp.1-4, Oct-2013
Abstract
A web service is a programmatically available application logic which can be described using Web Services Description Language (WSDL) or Semantic Web Ontology Language which allows software agents to discover, invoke and execute web services automatically. The aim of this paper is to create domain ontology and semantic web services to describe and define the concepts specific to web services for prepositional logic and set theory which comes under discrete mathematics. The resultant semantically enriched web services can be used to characterize the service in a more meaningful way than the existing WSDL thereby opening the possibility to automatic service discovery and use.
Key-Words / Index Term
Web Services; Semantic Web; Ontology; Prepositional Logic; Set Theory; Discrete Mathematics
References
[1] R.C. Boyatt, and M.S. Joy, �Developing an Ontology of Mathematical Logic,� Sci. J. Tech. Univ. Civ. Eng. Buchar. Vol. 6, pp. 6-11, 2010.
[2] Thomas R. Gruber, and Gregory R. Olsen, �An Ontology for Engineering Mathematics,� Fourth International Conference on Principles of Knowledge Representation and Reasoning, Germany, http://www-ksl.stanford.edu/knowledgesharing/papers/engmath.html (1994). Accessed January 2, 2013
[3] Zaidi Fay�al, and Touahria Mohamed, �A Semantic Web Services for Medical Analysis using the OWL-S Language,� Int. J. Comput. Appl., Vol. 30, pp. 26-33, 2011.
[4] Sanjay Kumar Malik, Nupur Prakash and S.A.M Rizvi, �Developing an University Ontology in Education Domain using Prot�g� for Semantic Web. International Journal of Engineering Science and Technology,� Vol. 2, pp. 4673-4681, 2010.
[5] Silvio Peroni, and David Shotton, �FaBiO and CiTO: Ontologies for describing bibliographic resources and citations,� Web Semant.: Sci., Serv. and Agents on the World Wide Web, Vol. 17, pp. 33�43, 2012.
[6] Meena Unni, and K. Baskaran, �Ontology based Semantic Querying of the Web using Prot�g�,� Int. J. Comput. Appl., Vol. 56, pp. 12-16, 2012.
[7] Jean Vincent Fonou-Dombeu, and Magda Huisman, �Combining Ontology Development Methodologies and Semantic Web Platforms for E-government Domain Ontology Development,� Int. J. Web Semant. Technol., Vol. 2, pp. 12-25,2011.
[8] Naveen Malviya, Nishchol Mishra, and Santosh Sahu, �Developing University Ontology using prot�g� OWL Tool,� Process and Reasoning, Int. J. Sci. Eng. Res., Vol. 2, pp. 1-8, 2011.
[9] Asuncion Gomez-Perez, and Mariano Fernandez-Lopez, �Ontological Engineering,� Yes Dee Publishing Pvt. Ltd., Springer International Edition, pp. 33, 2011.
[10] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen, �The Prot�g� OWL Plugin: An Open Development Environment for Semantic Web Applications,� ISWC 2004, LNCS 3298, pp. 229-243, 2004.
[11] Francisco Garcı�a-Sa�nchez, Rafael Valencia-Garcı�a Rodrigo, Martı�nez-Be�jar, and Jesualdo T. Ferna�ndez-Breis, �An ontology, intelligent agent-based framework for the provision of semantic web services,� Expert Systems with Appl., Vol. 36, pp. 3167�3187, 2009.
[12] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara, �Semantic Web Service Discovery in OWL-S IDE,� Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS`06), Kauai, Hawaii, pp. 1-10, 2006.
Citation
A. Sheeba, A. Chandrasekar, P. Veerasingam, "Semantically enriched OWL-S Files for Mathematical Web Services," International Journal of Computer Sciences and Engineering, Vol.1, Issue.2, pp.1-4, 2013.
Simulation of the Instantaneous Prediction of a Cancer Patient�s Empowerment
Research Paper | Journal Paper
Vol.1 , Issue.2 , pp.6-10, Oct-2013
Abstract
The purpose of this paper is to develop a decision support system based on a process of knowledge extraction. This system allows the prediction of the empowerment of a patient with cancer treated by chemotherapy. The first part of this article outlines the process of empowerment of the patient. The second part explains the principle of decision support systems and the principle of the Knowledge Discovery from Databases (KDD), inspired by the data mining method. The third section describes the approach for the implementation of the system. The fourth section applies this approach to raw data of the different patients.
Key-Words / Index Term
Empowerment, DSS, KDD, Holon
References
[1] A. Abouabdellah, A. Aguezzoul, A.Cherkaoui, Avril 2012,"Etude comparative des m�thodes du g�nie logiciel pour la mod�lisation du processus d�autonomisation d�un patient atteint d�un cancer", revue Gestions hospitali�res, num�ro 515, pages 257-263, ISSN: 00169218.
[2] A. Abouabdellah. 2010. Mise en place d�une m�thodologie de mod�lisation du processus d�autonomisation par l�adaptation du concept holon., th�se de doctorat en es sciences appliqu�es, EMI-Rabat, Maroc.
[3] A. Abouabdellah, A. Aguezzoul, A. Cherkaoui. "Application of software engineering methods for modeling the patient empowerment process with cancer International". In Proceedings of the International Conference on Industrial Engineering and Systems Management (IESM`2011), pages 1542 -1548, Metz, France. �cole nationale d`ing�nieurs de Metz (ENIM), International Institute for Innovation, Industrial Engineering and Entrepreneurship (I4e2). ISBN 978-2-9600532-3-4.
[4] Abed, M. 1990. Contribution � la mod�lisation de la t�che par outils de sp�cification exploitant les mouvements oculaires: application � la conception et � l`�valuation des interfaces homme-machine. Th�se de doctorat, Universit� de Valenciennes et du Hainaut-Cambr�sis, France.
[5] Abed, M. 2001. M�thodes et Mod�les formels et semi-formels de conception et �valuation des syst�mes homme-machine. M�moire d`HDR, Universit� de Valenciennes et du Hainaut-Cambr�sis, France.
[6] Abed, M., Bernard, J.M. et Angu�, J.C. 1991. Task analysis and modelization by using SADT and Petri Networks. Proceedings Tenth European Annual Conference on Human Decision Making and Manual Control. Liege.
[7] Anderson, J. and Milson, R. 1989. Human memory: An adaptive perspective. Psychological Review 96, 4, 703�719.
[8] Andr�, J. 1993. Le cycle de vie en Y. Arche SQL.
[9] Boehm, B. 1988. A Spiral Model of Software Development and Enhancement. IEEE Computer, 21 (5), 61-72.
[10] Brown, J. S. and Duguid, P. 2002. The Social Life of Information. Harvard Business School Press. 356 pages.
[11] Cathelain, S. 2005. Contribution � la conception de syst�mes coop�ratifs. Application au domaine du contr�le de trafic a�rien. Th�se de doctorat, Universit� de Valenciennes et du Hainaut-Cambr�sis, France.
[12] Evans, R.S. 2007. Case studies in clinical decision support: LDS hospital experience. Clinical Decision Support, 6, 143-167.
[13] Fayyad, U.M., Djorgovski, S.G. et Weir, N. 1996. Automating the Analysis and Cataloging of Sky Surveys. Advances in Knowledge Discovery and Data Mining. MIT Press, 471-494.
[14] Foulqui� P., Dictionnaire de la langue et de la p�dagogie. PUF, 1979.
[15] Gorry, G.A. & Scott Morton, M. 1971, �A Framework for Management Information Systems. �, Sloan Management Review, Vol. 12, no1, pp.55-70.
[16] Jambu, M. 1999. Introduction au Data Mining, analyse intelligente des donn�es. Eds Eyrolles, Paris.
[17] Kaplan B. 2001. Evaluating informatics applications-clinical decision support systems literature review. International Journal of Medical Informatics, 64, 15�37.
[18] Klein, M. et Methlie, L.B. 1990. Expert Systems: A Decision Support Approach with applications in management and finance. Eds Addison-Wesley Publishing Company.
[19] Lef�bure, R. et Ventari, G. 2001. Data Mining : Gestion de la relation client, Personnalisation des sites Web. Eds Eyrolles.
[20] Lepreux, S. 2006. Supports pour la prise en compte des experts et utilisateurs dans le d�veloppement de Syst�mes Interactifs d�Aide � la D�cision. Ergo-IA�06, 139-146.
[21] Lepreux, S., Abed, M. et Kolski, C. 2003. A human-centred methodology applied to decision support system design and evaluation in a railway network context, Cognition Technology and Work, 5, 248-271.
[22] L�vine, P., et Pomerol, J. 1989. Syst�mes interactifs d`aide � la d�cision et syst�mes experts. Eds Herm�s, Paris.
[23] Matheny, M.E., et Ohno-Machado, L. 2007. Generation of knowledge for clinical decision support: Statistical and machine learning techniques. Clinical Decision Support, 10, 227-248. [38] P.
[24] Millot, S. Debernard, Men machines cooperative organizations: Methodological and Practical Attempts in air trafic control, in: Proceedings IEEE SMC, Le Touquet, France, October 1993.
[25] McDermid, J., et Ripkin, K. 1984. Life cycle support in the ADA, environment.Cambridge University Press, Cambridge, UK.
[26] C. Riesbeck, R. Shank, Inside Case-Based Reasoning, Lawrence Erlbaum, 1989.
[27] Jacobson, I., Booch, G., et Rumbaugh J. 1999. Le processus Unifi� de D�veloppement logiciel. Eds Eyrolles, Paris.
[28] W. Royce, Managing the development of large software systems: Concepts and techniques,WESCON, technical papers, 1970
[29] Singer P. et al., L`univers du patient de demain. Notre syst�me de sante en 2010, 23 octobre 2002, Toronto.
[30] Kolodner, J.L., et Leake, D.B. 1996. A Tutorial Introduction to Case-Based Reasoning: Experiences. Lessons & Future Directions, AAAI press, MIT press, 31-65.
Citation
A. Abouabdellah, A. Cherkaoui, "Simulation of the Instantaneous Prediction of a Cancer Patient�s Empowerment," International Journal of Computer Sciences and Engineering, Vol.1, Issue.2, pp.6-10, 2013.
Evaluation of Routing Algorithm for Ad-hoc and Wireless Sensor Network Protocol
Research Paper | Journal Paper
Vol.1 , Issue.2 , pp.11-18, Oct-2013
Abstract
Low control overhead and Low energy consumption are two key issues in wireless ad hoc sensor networks to improve protocol efficiency. They decide the quality of service provided by the protocol. Dynamic Source Routing (DSR) and AODV (Ad hoc on demand distance vector) are preferred routing protocols in wireless sensor networks. The routing overhead of DSR and AODV is a drawback in power-constrained environment. This is directly proportional to the path length. This paper presents enhanced and efficient routing algorithms, namely EEDSR and EEAODV with a local route low energy consumption model for DSR and AODV. This model reduces the routing overhead and consumes less energy during data transfer and thus improves the efficiency of Ad Hoc sensor network.
Key-Words / Index Term
Wireless Sensor Network, EEAODV, EEDSR, Ad-hoc
References
[1] List M. Usha, S. Jayabharti, R.S.D Wahida Banu, �RE-AODV An Enhanced Routing Algorithm for QoS Support in Wireless Ad Hoc Sensor Network�, IEEE-International Conference on Recent Trends in Information Technology, ICRTIT 2011, 978-1-4577-0590-8/11.
[2] Lawal Bello, Panos Bakalis et.al, �Power Control and Performance Comparison of AODV & DSR Ad Hoc Routing Protocols�, IEEE-International Conference on Modeling and Simulation, UK, 2011, 978-0-7695-4376-5/11.
[3] Rakesh Shivlal Mewada, Umesh Kumar Singh and Pradeep Kumar Sharma, "Simulation Based Performance Evaluation of Routing Protocols for Mobile Ad-hoc Networks (MANET)", IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), Vol. 2, No. 4,August 2012
[4] Parma nand et.al, �Simulation based parametric analysis of AODV protocol for Ad Hoc network�, International Journal of Advanced Engineering & Applications, Jan. 2010, p 10-14.
[5] Umesh Kumar Singh, Shivlal Mewada, Lokesh Laddhani & Kamal Bunkar, �An Overview and Study of Security Issues in Mobile Ad-hoc Networks�, International Journal of Computer Science and Information Security (IJCSIS)-USA, Volume-9, No.4, pp (106-111), April 2011.
[6] Sunil Taneja and Ashwani Khush,�A survey of routing protocols in Mobile AdHoc networks�, International Journal of Innovation, Management and Technology, August 2010, Vol. 1, No. 3, ISSN: 2010-0248.
[7] Prof.K. Manikandan, and Prof. Dr. T. Purusothaman, �An efficient routing protocol design for distributed wireless sensor networks�, International journal of Computer Applications, Nov-2010, Vol 10-N.4, (0975-8887).
[8] Mehdi Effat Parvar et. al, �Load balancing and route stability in Mobile Ad Hoc Networks based on AODV Protocol� , 2010, IEEE-International Conference on Electronic devices, systems and applications, 978-1-4244-6632-0/10, 258-263.
[9] Han Xiujuan, Jia Huijuan, �A new routing protocol of Ad Hoc based on NS-2�, IEEE-International Conference on Computational and Information Sciences, 2010, 978-0-7695-4270-6/10
[10] Shunli Ding, Liping Liu, �A node-disjoint multipath routing protocol based on AODV�, 2010, IEEE-Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, 978-0-7695-4110-5/10
[11] Yongjun Hu, Tao Luo, Junliang Shen, �An improvement of the route discovery process in AODV for Ad Hoc Network�, 2010, IEEE-International Conference on Communications and Mobile Computing, 978-0-7695-3989-8/10
[12] Sanchita Gupta and Pooja Saini, �Modified Pairwise Key Pre-distribution Scheme with Deployment Knowledge in Wireless Sensor Network�, ISROSET-IJSRNSC, Volume-01 , Issue-02, Page No : 21-23, May -Jun 2013
Citation
S. Agrawal, K.D. Kulat, M. B.Daigavane, "Evaluation of Routing Algorithm for Ad-hoc and Wireless Sensor Network Protocol," International Journal of Computer Sciences and Engineering, Vol.1, Issue.2, pp.11-18, 2013.
Wireless Sensor Networks- A Review on Topologies and Node Architecture
Review Paper | Journal Paper
Vol.1 , Issue.2 , pp.19-25, Oct-2013
Abstract
This review paper basically divided in two parts out of which first part focuses on the existing topologies that are used in the wireless sensor networks and second part emphasis on the architecture of the node. As we all know that wireless sensor network technology is the application oriented technology so topology and architecture of the network will always vary from application to application i.e. dynamic in nature. The development and deployment of the nodes always differ from traditional technologies; no doubt initially the traditional technology has been used but the excessive use of traditional technology changed the scenario. Now these topologies are used with hybrid techniques i.e. topologies with additional features & advantages and same the case with node architecture. As many of WSN applications need the networking alternatives to improve the cost reduction, efficiency and security aspects so in this review report we are discussing all the topologies used and the hybridized changes that had been done in past and can be done in future on the architecture of the WSN node.
Key-Words / Index Term
Data Dissemination, Topology, Node Architecture, Hybrid Changes and Cost Reduction
References
[1]. Chris Townsend and Steven Arms. Wireless Sensor Network: Principles and Applications. Sensor Magazine, February, 2004.
[2]. R. Szewczyk, A. Mainwaring, J. Anderson and D. Culler. An Analysis of a Large Scale Habit Monitoring Application. In SenSys�04, 2004.
[3]. G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, S. Burgess, D. Gay, P. Buonadonna, W. Hong, T. Dawson, and D. Culler. A Macroscope in the Redwoods. In SenSys�05, November 2005.
[4]. N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin. A Wireless Sensor Network for Structural Monitoring. In SenSys�04, 2004.
[5]. T. He and et. al. VigilNet: An Integrated Sensor Network System for Energy-Efficient Surveillance. ACM Transactions on Sensor Networks, Vol. 2(No. 1):Page 1 � 38, February 2006.
[6]. Aditya Singh Mandloi and Vineeta Choudhary, � Study of Various Techniques for Data Gathering in WSN�, ISROSET-IJSRNSC, Vol-1, Issue-2, pp(12-15), Jul -Aug 2013
[7]. Hidenari Nakashima, Junpei Inoue, Kenichi Okada and Kazuya Masu. ULSI Interconnect Length Distribution Model Considering Core Utilization. Proceedings of the conference on Design, automation and test in Europe - Volume 2, 2004.
[8]. Xiumin Wang, Jianping Wang and Yinlong Xu. Data Dissemination in Wireless Sensor Networks with Network Coding. EURASIP Journal on Wireless Communications and Networking 2010.
[9]. Gann Hong and Pan Dan. A Distributed Wireless Sensor Networks Mobile Communication Technology Research. Multimedia Information Networking and Security (MINES), 2012.
[10]. P.A. Forero, Cano and G.B. Giannakis. Distributed Clustering Using Wireless Sensor Networks. Selected Topics in Signal Processing, IEEE Journal of (Volume:5 , Issue: 4 ), Aug. 2011.
[11]. J.P.M. She and J.T.W. Yeow. Nanotechnology-Enabled Wireless Sensor Networks: From a Device Perspective. Sensors Journal, IEEE (Vol:6 , Issue: 5 ), Oct. 2006.
[12]. Handbook of Sensor Networks: Algorithms and Architectures, Edited by I. Stojmenovic� ISBN 0-471-68472-4 Copyright # 2005 John Wiley & Sons, Inc.
[13]. V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks, IEEE Journal on Selected Areas in Communications, 17(8):1333�1344, August 1999.
[14]. L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer. Analysis of a cone-based distributed topology control algorithm for wireless multi-hop networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 264�273, Newport, Rhode Island, USA, August 2001.
[15]. N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology control algorithm. In Proce of IEEE INFOCOM 2003, San Francisco, California, 2003.
[16]. N. Li and J. C. Hou. FLSS: A fault-tolerant topology control algorithm for wireless networks. In Proceedings of the ACM International Conference on Mobile Computing and Networking (MobiCom), Philadelphia, Pennsylvania, September 2004.
[17]. X. Li, I. Stojmenovic, and Yu Wang. Partial Delaunay triangulation and degree limited localized Bluetooth scatternet formation. IEEE Transactions on Parallel and Distributed Systems, 15(4):350�361, April 2004.
[18]. N. Li and J. C. Hou. FLSS: A fault-tolerant topology control algorithm for wireless networks. In Proceedings of the ACM International Conference on Mobile Computing and Networking (MobiCom), Philadelphia, Pennsylvania, September 2004.
[19]. Xin-Sheng Wang, Yong-Zhao Zhan and Liang-min Wang. STCP: Secure Topology Control Protocol for WSNs Based on Hexagonal Mesh. Wireless Comm, Networking and Mobile Computing, 2008.
[20]. Liting Cao, Wei Jiang and Zhaoli Zhang. Automatic Meter Reading System Based on Wireless Mesh Networks and SOPC Technology. Intelligent Networks and Intelligent Systems, 2009.
[21]. K. Onodera and T. Miyazaki. An Autonomous Algorithm for Construction of Energy-conscious Communication Tree in Wireless Sensor Networks. Advanced Information Networking and Applications - Workshops, 2008.
[22]. http://www.ianswer4u.com/2012/01/tree-topology-advantages-and.html#axzz2fsl8Igzp
[23]. J. Hwang, T. He, and Y. Kim. Achieving Realistic Sensing Area Modeling. In SenSys�06, 2006.
[24]. K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis. The Beta Factor: Measuring Wireless Link Burstiness. In SenSys�08, 2008.
[25]. G. Zhou, T. He, and J. A. Stankovic. Impact of Radio Irregularity on Wireless Sensor Networks. In MobiSys�04, June 2004.
Citation
S. Sharma, D. Kumar and K. Kishore, "Wireless Sensor Networks- A Review on Topologies and Node Architecture," International Journal of Computer Sciences and Engineering, Vol.1, Issue.2, pp.19-25, 2013.