

 © 2019, IJCSE All Rights Reserved 68

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue-10, May 2019 E-ISSN: 2347-2693

Bandwidth Saving Approach For De-duplication

Roshni Jaiswal

1*
, Nagendra Kumar

2

1,2

Department of Computer Science & Engineering, SRIST, Jabalpur, India

*Corresponding Author: roshanijaiswal9@gmail.com, Tel.: +91-6264202203

DOI: https://doi.org/10.26438/ijcse/v7si10.6871 | Available online at: www.ijcseonline.org

Abstract— The critical challenge of cloud storage or cloud computing is the organization of the continuously growing volume

of data. Data de-duplication fundamentally submits to the exclusion of redundant data. However, indexing of all data is quiet

maintained should that data ever be required. In general the data de-duplication eradicates the duplicate copies of duplicate

data. Data De-duplication mechanism attain popularity from the academics and industrial as well, because the storage

utilization in cloud storage is more efficient to store the data with the help of the cloud service providers. In this method

redundant data is replaced with a pointer to the unique data copy. This reduces the hardware used to store data and the

bandwidth costs required for transmitting and receiving purposes. This paper represents study of de-duplication as well as

proposes a method for saving bandwidth and storage.

Keywords—Cloud computing, de-duplication, saving storage, bandwidth reduction

I. INTRODUCTION

The use of cloud for storing data by companies for backup

and common people for sharing information among friends

has increased drastically over the past few years. This has

created a challenge to the cloud service providers to maintain

all this massive data and to offer these services at lower price

to the customers. In reality most of the data stored in the

servers is often repeated. For example, a service may contain

several instances of same data file, storing all these instances

would require a large amount of storage space. This problem

can be solved by using Data De-duplication technique [1].

Data de-duplication stores only one unique instance of the

data type on the disk or tape. In this method redundant data is

replaced with a pointer to the unique data copy. This reduces

the hardware used to store data and the bandwidth costs

required for transmitting and receiving purposes. De-

duplication belongs to intelligent data compression technique

for redundant data reduction [3].

Figure 1: Redundant data reduction techniques.

But there are many challenges to be addressed when we are

implementing data de-duplication. When we are uploading

the data to a remote storage like cloud storage, preserving the

confidentiality of the data is also important [2]. But data de-

duplication is not compatible with the conventional

encryption mechanisms that we use to convert the data into a

secret form. In conventional encryption, the user first will

encrypt the data with a key, that he chooses, and sends the

cipher text to the cloud storage, but if several users try to

upload the data using the conventional encryption

mechanism, there will be so many different cipher texts

uploaded to the cloud storage. so cloud storage provider will

not able to identify whether two copies uploaded belonging

to the same copy of the plain text or not. So if users are

interested in making the data confidential, they have to

scarify storage efficiency. If storage efficiency is to be given

importance, users have to scarify on confidentiality of the

data. So to ensure confidentiality of the data, while avoiding

the redundancy of the data, i.e. maintaining the storage

efficiency, a mechanism called convergent key encryption

has been introduced. Convergent key encryption is a process

of encrypting the data with a key generated by applying the

data to a hash function; the resulting hash code will be used

as the key to encrypt the data. The user will keep the hash

code called convergent key with him and uploads the

resulting cipher text to the cloud storage. Cloud storage

provider will maintain the copies of the cipher text and a tag

derived from the cipher text. The user who is trying to upload

a file to the cloud storage will send the tag to the cloud

storage provider. Cloud storage service provider will

compare the tag with the tags available on the server. If there

 International Journal of Computer Sciences and Engineering Vol. 7(10), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 69

is a tag match then it is assumed that same copy of the file is

already available on the cloud storage server and the user

need not upload the file to the cloud storage server. The user

will be added to the list of owners for that particular file.

II. RELATED WORK

Figure 2 shows an iconic visualization of data de-duplication,

in which multiple files are fed into the de-duplication system.

Each of them consists of a series of coloured data blocks. In

data de-duplication, these data blocks are called ―chunks‖ by

convention. Chunks of the same colour have the same

content. The data de-duplication system processes the files so

that only one chunk of each colour is emitted. One important

application domain for data de-duplication is backup storage.

The prevailing storage media for backup systems has been

tape. Over time, disk storage became less costly, but still tape

storage has been considered cheaper. Disk-2-disk (D2D)

backup became more cost-effective by using data de-

duplication techniques. Data de-duplication reduces the

storage requirements by a factor of around 10 and more, as

large parts of a backup is identical to the previous backup

[4]. Therefore, backup data has an exceptionally high data

redundancy, which can be exploited by data de-duplication.

Figure 2: Iconic visualization of data de-duplication[9]

Besides its commercial success, data de-duplication has also

been a hot topic in the research community. Most storage

conferences in the last years have featured de-duplication

sessions. In the recent years, researchers focused on different

aspects of data de-duplication:

Throughput: A major research focus is approaches to

achieve a high write throughput.

Especially the problem of the ―chunk lookup disk

bottleneck‖ proved to be important with Zhu et al.’s work an

early breakthrough [5].

Clustering: Researchers are working on improving the

scalability by using a cluster of cooperating nodes for data

de-duplication [6] [7] to overcome the throughput and fault

tolerance limitations of single-node systems.

Other types of storage workload: Beyond the usage of data

de-duplication in backup and archival storage systems,

researchers explore how to use data de-duplication for other

types of storage workloads, e.g., primary storage and storage

and migration of virtual machine images.

Advanced chunking: The primary methods for splitting

blocks, files, or a data stream into smaller chunks, which are

then used as the unit of redundancy detection, are static

chunking and content-defined chunking. Researchers work

on advanced chunking approaches to improve on these

primary methods [8][9].

Haonan Su et al [11] proposes an efficient and secure data

de-duplication scheme, which allows cloud storage servers to

perform de-duplication based on fingerprints of data blocks

before these blocks are encrypted by users. This can

significantly improve the computation and communication

efficiency considering the case of many duplicated data. File-

level de-duplication is the easiest but inefficient method.

Variable-size block-level de-duplication is difficult to deal

with the situation of inserting data in the file.

P. Minisha [10] proposes a performance analysis of Rabin

based chunking and Rapid Asymmetric Maximum (RAM)

chunking using throughput. The Chunk is a method of

breaking data into multiple pieces and each chunk has the

unique hash identifier for identification. To check data

duplication the hash identifier of a chunk is checked with the

previously stored chunk. It increases the efficiency of cloud

storage. There are two limitations with this approach. First,

there are more number of strings and less number of hash

values, so some different strings may have the same hash

value. If these hash values match, the pattern and the

substring may not match and vice-versa. Consequently, it

reduces the throughput of data de-duplication.

Huijun Wu[12] proposed a sampling-based chunking method

and develops a tool named SmartChunker to estimate the

optimal chunking configuration for de-duplication systems.

Our evaluations on real-world datasets demonstrate the

efficacy and efficiency of SmartChunker. SmartChunker

only needed to use a small number of samples to learn the

potential storage capacity saving under different chunk

configurations. However, the individual estimations on

different chunk sizes do not work well. The key reason is that

not all chunk sizes are equal in the estimation.

III. PROPOSED METHODOLOGY

A two layer approach has been proposed for capturing

redundancy. Proposed system architecture is shown in figure

1. For any outbound traffic from the server, system first

detects redundancy by the first layer module. If no

redundancy is found, it turns to the second-layer module to

 International Journal of Computer Sciences and Engineering Vol. 7(10), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 70

search for short-term redundancy at finer granularity. The

first-layer detects redundancy by a prediction-based

matching approach. In the second layer, both the server and

client maintain a temporary small local chunk cache to store

most recently transmitted and received chunks during their

communication respectively.

Once a client receives a data chunk that already exists in its

local cache, it is expected that the future incoming data

would also be duplicate. Thus, the client predicts the future

coming data chunks and notifies the cloud server with the

signatures of the predicted chunks. The server compares the

predicted signatures received from the client with the

signatures of outgoing chunks and confirms the correctly

predicted chunks, which then do not need to be transferred

without maintaining the client’s status at the server.

Figure 3: Proposed System

The sender divides the outgoing data into chunks in the same

way as the receiver, and compares the signatures of outgoing

chunks with all chunk predictions recently received from the

receiver regardless of their expected positions in the data

stream. For each chunk, the sender computes its signature

(e.g., its SHA-1 hash value) and looks up the signature in the

prediction store that keeps all predictions recently received

from the receiver. If a matching signature is found, the

sender sends a prediction confirmation acknowledgement

message to the receiver instead of the outgoing chunk, no

matter whether the chunk has the expected offset in data

stream which is specified in the prediction.

In the second-layer, both the server and client maintain a

temporary small local chunk cache to store most recently

transmitted and received chunks during their communication

respectively. In particular, the sender stores its recently

transferred chunks in its local chunk cache. For every chunk

in the cache, the sender computes a set of representative

fingerprints, each of which is the hash value of a data

window of size w in the chunk. Every representative

fingerprint (along with a pointer to the corresponding chunk

in the cache) is stored into a fingerprint store. To detect the

redundancy inside an outgoing chunk, the sender performs

match to identify maximal sub-strings in the chunk which

have duplicates in the chunk cache. Specifically, the sender

compares each representative fingerprint of the outgoing

chunk against the fingerprint store to check whether a

matching fingerprint exists. A matching fingerprint indicates

that the outgoing chunk has a data window of size w which

also appears in a previously transmitted chunk in the cache.

If a matching fingerprint is found in the fingerprint store, the

in-cache chunk which it points to is retrieved. The data

window corresponding to the matching fingerprint in the in-

cache chunk is expanded byte-by-byte in both directions and

compared with the outgoing chunk, in order to identify the

maximal overlap substring between the in-cache chunk and

the outgoing chunk. Then, the sender encodes the maximal

matched substring in the outgoing chunk with an in-chunk

shim which contains the signature of the corresponding in-

cache chunk, the offset and length of the matched substring.

For any incoming packet, the receiver first decodes in-chunk

shims if any. To decode an in-chunk shim, the receiver

retrieves the chunk in its local cache which has the same

signature as that in the shim, and replaces the shim by the

substring of the in cache chunk according to the offset and

length specified by the shim. If the packet is an ACK

message, the receiver checks the confirmed prediction in its

prediction store and retrieves the corresponding predicted

chunk in its chunk store.

IV. RESULTS AND DISCUSSION

Implementation of proposed system consist of three

modules- Admin, Server and User. GUI of all these modules

are shown below:

Figure 4: Admin GUI

Figure 5: Server GUI

 International Journal of Computer Sciences and Engineering Vol. 7(10), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 71

Figure 6: User GUI

At the receiver, the incoming data stream is divided into

chunks. The chunks are linked in sequence, which forms a

chain, and stored into a local chunk store. The receiver

compares each incoming chunk to the chunk store. Once

finding a matching chunk on a chain, it retrieves a number of

subsequent chunks along the chain as the predicted chunks in

the future incoming data. The signatures of the retrieved

chunks and their expected offsets in the incoming data

stream are sent in a PRED message to the sender as a

prediction for the sender’s subsequent outgoing data. To

match data with a prediction, the sender computes SHA-1

over the outgoing data at the expected offset with the length

given by the prediction, and compares the result with the

signature in the prediction. Upon a signature match, the

sender sends a PRED-ACK message to the receiver to tell it

to copy the matched data from its local storage.

This implementation avoids the additional computational and

storage costs.

Figure 7: Saving of bandwidth

V. CONCLUSION

The pay-as-you-go service model impels cloud customers to

reduce the usage cost of bandwidth. This technique is used to

improve storage utilization and can also be applied to network

data transfers to reduce the number of bytes that must be sent.

Redundancy elimination has been shown to be an effective

solution for reducing bandwidth costs, and thus has recently

captured significant attention in the cloud environment. The

work proposes a solution which can detect and remove

redundancy through a two-layer design with cooperative

operations between layers.

REFERENCES

[1] Yukun Zhou, Dan Feng, Wen Xia, Min Fu, Fangting Huang,

Yucheng Zhang, Chunguang Li,―SecDep: A User-Aware Efficient
Fine-Grained Secure Deduplication Scheme with Multi-Level Key
Management‖, IEEE Mass Storage Systems and Technologies
(MSST) 2015 31st Symposium, Year – 2013.

[2] B.Tirapathi Reddy, U.Ramya, Dr.M.V.P.Chandra Sekhara Rao, ―A
comparative study on data deduplication techniques in cloud
storage‖, IJPT| Sep-2016 | Vol. 8 | Issue No.3 | 18521-18530.

[3] Wen Xia, Hong Jiang, Dan Fen, ―A Comprehensive Study of the
Past, Present, and Future of Data De-duplication‖, Vol. 104, No. 9,
IEEE 2016

[4] Heidi Biggar. Experiencing data de-duplication: Improving
efficiency and reducing capacity requirements. White paper
February, The Enterprise Strategy Group, 2007

[5] Heidi Biggar. Experiencing data de-duplication: Improving
efficiency and reducing capacity requirements. White paper
February, The Enterprise Strategy Group, 2007.

[6] Benjamin. Zhu, Kai Li, and Hugo Patterson. Avoiding the disk
bottleneck in the Data Domain deduplication file system. In
Proceedings of the 6

th
 USENIX Conference on File and Storage

Technologies (FAST). USENIX, 2008.

[7] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. Exploiting
data deduplication to accelerate live virtual machine migration. In
Proceedings of the 2010 IEEE International Conference on Cluster
Computing (CLUSTER), pages 88–96. IEEE, September 2010

[8] Avani Wildani, Ethan L. Miller, and Ohad Rodeh. HANDS: A
heuristically arranged non-backup in-line deduplication system.
Technical Report UCSC-SSRC-12-03, University of California,
Santa Cruz, March 2012

[9] Yoshihiro Tsuchiya and Takashi Watanabe. DBLK: Deduplication
for primary block storage. In Proceedings of the 27th IEEE
Symposium on Mass Storage Systems and Technologies (MSST),
pages 1–5. IEEE, May 2011

[10] Ms. P. Minisha priya, Dr. S.Maheswari, ―Performance Analysis of
Cloud Storage Using Chunking Algorithm‖, IEEE-2018

[11] Haonan Su, Dong Zheng, Yinghui Zhang, ―An Efficient and
Secure Deduplication Scheme Based on Rabin Fingerprinting in
Cloud Storage‖, IEEE-2017

[12] Huijun Wu, Chen Wang, Kai Lu, Yinjin Fu,‖ One Size Does Not
Fit All: The Case for Chunking Configuration in Backup
Deduplication‖ Liming Zhu, IEEE-2018.

