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Abstract— In this work, we give the related work of fundamental matrix decomposition techniques. The primary strategy that 

we talk about is known as Eigen value decomposition, which breaks down the underlying matrix into an authoritative shape. 

The second strategy is nonnegative matrix factorization (NMF), which factorizes the underlying grid into two littler matrixes 

with the imperative that every component of the factorized matrix ought to be nonnegative. The third strategy is singular value 

decomposition (SVD) that utilizations particular estimations of the underlying network to factorize it. The last technique is 

CUR decomposition, which faces the issue of high thickness in factorized matrixes (an issue that is confronted when utilizing 

the SVD strategy). This work concludes with a description of other state-of-the-art matrix decomposition techniques 
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I.  INTRODUCTION  

 

Numerous issues throughout our life are spoken to by 

matrices. Because of the high dimensionality of information  

in these issues, the initial matrix is generally factorized into 

at least two "littler" matrices. These matrices have the upside 

of littler measurements, bringing about diminished required 

storage room and less required time for handling them.  

 

Consequently, they can be processed more productively by 

calculations than the initial matrix. There are numerous  

strategies [1-3] on the best way to break down a matrix and 

manage a high-dimensional informational collection.  

Principal component analysis (PCA) is an information 

mining system that replaces the high-dimensional unique 

information by its projection onto the most critical axes. This 

procedure maps directly the information to a lower 

dimensional matrix such that the difference of information in 

the low-dimensional portrayal is maximized. It is a 

straightforward strategy, which depends on eigen-values and 

the eigenvectors of a matrix. 

 

Let A be a square (N×N) matrix with N linearly independent 

eigenvectors, ),...,3,2,1(, Niqi  . Then A can be 

factorized as: 
1 QQA ,     (1) 

where Q is the square (N×N) matrix whose ith column is the 

eigenvector iq  of A and Λ is the diagonal matrix whose 

diagonal elements are the corresponding eigenvalues, i.e., 

iii   . Note that only diagonalizable matrices can be  

 

factorized in this way. For example, the defective matrix 


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11
  cannot be diagonalized. 

 

In the following example we are going to show the 

importance of matrix factorization. Consider a situation 

where we have a mapping and users and items in the form of 

matrix. As the number of user increases then the size of the 

matrix also increases. However with the help of suitable 

matrix decomposition techniques we can divide the matrix 

into sub-matrix of smaller size and thus we can save the 

space for further processing. Fig. 1 shows an example of 

matrix decomposition. 

 
Fig. 1: an example of matrix decomposition. 

 

 

II. THE MATRIX FACTORIZATION 

TECHNIQUES 

  

A. Eigen Value Decomposition (EVD) 

In this segment, we display a decomposition technique 

known as eigen-value decomposition. In linear algebra based 

math, the eigen-value decomposition strategy is the 
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factorization of a matrix A into a canonical form. The eigen-

values and the eigenvectors of A are utilized to speak to the 

matrix. To apply this technique to a matrix, the framework 

ought be square as well as diagonalizable [4-6]. Fig. 2 shows 

an example of EVD. 

 
Fig. 2: an example of matrix EVD. 

 

B. Non-Negative Matrix Factorization (NMF) 

Another broadly known strategy in dimensionality decrease 

and information investigation is nonnegative matrix 

factorization (NMF). In this segment, we will examine how 

the NMF calculation functions and apply it to the  training 

information of the running illustration. The NMF calculation 

factorizes a matrix A of every two frameworks U and V, with 

the property that each of the three matrix have no negative 

components. This non-negativity makes coming about grids 

more appropriate for the clustering of objects. 

 

Let matrix V be the product of the matrices W and H, 

HWV .      (2) 

Matrix multiplication can be implemented as computing the 

column vectors of V as linear combinations of the column 

vectors in W using coefficients supplied by columns of H. 

That is, each column of V can be computed as follows: 

ii hWv .      (3) 

 

C. Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) is a critical linear 

algebra tool that we use to solve many mathematical 

problems. The SVD strategy is a factorization of a genuine or 

complex matrix [4]. In this segment, we exhibit the  

numerical plan of SVD and a portion of its varieties. 

 

Suppose M is a m×n matrix whose entries come from the 

field K, which is either the field of real numbers or the field 

of complex numbers. Then there exists a factorization, called 

a 'singular value decomposition' of M, of the form: 
*.. VUM       (4) 

where 

 U is an m × m unitary matrix over K (if K=R), unitary 

matrices are orthogonal matrices), 

 Σ is a diagonal m × n matrix with non-negative real 

numbers on the diagonal, 

 V is an n × n unitary matrix over K, and V∗ is the 

conjugate transpose of V. 

 

As a matter of first importance, we give SVD's association 

the eigen-value disintegration strategy. The connection 

amongst SVD and the eigen-value disintegration technique 

originates from an exceptional instance of the last mentioned 

one which will be examined along these lines. Fig. 3 shows 

an example of SVD. 

 
Fig. 3: an example of matrix SVD. 

 

D. CUR Matrix Decomposition 

In this section, we are going to present another matrix 

decomposition method, which is known as CUR matrix 

decomposition, because the initial matrix A is factorized to 

three matrices (C, U, and R). In high-dimensional data sets, 

several matrix decomposition methods, such as the SVD 

method, produce decomposed matrices which tend to be very 

dense, a fact that makes their processing a challenge in terms 

of efficiency.  

 

The CUR matrix approximation is not unique and there are 

multiple algorithms for computing one. Hence we are not 

showing its mathematical equations here. 

 

In contrast, the CUR decomposition method confronts this 

problem as it decomposes an original matrix into two sparse 

matrices C and R and only one dense matrix U, whose size is 

quite small. Moreover, CUR gives an exact decomposition 

no matter how many dimensions picked from the origin 

matrix (i.e., how big is parameter c), whereas in SVD, the 

parameter c should be at least equal to the rank of the origin 

matrix A [5-7]. Fig. 4 shows an example of CUR  matrix 

decomposition. 

 
Fig. 4 shows an example of CUR matrix decomposition. 
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III. CONCLUSION AND FUTURE SCOPE  

 

The matrix factorization technique is used in many party of 

computer science applications. The graph is most powerful 

data structure in computer science, and it is represented in the 

form of matrix. This makes the matrix as the most powerful 

data representation form. Thought for proposed use we are 

required to decompose the matrix into sub-matrix of reduced 

size. In this work we have reviewed few basic matrix 

decomposition techniques. Initially we have discussed about 

the need of matrix factorization. Later we have discussed four 

widely used matrix decomposition techniques. We have also 

discussed the advantages and disadvantages of these methods. 
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