

 © 2019, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Special Issue, 6, March 2019 E-ISSN: 2347-2693

A Survey on Information Flow Monitoring System Using Skyline

Algorithm

K.M. Jyothsna Priya
1*

, A. Srinivasulu
2

Data Analytics Research Center, Sree Vidyanikethan Engineering College, India

Corresponding Author: dsaichitravathi@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7si6.18 | Available online at: www.ijcseonline.org

Abstract: Social media are websites and computer programs that enable users to create and share information on the internet

using a computer or a mobile phone. Large quantities of data are generated by social networks in seconds. The information

which is generated in a social network is transformed into a flow by the subjects who produce, transmit, and consume it. This

flow can be represented as a very complicated directional graph. In this graph each subject is represented as a node, and the

flow of information is represented as a directed edge. In this paper, we introduce a method of dividing this complex directional

graph by user and quantifying the flow of information between and among users based on information flow vectors. We

propose a system that can monitor the flow of information in social networks using information flow vectors extracted from

social media data. We also introduce an improved skyline algorithm that can respond quickly to a user‘s various queries.

Keywords – Information flow, Social media data, Skyline, Lambda architecture, MapReduce.

I. INTRODUCTION

Social media generates large amounts of data every day. For

example, 456,000 tweets are generated daily on twitter. Such

massive amounts of data from social media are measured in

petabytes. Information propagation in online social networks

like Twitter is unique in that word-of-mouth propagation and

traditional media sources coexist. A large amount of data

from twitter to compare the relative roles different types of

users play in information flow. Twitter as a means to

conduct research on longstanding social science research

questions in a computational framework. [1]

In the field of big data, analyzing which users of social

media generate what information and how broadly the data

are disseminated is especially challenging because the data

are generated at a high and data structures are

diverse.Identifying the relationships among information

bearers, producers, and consumers offers a sociological

approach to analyzing the interaction patterns among social

actors to elucidate social structures via instruments such as

graphs.A frequent subgraph mining algorithm called FSM-H

which uses an iterative MapReduce based framework. FSM-

H is complete as it returns all the frequent subgraphs for a

given user-defined support, and it is efficient as it applies all

the optimizations that the latest FSM algorithms adopt.

Experiments with real life and large synthetic datasets

validate the effectiveness of FSM-H for mining frequent

subgraphs from large graph datasets. [2]

The systems for tracking and monitoring the flow of

information in social networks, measuring the flow of

information contained in social data, and informing users of

information flows. A new class of problems called network

information flow which is inspired by computer network

applications. Consider a point-to-point communication

network on which a number of information sources are to be

mulitcast to certain sets of destinations. In existing computer

networks, each node functions as a switch in the sense that it

either relays information from an input link to an output link,

or it replicates information received from an input link and

sends it to a certain set of output links. From the

information-theoretic point of view, there is no reason to

restrict the function of a node to that of a switch. Rather, a

node can function as an encoder in the sense that it receives

information from all the input links, encodes, and sends

information to all the output links. [3]

Data from Twitter is used to extract and measure

information flows.The first system is based on a Lambda

architecture that can collect and analyze social media data in

real time, including a means to quantify social media data in

terms of information flow and an algorithm to extract the

information flow path. Many algorithms have been proposed

to solve the task.frequent itemset discovery algorithms have

been used to find interesting patterns in various application

areas. However, as data mining techniques are being

increasingly applied to non-traditional domains, existing

frequent pattern discovery approaches cannot be used. The

transaction framework that is assumed by these algorithms

 International Journal of Computer Sciences and Engineering Vol. 7(6), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 2

cannot be used to effectively model the data sets in these

domains. An alternate way of modeling the objects in these

data sets is to represent those using graphs. Within that

model, one way of formulating the frequent pattern

discovery problem is that of discovering subgraphs that

occur frequently over the entire set of graphs. An efficient

algorithm called FSG, for finding all frequent subgraphs in

large graph data sets and experimentally evaluates the

performance of FSG using a variety of real and synthetic

data sets. [4]

The Lambda architecture enables the reconstruction of a

bigdata system as a series of layers: the speed layer, the

serving layer, and the deployment layer. Each layer is

characterized by a subset of properties and is based on the

functionality provided by the layers below it. The second

system is a skyline algorithm used to respond quickly to

various queries from system users who want to monitor

information. Skyline SFS algorithm based on the pre-sorting,

that is general for use with many skyline query, efficient and

well behaved in a relational sorting. SFS is a realistic

algorithm for implementation of skyline in realistic engines.

There are numerous improvements that can be made to SFS,

and pursuing better skyline algorithm based upon SFS.

II. LITERARTURE SURVEY

[1].M. Cha, F. Benevenuto, H. Haddadi, and K.

Gummadi, ‘‘the world of connections and information

flow in Twitter,’’ IEEE Trans. Syst., Man, Cybern. A,

Syst., Humans, vol. 42, no. 4, pp. 991–998, Jul. 2012.

Information propagation in online social networks like

Twitter is unique in that word-of-mouth propagation and

traditional media sources coexist. Collect a large amount of

data from twitter to compare the relative roles different types

of users play in information flow Using empirical data on the

spread of news about major international headlines as well

as minor topics and investigate the relative roles of three

types of information spreaders: 1) mass media sources like

BBC; 2) grassroots, consisting of ordinary users; and 3)

evangelists, consisting of opinion leaders, politicians,

celebrities, and local businesses. Mass media sources play a

vital role in reaching the majority of the audience in any

major topics. Evangelists, however, introduce both major

and minor topics to audiences who are further away from the

core of the network and would otherwise be unreachable.

Grassroots users are relatively passive in helping spread the

news, although they account for the 98% of the network.

Results bring insights into what contributes to rapid

information propagation at different levels of topic

popularity, which believe are useful to the designers of

social search and recommendation engines.

The impressive growth of social networking services has

made personal contacts and relationships more visible and

quantifiable than ever before. These services have also

become important vehicles for news and channels of

influence. Twitter has emerged as a popular medium for

discussing noteworthy events that are happening around the

world.Twitter as a means to conduct research on

longstanding social science research questions in a

computational framework. Twitter as a means to conduct

research on longstanding social science research questions in

a computational framework. The focus on the relative roles

different users play on information flow in order to

understand why certain trends or news are adopted more

widely than others. For the study, crawled the Twitter

network and gathered all public tweets and follow links. In

total, 2 billion follow relationships among 54 million users

who produced a total of 1.7 billion tweets. To the best of our

knowledge, is the largest data gathered and analysed from

the Twitter network.

By analyzing the structure of the connection network and the

distribution of links, a broad division that yields three

distinct user groups based on in-degree: the extremely well-

connected users with more than 100 000 followers, the least

connected masses with no more than 200 followers, and the

remaining well-connected small group of users. Our division

of users is based on the definition of different user roles

from the theory on information flow : mass media, who can

reach a large audience, but do not follow others actively;

grassroots, who are not followed by a large number of users,

but have a huge presence in the network; and evangelists,

who are socially connected and actively take part in

information flow like opinion leaders.

Twitter administrators allow us to gather data from their site

at scale. They graciously white-listed the IP address range

containing 58 of our servers, which allow dust to gather

large amounts of data. The Twitter API is to gather two

pieces of information for each Twitter user: 1) profile data

including information about the user‘s social links, i.e., other

Twitter users she is following; and 2) all tweets ever posted

by the user including the time when tweets were posted.

The first extensive analysis of a near complete data set

obtained from the micro blogging service Twitter.

Acquisition of such a rich data set enabled us to identify the

relationship among distinct groups of users—mass media,

evangelists, and grassroots and the roles that they play in

viral spreading of political and social news messages. The

connectivity trends between users differentiate Twitter, away

from conventional social networks, toward a collaborative

gossip and news publishing tool and makes Twitter an ideal

medium for studying the relative roles these distinct user

groups play. The Twitter network exhibits topological

features that distinguish it from other social networks; it

stands out as a broadcasting system encompassing users of

vastly different abilities to propagate and receive

information.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 3

[2].M.A. Bhuiyanan M. AlHasan, ”An iterative Map

Reduce based frequent subgraph mining algorithm,”

IEEE Trans. Knowl. Data Eng., vol. 27, no. 3, pp. 608–

620, Mar. 2015.

Over the years, many algorithms have been proposed to

solve task. FSM- algorithms assume that the data structure

of the mining task is small enough to fit in the main memory

of a computer. However, as the real-world graph data grows,

both in size and quantity, such an assumption does not hold

any longer. To overcome the graph database-centric methods

have been proposed in recent years for solving FSM;

however, a distributed solution using MapReduce paradigm

has not been explored extensively. Since MapReduce is

becoming the de-facto paradigm for computation on massive

data, an efficient FSM algorithm is a paradigm of huge

demand. A frequent subgraph mining algorithm called

FSM-H which uses an iterative MapReduce based

framework. FSM-H is complete as it returns all the frequent

subgraphs for a given user-defined support, and it is efficient

as it applies all the optimizations that the latest FSM

algorithms adopt. Experiments with real life and large

synthetic datasets validate the effectiveness of FSM-H for

mining frequent subgraphs from large graph datasets.

Solving the task of frequent subgraph mining on a

distributed platform like MapReduce is challenging for

various reasons. First, an FSM method computes the support

of a candidate subgraph pattern over the entire set of input

graphs in a graph dataset. In a distributed platform, if the

input graphs are partitioned over various worker nodes, the

local support of a subgraph in the respective partition at a

worker node is not much useful for deciding whether the

given subgraph is frequent or not. Also, local support of a

subgraph in various nodes cannot be aggregated in a global

data structure, because, MapReduce programming model

does not provide any built-in mechanism for communicating

with a global state. Also, the support computation cannot be

delayed arbitrarily, as following Apriori principle future

candidate frequent patterns1 can be generated only from a

frequent pattern.

FSM-H is designed as an iterative MapReduce process. At

the beginning of iteration i, FSM-H has at its disposal all the

frequent patterns of size i-1 (Fi-1), and at the end of iteration

i, it returns all the frequent patterns of size i,(Fi). The size of

a graph is equal to the number ofedges it contains. For a

mining task if F is the set of frequent patterns, FSM-H runs

for a total of l iterations, where l is equal to the size of the

largest graph in F.

The iterative Map Reduce based frequent sub graph mining

algorithm, called FSMH. It shows the performance of FSM-

H over real life and large synthetic datasets for various

system and input configurations.

[3]. R. Ahlswede, N. CAI, S.-Y. R. Li, and R. W. Yeung,

‘‘Network information flow,’’ IEEE Trans. Inf. Theory,

vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

A new class of problems called network information flow

which is inspired by computer network applications.

Consider a point-to-point communication network on which

a number of information sources are to be mulitcast to

certain sets of destinations. Assume that the information

sources are mutually independent. The problem is to

characterize the admissible coding rate region. Result can

be regarded as the Max-flow Min-cut Theorem for network

information flow.

In existing computer networks, each node functions as a

switch in the sense that it either relays information from an

input link to an output link, or it replicates information

received from an input link and sends it to a certain set of

output links. From the information-theoretic point of view,

there is no reason to restrict the function of a node to that of

a switch. Rather, a node can function as an encoder in the

sense that it receives information from all the input links,

encodes, and sends information to all the output links. From

the point of view, a switch is a special case of an encoder.

In the classical information theory for point-to-point

communication, if two information sources are independent,

optimality can be achieved (asymptotically) by coding the

sources separately. The coding method is referred to as

coding by superposition . If the coding method is always

optimal for multisource network information flow problems,

then in order to solve the problem, only need to solve the sub

problems for the individual information sources separately,

where each of these sub problems is a single-source

problem. However, the multisource problem is not a trivial

extension of the single-source problem, and it is extremely

difficult in general.

A theorem which characterizes the admissible coding rate

region for the single-source problem.. Result can be

regarded as the Max-flow Min-cut Theorem for network

information flow and discussion is based on a class of block

codes called -codes. Therefore, it is possible, though not

likely, that the result can be enhanced by considering more

general coding schemes. Nevertheless, prove in the

Appendix that probabilistic coding does not improve

performance.

 The problem with one information source, and have

obtained a simple characterization of the admissible coding

rate region. Our result can be regarded as the Max-flow Min-

cut Theorem for network information flow.

[4].M. Kuramochi and G. Karypis, ‘‘an efficient

algorithm for discovering frequent subgraphs,’’ IEEE

Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1038–1051,

Sep. 2004.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 4

Over the years, frequent itemset discovery algorithms have

been used to find interesting patterns in various application

areas. However, as data mining techniques are being

increasingly applied to non-traditional domains, existing

frequent pattern discovery approaches cannot be used. The

transaction framework that is assumed by these algorithms

cannot be used to effectively model the data sets in these

domains. An alternate way of modeling the objects in these

data sets is to represent those using graphs. Within that

model, one way of formulating the frequent pattern

discovery problem is that of discovering subgraphs that

occur frequently over the entire set of graphs. An efficient

algorithm called FSG, for finding all frequent subgraphs in

large graph data sets and experimentally evaluates the

performance of FSG using a variety of real and synthetic

data sets. Results show that despite the underlying

complexity associated with frequent subgraph discovery,

FSG is effective in finding all frequently occurring

subgraphs in data sets containing more than 200,000 graph

transactions and scales linearly with respect to the size of the

data set.

Developing algorithms that discover all frequently occurring

subgraphs in a large graph data set is particularly

challenging and computationally intensive, as graph and

subgraph isomorphism‘s play a key role throughout the

computations. A new algorithm, called FSG, for finding all

connected subgraphs that appear frequently in a large graph

data set and finds frequent sub graphs using the level-by-

level expansion strategy adopted by Apriori.

There are two key aspects in the above problem statement.

Motivated by the fact that the resulting frequent subgraphs

will be encapsulating relations (or edges) between some of

the entities (or vertices) of various objects. Within the

context, connectivity is a natural property of frequent

patterns. An additional benefit of the restriction is that it

reduces the complexity of the problem, as need not to

consider disconnected combinations of frequent connected

subgraphs. Second, allows the graphs to be labelled, and

discovered frequent patterns can contain multiple vertices

and edges carrying the same label. It greatly increases

modeling ability, as it allows us to find a pattern involving

multiple occurrences of the same entities and relations, but

at the same time makes the problem of finding such

frequently occurring subgraphs nontrivial. Due to such

cases, any frequent subgraph discovery algorithm needs to

correctly identify how a particular subgraph maps to the

vertices and edges of each graph transaction, that can only

be done by solving many instances of the subgraph

isomorphism problem, which has been shown to be in NP-

complete .

The FSG algorithm for finding frequently occurring

subgraphs in large graph data sets that can be used to

discover recurrent patterns in scientific, spatial, and

relational data sets. Such patterns can play an important role

for understanding the nature of these data sets and can be

used as input to other data-mining tasks detailed

experimental evaluation shows that FSG can scale

reasonably well to very large graph data sets provided that

the graphs contain a sufficiently many different labels of

edges and vertices. Key elements to FSG‘s computational

scalability are the highly efficient canonical labelling

algorithm and candidate generation scheme and its use of a

TID list-based approach for frequency counting. These three

features combined allow FSG to uniquely identify the

various generated subgraphs, generate candidate patterns

with limited degree of redundancy, and to quickly prune

most of the infrequent subgraphs without having to resort to

computationally expensive graph and subgraph isomorphism

computations. Furthermore, presented and evaluated a

database partitioning-based approach that substantially

reduces FSG‘s memory requirement for storing TID lists

with only a moderate increase in runtime.

[5].X. Yan and J. Han, ‗‗span: Graph-based substructure

pattern mining,‘‘ in Proc. IEEE Int. Conf. Data Mining, Dec.

2002, pp. 721–724.

The new approach for frequent graph-based pattern mining

in graph datasets and propose a novel a algorithm called

gSpan (graph-based, substructure pattern mining), which

discovers frequent substructures without candidate

generation & a builds a new lexicographic order among

graphs, and maps each graph to a unique mini- mum DFS

code as its canonical label. Based on lexicographic order &

adopts the depth-first search strategy to mine efficiently.

Performance study shows that gSpan substantially

outperforms previous algorithm, sometimes by an order of

magnitude.

Frequent substructure pattern mining has been an emerging

data mining problem with many scientific and com- metrical

applications.As a general data structure, labelled graph can

be used to model much complicated sub- structure patterns

among data. Two techniques, DFS lexicographic order and

minimum DFS code, are introduced here, which form a

novel canonical labelling system to support DFS search.

GSpan discovers all the frequent subgraphs without

candidate generation and false positives pruning. It

combines the growing and checking of frequent subgraphs

into one procedure, thus accelerates the mining process.

The gSpan uses a sparse adjacency list representation to

store graphs. Subgraph mining stops searching either when

the support of a graph is less than minSup, or its code is not

a minimum code, which means the graph and all its

descendants have been generated and discovered before.

A new lexicographic ordering system and developed a

depth-first search-based mining algorithm gSpan for

efficient mining of frequent subgraphs in large graph

database. Performance study shows that gSpan outperforms

 International Journal of Computer Sciences and Engineering Vol. 7(6), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 5

FSG by an order of magnitude and is capable to mine large

frequent subgraphs in a bigger graph set with lower

minimum supports than previous studies.

The problem with one information source, and have obtained

a simple characterization of the admissible coding rate

region.Result can be regarded as the Max-flow Min-cut

Theorem for network information flow.

2.1 OPEN ISSUES OF LITERATURE SURVEY
1. Frequent sub graph mining algorithm provides a

distributed solution using MapReduce paradigm has not

been explored extensively.Since MapReduce is becoming

the de-facto paradigm for computation on massive data.

2. Frequent item set discovery algorithms

providespartitioning-based approach that substantially

reduces FSG‘s memory requirement for storing lists with

only a moderate increase in runtime but not high increase in

runtime.

3. The connectivity trends between users differentiate

Twitter, away from conventional social networks; toward a

collaborative gossip.This makes twitter an ideal medium for

studying the relative roles these distinct user groups play.

4. Frequent substructure pattern mining has been an

emerging data mining problem with many scientific and

com- metrical applications and does not model complicated

sub- structure patterns among data

III. METHODOLOGY

Analyzing real-time data is an important aspect of analyzing

big data. Because social media data is generated in real time

and the volume of generated data is large, an alternative to

the general method of analyzing big data is needed .The

Lambda architecture is a structured methodology for

merging results that includes newly generated real-time

data.The Lambda architecture consists of three layers: batch,

serving, and speed. The batch layer combines the collected

data and analyzes big data with Map Reduce. The speed

layer analyzes the real-time data generated during the

analysis time consumed by the batch layer. The serving layer

generates a view that was merged from the results of the

analyses in the batch layer and the speed layer and provides

the analysis service to a user‘s query.The proposed method

is implemented on the Map Reduce platform, which is

suitable for processing big data. This platform executes of

two consecutive functions: first, it identifies meaningful

IFVs between two users from their Twitter messages, and

second, it iteratively merges the IFVs generated in the first

function.

The speed layer executes a spark streaming function to

analyze data generated in real time. The spark streaming

function is identical to the Map Reduce algorithm described

above. In order to merge the results from the batch layer and

the results from the speed layer in the serving layer, the

analysis from the batch layer must be checked to determine

if it was applied to data generated in real time, and any

results that do not overlap with the analysis result from the

speed layer must be merged. To perform this check, generate

a hash key for each item of data so that the results of the

analyses from the batch layer and the speed layer can be

merged without duplication. Just as Hadoop‘s practitioner

uses the md5sum hash function to distinguish keys, use the

hash function to create a unique hash key that takes the user

and date values of the tweet data as input.

The results of the speed and batch layers must be

summarized for the servicing layer and prepared for the

user‘s view. Therefore, it is important to be able to

efficiently navigate through vast amount of high-

dimensional data and present results in aa comprehensible

way. This can be achieved using various algorithms, and

because architecture relies on saved data, and propose using

the skyline algorithm to generate the user‘s view based on

the information the user considers important .Objective,

need to get top k tuples from a data stored from the batch

and serving layers which have been pre-processed and saved

into a database from which will receive data.

skyline points here represent data points that have values

among all dimensions that are equal to or greater than the

corresponding values of other points in the dataset and

therefore are not dominated. Therefore, in the context of

social data, the higher a user‘s values in multiple

dimensions, the more important is in the social network. A

naïve method of skyline computation is using nested loops,

whereby each dimension is scanned and each data point is

compared with all remaining data points. This approach is

inefficient, and using a skyline window to compute skyline

points has higher efficiency.

The sort-filter-skyline is another algorithm that applies a

monotonic function to sort tuples in relation to each other

and then minimizing comparison operations by windowing

dominant skyline points together early in the process There

are many other more sophisticated methods for skyline

computations that have been proposed recently; however,

use these algorithms in the experiments to enable

comparability with previously published work. In addition,

the experiments described in the subsequent section showed

that the sort-filter-skyline is the fastest algorithm. The sort-

filter-skyline approach requires data to be sorted by a

monotonic function, and that pre-ordered dataset is then used

in the algorithm. Data points are taken one by one from the

pre-ordered dataset. The first data point is added to the

window because there is no data in the skyline window.

For each subsequent data point in the pre-ordered dataset, a

comparison operation is performed to reveal if such data

point is dominated, in which case it is not added to the

window, whereas if it is not dominated, it is added as a

 International Journal of Computer Sciences and Engineering Vol. 7(6), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 6

skyline point. The size of the skyline window can be varied:

if the window size is relatively bigger than the number of

skyline points in the dataset, then one pass of the whole

dataset will not fill the skyline window and the algorithm

will terminate by outputting the contents of the skyline. In

the opposite case, if the skyline window is filled before the

rest of the files are loaded to the skyline, and then the

algorithm will output the contents of the skyline window.

The algorithm terminates when all data points have been

visited. The major advantage to this approach is that a

maximum number of data points are discarded and fewer

data points need to be compared with each other.

IV. IMPLEMENTATION

4.1 LAMBDA ARCHITECTURE:

Analyzing real-time data is an important aspect of analyzing

big data. Because social media data is generated in real time

and the volume of generated data is large, an alternative to

the general method of analyzing big data is needed .The

Lambda architecture is a structured methodology for

merging results that includes newly generated real-time

data.The Lambda architecture consists of three layers: batch,

serving, and speed. The batch layer combines the collected

data and analyzes big data with Map Reduce. The speed

layer analyzes the real-time data generated during the

analysis time consumed by the batch layer. The serving layer

generates a view that was merged from the results of the

analyses in the batch layer and the speed layer and provides

the analysis service to a user‘s query.

Fig: Proposed Architecture

The proposed method is implemented on the MapReduce

platform, which is suitable for processing bigdata. This

platform executes of two consecutive functions: first, it

identifies meaningful IFVs between two users from their

Twitter messages, and second, it iteratively merges the IFVs

generated in the first function.Algorithm1 is implemented in

MapReduce to extract1-lengthIFVs.The mapper class of

algorithm 1 extracts all the users included in the given tweet

data, and the reduce class outputs the IFV that satisfies the

threshold among the 1-length IFV extracted from the mapper

class as the final result. Algorithm 2 is the main algorithm

that finds and merges matching IFVs among the (n−1)-

length IFVs extracted from the previous stage. The mapper

class of algorithm 2 distinguishes (n-1)-length IFV by key

and value. For example, if the 2-length IFV consisting of a,

b, and c is an input to the mapper class, then it passes the

intermediate result, with ab and bc as keys, to the reduce

class. The reduce class outputs the 3-length IFV by

concatenating the extracts from different positions using

delimiters to see where the intermediate results are extracted.

The speed layer executes a spark streaming function to

analyze data generated in real-time. In order to merge the

results from the batch layer and the results from the speed

layer in the serving layer, the analysis from the batch layer

must be checked to determine if it was applied to data

generated in real time, and any results that do not overlap

with the analysis result from the speed layer must be

merged. To perform this check, generate a hash key for each

item of data so that the results of the analyses from the batch

layer and the speed layer can be merged without duplication.

Just as Hadoop‘s partitioner uses the hash function to

distinguish keys, use the hash function to create a unique

hash key that the user and date values of the tweet data as

input.

ALGORITHM 1:

1: class MAPPER

2: method MAP(docid a, DB D)

 3: d ←D.Tweet

4: for all term t ∈Tweet d do

5: [u1,u2,...]=Extract user(t)

6: if (Retweet)then

7: EMIT(pair(u2, u1), count 1)

8: else

9: EMIT(pair(u1, u2), count 1)

1: class REDUCER

2: method REDUCE(pair(u1, u2), counts [c1,c2,...])

 3: sum←0

4: for all count c∈counts [c1,c2,...] do

5: sum←sum+c

6: if sum > support.THRESHOLD then

 7: EMIT(pair(u1, u2), count sum)

ALGORITHM 2:

1: class MAPPER

2: methodMAP(Intermediate DB D)

3: [u1,u2]←D.directIFV

4: EMIT(u2, pair(‗A‘+k,u1, u2))

5: EMIT(u1, pair(‗B‘+k,u1, u2))

1: class REDUCER

2: method REDUCE(uk, pair[(k1, u1, u2), (k2, u1, u2),...])

3: LA ← new LISTARRAY, LB ← new LISTARRAY

4: for all pair(k,u1,u2) ∈ pairs [(k1,u1,u2),(k2,u1,u2),...] do

5: if (STARTWITH(k)=‗A‘)then

6: LA ←pair (u1,u2)

7: else if(STARTWITH(k)=‗B‘)then

 International Journal of Computer Sciences and Engineering Vol. 7(6), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 7

8: LB ←pair (u1,u2)

9: if (LA 6=EMPTY) AND (LB 6=EMPTY) then

10: for all pair(u1.A,u2.A) ∈LA do

11: for all pair(u1.B,u2.B) ∈LB do

12: EMIT(pair(u1.A,u2.A,u2.B), pair(k.B,t.FW))

4.2 SKYLINE ALGORITHM:

The results of the speed and batch layers must be

summarized for the servicing layer and prepared for the

user‘s view. Therefore, it is important to be able to

efficiently navigate through vast amount of high-

dimensional data and present results in aa comprehensible

way. This can be achieved using various algorithms, and

because architecture relies on saved data, propose using the

skyline algorithm to generate the user‘s view based on the

information the user considers important .Objective, will

need to get top k tuples from a data stored from the batch

and serving layers which have been pre-processed and saved

into a database from which will receive data. Skyline points

here represent data points that have values among all

dimensions that are equal to or greater than the

corresponding values of other points in the dataset and

therefore are not dominated. Therefore, in the context of

social data, the higher a user‘s values in multiple

dimensions, the more important in the social network. A

naïve method of skyline computation is using nested loops,

whereby each dimension is scanned and each data point is

compared with all remaining data points. This approach is

inefficient, and using a skyline window to compute skyline

points has higher efficiency.

The sort-filter-skyline is another algorithm that applies a

monotonic function to sort tuples in relation to each other

and then minimizing comparison operations by windowing

dominant skyline points together early in the process There

are many other more sophisticated methods for skyline

computations that have been proposed recently; however,

use these algorithms in experiments to enable comparability

with previously published work. In addition, the experiments

described in the subsequent section showed that the sort-

filter-skyline is the fastest algorithm. The sort-filter-skyline

approach requires data to be sorted by a monotonic function,

and that pre-ordered dataset is then used in the algorithm.

Data points are taken one by one from the pre-ordered

dataset. The first data point is added to the window because

there is no data in the skyline window.

For each subsequent data point in the pre-ordered dataset, a

comparison operation is performed to reveal if such data

point is dominated, in which case it is not added to the

window, whereas if it is not dominated, it is added as a

skyline point. The size of the skyline window can be varied:

if the window size is relatively bigger than the number of

skyline points in the dataset, then one pass of the whole

dataset will not fill the skyline window and the algorithm

will terminate by outputting the contents of the skyline. In

the opposite case, if the skyline window is filled before the

rest of the files are loaded to the skyline, then the algorithm

will output the contents of the skyline window. The

algorithm terminates when all data points have been visited.

The major advantage to this approach is that a maximum

number of data points are discarded and fewer data points

need to be compared with each other.

ALGORITHM:

1. Input: Result of speed and batch layers in the

form of sorted dataset D.

2. Output: A set of skyline points of dataset D.

3. not completed = true

4. I = getiterator (heap)

5. not completed = false

6. while (has_data(I,d)) do

7. if (―I is not dominated‖) then

8. if(―skyline window is full‖) then

9. not completed=true

10. break

11. else

 ―add d to skyline‖

12. if(not completed) then

13. F=open_new_file_(next_iteration)

14. write (F,d)

15.while(has_data(F,d)) do

16. if(―d not dominated‖) then

17. write(F,d)

18. Iterator=next_iteration

19.‖ send skyline_window data to output‖

V. ANALYSIS OF METHODOLOGY

The proposed method factored out the quantifiable attributes

from the dataset of the batch and speed processes, which

resulted in five attributes or dimensions that were taken as

the basis of calculations, with approximately 150K tuples.

Experiments were done on algorithms including naïve, top k,

block-nested-loops (BNL), and sortfilter-skyline (SFS), and

they were implemented in Java.Based on the experimental

results from the batch and speed layers of Lambda-based

architecture system, the SFS method performed best and

required the least time to compute the skyline. The BNL

algorithm was the next most efficient for higher dimensions;

the BNL algorithm also outperformed the SFS in some

dimensions because the former algorithm does not require

data to be ordered by a monotonic function as does SFS.

Therefore, SFS is slightly limited in lower dimensions due to

the extra computational time required for monotone scoring

function and sorting algorithm. However, with more

dimensions and tuples added into the computation, SFS

performs faster than other algorithms, as was expected. The

naïve method was the slowest, which was also expected

because the naïve method compares each tuple with each

other tuple without maintaining the candidate window in

main memory like BNL or SFS.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 8

Overall, skyline computations implemented here in the batch

and layer system, are useful tools in the analysis of social

data. Skyline algorithms are relatively fast and can

efficiently service system users by providing them necessary

information in the form of nodes defined to be the most

active and influential in social web graph. Therefore, in

conjunction with a skyline algorithm, particularly SFS

algorithm, the proposed system provides an important tool

for data analysis of social media, which is an emerging need

for many practitioners in the field.

VI. CONCLUSION AND FUTURE WORK

The paper proposes a system that can collect real-time social

media data and monitor the flow of information distributed

in the social network. The proposed system is based on a

Lambda architecture that includes measures to quantify the

flow of information circulated in social networks and

enhance the real-time analysis capability of big data.

Lambda architecture can collect and analyze social media

data in real time, including a means to quantify social media

data in terms of information flow and an algorithm to extract

the information flow path. Data processing architecture

designed to handle big data using both batch and stream

processing methods. The sort-filter-skyline approach

requires data to be sorted by a monotonic function, and that

pre-ordered dataset is then used in the algorithm. Data points

are taken one by one from the pre-ordered dataset. The first

data point is added to the window because there is no data in

the skyline window. For each subsequent data point in the

pre-ordered dataset, a comparison operation is performed to

reveal if such data point is dominated, in which case it is not

added to the window, whereas if it is not dominated, it is

added as a skyline point. The size of the skyline window can

be varied: if the window size is relatively bigger than the

number of skyline points in the dataset, then one pass of the

whole dataset will not fill the skyline window and the

algorithm will terminate by outputting the contents of the

skyline. In the opposite case, if the skyline window is filled

before the rest of the files are loaded to the skyline, then the

algorithm will output the contents of the skyline window.

The algorithm terminates when all data points have been

visited. The major advantage is that a maximum number of

data points are discarded and fewer data points need to be

compared with each other. Skyline algorithm based on the

pre-sorting, that is general for use with many skyline

queries, efficient and well behaved in a relational sorting.

SFS is a realistic algorithm for implementation of skyline in

realistic engines. In addition, an improved skyline algorithm

to enable quick responses to user queries, which an

important function of the system. The performance of the

proposed system is validated experimentally. The above

method works by monitoring the flow of information in

social networks using information flow vectors extracted

from social media data .In future the solution should be

implemented with more accuracy and the time complexity of

skyline algorithm in existing method is high.

REFERENCES

[1] T. Hale. How Much Data Does the World Generate Every Minute?

Accessed: Dec. 22, 2017.

[2] D. Boyd and K. Crawford, ‗‗Critical questions for big data:
Provocations for a cultural, technological, and scholarly

phenomenon,‘‘ Inf.,Commun . Soc., vol. 15, no. 5, pp. 662–679, 2012.

[3] L. Palen and S. Vieweg, ‗‗the emergence of online widescale interaction
in unexpected Events: Assistance, alliance & retreat,‘‘ in Proc. ACM

Conf. Comput. Supported Cooperat.Work. 2008, pp. 117–126.

[4] M. Taddicken, ‗‗the people‘s choice: How the voter makes up his mind
in a presidential campaign,‘‘ in Schlüsselwerke der

Medienwirkungsforschung. Wiesbaden, Germany: Springer, 2016, pp.

25–36.
[5] M. Cha, F. Benevenuto, H. Haddadi, and K. Gummadi,‗‗The world of

connection and Information flow in twitter‘‘ IEEE Trans. Syst., Man,

Cybern.A, Syst., Humans, vol. 42, no.4pp.991-1998.
[6] N. Marz and J. Warren, Big Data: Principles and Best Practices of

Scalable realtime data systems. Shelter Island, NY, USA: Manning

Publications, 2015.
[7] J. Scott, Social Network Analysis. Thousand Oaks, CA, USA: Sage,

2017.

[8] M. Kuramochi and G. Karypis, ‗‗An efficient algorithm for discovering
frequent subgraphs,‘‘ IEEE Trans. Knowl. Data Eng., vol. 16, no. 9,

pp. 1038–1051, Sep. 2004.

[9] X. Yan and J. Han, ‗‗gSpan: Graph-based substructure pattern mining,‘‘
in Proc. IEEE Int. Conf. Data Mining, Dec. 2002, pp. 721–724.

[10] L. B. Holder, D. J. Cook, and S. Djoko, ‗‗Substructure discovery in the
SUBDUE system,‘‘ in Proc. KDD Workshop, 1994, pp. 169–180.

[11] F. Ramsey and D. Schafer, The Statistical Sleuth: A Course in Methods

of Data Analysis. Boston, MA, USA: Cengage Learning, 2012.
[12] T. Lappas, K. Liu, and E. Terzi, ‗‗Finding a team of experts in social

networks,‘‘ in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining, 2009, pp. 467–476.
[13] J. Xu and H. Chen, ‗‗Criminal network analysis and visualization,‘‘

Commun.ACM, vol. 48, no. 6, pp. 100–107, 2005.

[14] M. A. Bhuiyan and M. Al Hasan, ‗‗An iterative MapReduce based
frequent subgraph mining algorithm,‘‘ IEEE Trans. Knowl. Data Eng.,

vol. 27, no. 3, pp. 608–620, Mar. 2015.

[15] A. Cuzzocrea, F. Jiang, and C. K. Leung, ‗‗Frequent subgraph mining
from streams of linked graph structured data,‘‘ in Proc. EDBT/ICDT

Workshops, 2015, pp. 237–244.

[16] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, ‗‗Network
information flow,‘‘ IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–

1216, Jul. 2000.

[17] S. Borzsony, D. Kossmann, and K. Stocker, ‗‗The Skyline operator,‘‘
in Proc. 17th Int. Conf. Data Eng., 2001, pp. 421–430.

[18] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, ‗‗Skyline with

presorting,‘‘ in Proc. 19th Int. Conf. Data Eng., 2003, pp. 717–719.
[19] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, ‗‗Skyline with

presorting: Theory and optimizations,‘‘ in Proc. Intell. Inf. Process.

Web Mining, 2005, pp. 595–604.
[20] I. Bartolini, P. Ciaccia, and M. Patella, ‗‗SaLSa: Computing the skyline

without scanning the whole sky,‘‘ in Proc. 15th ACM Int. Conf. Inf.

Knowl. Manage., 2006, pp. 405–414.
[21] A. Vlachou, C. Doulkeridis, and Y. Kotidis, ‗‗Angle-based space

partitioning for efficient parallel skyline computation,‘‘ in Proc. Int.

Conf. Manage. Data, 2008, pp. 227–238. 23826 VOLUME 6, 2018.

