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Abstract: Social media are websites and computer programs that enable users to create and share information on the internet 

using a computer or a mobile phone. Large quantities of data are generated by social networks in seconds. The information 

which is generated in a social network is transformed into a flow by the subjects who produce, transmit, and consume it. This 

flow can be represented as a very complicated directional graph. In this graph each subject is represented as a node, and the 

flow of information is represented as a directed edge. In this paper, we introduce a method of dividing this complex directional 

graph by user and quantifying the flow of information between and among users based on information flow vectors. We 

propose a system that can monitor the flow of information in social networks using information flow vectors extracted from 

social media data. We also introduce an improved skyline algorithm that can respond quickly to a user‘s various queries. 
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I. INTRODUCTION 

 

Social media generates large amounts of data every day. For 

example, 456,000 tweets are generated daily on twitter. Such 

massive amounts of data from social media are measured in 

petabytes. Information propagation in online social networks 

like Twitter is unique in that word-of-mouth propagation and 

traditional media sources coexist.  A large amount of data 

from twitter to compare the relative roles different types of 

users play in information flow. Twitter as a means to 

conduct research on longstanding social science research 

questions in a computational framework. [1] 

 

In the field of big data, analyzing which users of social 

media generate what information and how broadly the data 

are disseminated is especially challenging because the data 

are generated at a high and data structures are 

diverse.Identifying the relationships among information 

bearers, producers, and consumers offers a sociological 

approach to analyzing the interaction patterns among social 

actors to elucidate social structures via instruments such as 

graphs.A frequent subgraph mining algorithm called FSM-H 

which uses an iterative MapReduce based framework. FSM-

H is complete as it returns all the frequent subgraphs for a 

given user-defined support, and it is efficient as it applies all 

the optimizations that the latest FSM algorithms adopt. 

Experiments with real life and large synthetic datasets 

validate the effectiveness of FSM-H for mining frequent 

subgraphs from large graph datasets. [2]  

The systems for tracking and monitoring the flow of 

information in social networks, measuring the flow of 

information contained in social data, and informing users of 

information flows. A new class of problems called network 

information flow which is inspired by computer network 

applications. Consider a point-to-point communication 

network on which a number of information sources are to be 

mulitcast to certain sets of destinations. In existing computer 

networks, each node functions as a switch in the sense that it 

either relays information from an input link to an output link, 

or it replicates information received from an input link and 

sends it to a certain set of output links. From the 

information-theoretic point of view, there is no reason to 

restrict the function of a node to that of a switch. Rather, a 

node can function as an encoder in the sense that it receives 

information from all the input links, encodes, and sends 

information to all the output links. [3] 

 

Data from Twitter is used to extract and measure 

information flows.The first system is based on a Lambda 

architecture that can collect and analyze social media data in 

real time, including a means to quantify social media data in 

terms of information flow and an algorithm to extract the 

information flow path. Many algorithms have been proposed 

to solve the task.frequent itemset discovery algorithms have 

been used to find interesting patterns in various application 

areas. However, as data mining techniques are being 

increasingly applied to non-traditional domains, existing 

frequent pattern discovery approaches cannot be used. The 

transaction framework that is assumed by these algorithms 
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cannot be used to effectively model the data sets in these 

domains. An alternate way of modeling the objects in these 

data sets is to represent those using graphs. Within that 

model, one way of formulating the frequent pattern 

discovery problem is that of discovering subgraphs that 

occur frequently over the entire set of graphs. An efficient 

algorithm called FSG, for finding all frequent subgraphs in 

large graph data sets and experimentally evaluates the 

performance of FSG using a variety of real and synthetic 

data sets. [4] 

 

The Lambda architecture enables the reconstruction of a 

bigdata system as a series of layers: the speed layer, the 

serving layer, and the deployment layer.  Each layer is 

characterized by a subset of properties and is based on the 

functionality provided by the layers below it. The second 

system is a skyline algorithm used to respond quickly to 

various queries from system users who want to monitor 

information. Skyline SFS algorithm based on the pre-sorting, 

that is general for use with many skyline query, efficient and 

well behaved in a relational sorting. SFS is a realistic 

algorithm for implementation of skyline in realistic engines. 

There are numerous improvements that can be made to SFS, 

and pursuing better skyline algorithm based upon SFS.  

 

II. LITERARTURE SURVEY 

 

[1].M. Cha, F. Benevenuto, H. Haddadi, and K. 

Gummadi, ‘‘the world of connections and information 

flow in Twitter,’’ IEEE Trans. Syst., Man, Cybern. A, 

Syst., Humans, vol. 42, no. 4, pp. 991–998, Jul. 2012. 

 

Information propagation in online social networks like 

Twitter is unique in that word-of-mouth propagation and 

traditional media sources coexist. Collect a large amount of 

data from twitter to compare the relative roles different types 

of users play in information flow Using empirical data on the 

spread of news about major international headlines as well 

as minor topics and investigate the relative roles of three 

types of information spreaders: 1) mass media sources like 

BBC; 2) grassroots, consisting of ordinary users; and 3) 

evangelists, consisting of opinion leaders, politicians, 

celebrities, and local businesses. Mass media sources play a 

vital role in reaching the majority of the audience in any 

major topics. Evangelists, however, introduce both major 

and minor topics to audiences who are further away from the 

core of the network and would otherwise be unreachable. 

Grassroots users are relatively passive in helping spread the 

news, although they account for the 98% of the network. 

Results bring insights into what contributes to rapid 

information propagation at different levels of topic 

popularity, which believe are useful to the designers of 

social search and recommendation engines.  

 

The impressive growth of social networking services has 

made personal contacts and relationships more visible and 

quantifiable than ever before. These services have also 

become important vehicles for news and channels of 

influence.  Twitter has emerged as a popular medium for 

discussing noteworthy events that are happening around the 

world.Twitter as a means to conduct research on 

longstanding social science research questions in a 

computational framework. Twitter as a means to conduct 

research on longstanding social science research questions in 

a computational framework. The focus on the relative roles 

different users  play on information flow in order to 

understand why certain trends or news are adopted more 

widely than others. For the study, crawled the Twitter 

network and gathered all public tweets and follow links. In 

total, 2 billion follow relationships among 54 million users 

who produced a total of 1.7 billion tweets. To the best of our 

knowledge, is the largest data gathered and analysed from 

the Twitter network. 

 

By analyzing the structure of the connection network and the 

distribution of links,  a broad division that yields three 

distinct user groups based on in-degree: the extremely well-

connected users with more than 100 000 followers, the least 

connected masses with no more than 200 followers, and the 

remaining well-connected small group of users. Our division 

of users is based on the definition of different user roles 

from the theory on information flow : mass media, who can 

reach a large audience, but do not follow others actively; 

grassroots, who are not followed by a large number of users, 

but have a huge presence in the network; and evangelists, 

who are socially connected and actively take part in 

information flow like opinion leaders.   

 

Twitter administrators allow us to gather data from their site 

at scale. They graciously white-listed the IP address range 

containing 58 of our servers, which allow dust to gather 

large amounts of data. The Twitter API is to gather two 

pieces of information for each Twitter user: 1) profile data 

including information about the user‘s social links, i.e., other 

Twitter users she is following; and 2) all tweets ever posted 

by the user including the time when tweets were posted. 

 

The first extensive analysis of a near complete data set 

obtained from the micro blogging service Twitter. 

Acquisition of such a rich data set enabled us to identify the 

relationship among distinct groups of users—mass media, 

evangelists, and grassroots and the roles that they play in 

viral spreading of political and social news messages. The 

connectivity trends between users differentiate Twitter, away 

from conventional social networks, toward a collaborative 

gossip and news publishing tool and makes Twitter an ideal 

medium for studying the relative roles these distinct user 

groups play. The Twitter network exhibits topological 

features that distinguish it from other social networks; it 

stands out as a broadcasting system encompassing users of 

vastly different abilities to propagate and receive 

information. 
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[2].M.A. Bhuiyanan M. AlHasan, ”An iterative Map 

Reduce based frequent subgraph mining algorithm,” 

IEEE Trans. Knowl. Data Eng., vol. 27, no. 3, pp. 608–

620, Mar. 2015. 

 

Over the years, many algorithms have been proposed to 

solve task. FSM- algorithms assume that the data structure 

of the mining task is small enough to fit in the main memory 

of a computer. However, as the real-world graph data grows, 

both in size and quantity, such an assumption does not hold 

any longer. To overcome the graph database-centric methods 

have been proposed in recent years for solving FSM; 

however, a distributed solution using MapReduce paradigm 

has not been explored extensively. Since MapReduce is 

becoming the de-facto paradigm for computation on massive 

data, an efficient FSM algorithm is a paradigm of huge 

demand.  A frequent subgraph mining algorithm called 

FSM-H which uses an iterative MapReduce based 

framework. FSM-H is complete as it returns all the frequent 

subgraphs for a given user-defined support, and it is efficient 

as it applies all the optimizations that the latest FSM 

algorithms adopt. Experiments with real life and large 

synthetic datasets validate the effectiveness of FSM-H for 

mining frequent subgraphs from large graph datasets. 

 

Solving the task of frequent subgraph mining on a 

distributed platform like MapReduce is challenging for 

various reasons. First, an FSM method computes the support 

of a candidate subgraph pattern over the entire set of input 

graphs in a graph dataset. In a distributed platform, if the 

input graphs are partitioned over various worker nodes, the 

local support of a subgraph in the respective partition at a 

worker node is not much useful for deciding whether the 

given subgraph is frequent or not. Also, local support of a 

subgraph in various nodes cannot be aggregated in a global 

data structure, because, MapReduce programming model 

does not provide any built-in mechanism for communicating 

with a global state. Also, the support computation cannot be 

delayed arbitrarily, as following Apriori principle future 

candidate frequent patterns1 can be generated only from a 

frequent pattern. 

 

FSM-H is designed as an iterative MapReduce process. At 

the beginning of iteration i, FSM-H has at its disposal all the 

frequent patterns of size i-1 (Fi-1), and at the end of iteration 

i, it returns all the frequent patterns of size i,(Fi). The size of 

a graph is equal to the number ofedges it contains. For a 

mining task if F is the set of frequent patterns, FSM-H runs 

for a total of l iterations, where l is equal to the size of the 

largest graph in F. 

 

The iterative Map Reduce based frequent sub graph mining 

algorithm, called FSMH. It shows the performance of FSM-

H over real life and large synthetic datasets for various 

system and input configurations.  

[3]. R. Ahlswede, N. CAI, S.-Y. R. Li, and R. W. Yeung, 

‘‘Network information flow,’’ IEEE Trans. Inf. Theory, 

vol. 46, no. 4, pp. 1204–1216, Jul. 2000. 

 

A new class of problems called network information flow 

which is inspired by computer network applications. 

Consider a point-to-point communication network on which 

a number of information sources are to be mulitcast to 

certain sets of destinations.  Assume that the information 

sources are mutually independent. The problem is to 

characterize the admissible coding rate region.  Result can 

be regarded as the Max-flow Min-cut Theorem for network 

information flow.  

 

In existing computer networks, each node functions as a 

switch in the sense that it either relays information from an 

input link to an output link, or it replicates information 

received from an input link and sends it to a certain set of 

output links. From the information-theoretic point of view, 

there is no reason to restrict the function of a node to that of 

a switch. Rather, a node can function as an encoder in the 

sense that it receives information from all the input links, 

encodes, and sends information to all the output links. From 

the point of view, a switch is a special case of an encoder. 

 

In the classical information theory for point-to-point 

communication, if two information sources are independent, 

optimality can be achieved (asymptotically) by coding the 

sources separately. The coding method is referred to as 

coding by superposition . If the coding method is always 

optimal for multisource network information flow problems, 

then in order to solve the problem, only need to solve the sub 

problems for the individual information sources separately, 

where each of these sub problems is a single-source 

problem. However, the multisource problem is not a trivial 

extension of the single-source problem, and it is extremely 

difficult in general.  

 

A theorem which characterizes the admissible coding rate 

region for the single-source problem.. Result can be 

regarded as the Max-flow Min-cut Theorem for network 

information flow and discussion is based on a class of block 

codes called -codes. Therefore, it is possible, though not 

likely, that the result can be enhanced by considering more 

general coding schemes. Nevertheless, prove in the 

Appendix that probabilistic coding does not improve 

performance. 

 The problem with one information source, and have 

obtained a simple characterization of the admissible coding 

rate region. Our result can be regarded as the Max-flow Min-

cut Theorem for network information flow.  

 

[4].M. Kuramochi and G. Karypis, ‘‘an efficient 

algorithm for discovering frequent subgraphs,’’ IEEE 

Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1038–1051, 

Sep. 2004.  
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Over the years, frequent itemset discovery algorithms have 

been used to find interesting patterns in various application 

areas. However, as data mining techniques are being 

increasingly applied to non-traditional domains, existing 

frequent pattern discovery approaches cannot be used. The 

transaction framework that is assumed by these algorithms 

cannot be used to effectively model the data sets in these 

domains. An alternate way of modeling the objects in these 

data sets is to represent those using graphs. Within that 

model, one way of formulating the frequent pattern 

discovery problem is that of discovering subgraphs that 

occur frequently over the entire set of graphs. An efficient 

algorithm called FSG, for finding all frequent subgraphs in 

large graph data sets and experimentally evaluates the 

performance of FSG using a variety of real and synthetic 

data sets. Results show that despite the underlying 

complexity associated with frequent subgraph discovery, 

FSG is effective in finding all frequently occurring 

subgraphs in data sets containing more than 200,000 graph 

transactions and scales linearly with respect to the size of the 

data set. 

 

Developing algorithms that discover all frequently occurring 

subgraphs in a large graph data set is particularly 

challenging and computationally intensive, as graph and 

subgraph isomorphism‘s play a key role throughout the 

computations.  A new algorithm, called FSG, for finding all 

connected subgraphs that appear frequently in a large graph 

data set and finds frequent sub graphs using the level-by-

level expansion strategy adopted by Apriori. 

 

There are two key aspects in the above problem statement. 

Motivated by the fact that the resulting frequent subgraphs 

will be encapsulating relations (or edges) between some of 

the entities (or vertices) of various objects. Within the 

context, connectivity is a natural property of frequent 

patterns. An additional benefit of the restriction is that it 

reduces the complexity of the problem, as need not to 

consider disconnected combinations of frequent connected 

subgraphs. Second, allows the graphs to be labelled, and 

discovered frequent patterns can contain multiple vertices 

and edges carrying the same label. It greatly increases  

modeling ability, as it allows us to find a pattern involving 

multiple occurrences of the same entities and relations, but 

at the same time makes the problem of finding such 

frequently occurring subgraphs nontrivial. Due to such 

cases, any frequent subgraph discovery algorithm needs to 

correctly identify how a particular subgraph maps to the 

vertices and edges of each graph transaction, that can only 

be done by solving many instances of the subgraph 

isomorphism problem, which has been shown to be in NP-

complete . 

 

The FSG algorithm for finding frequently occurring 

subgraphs in large graph data sets that can be used to 

discover recurrent patterns in scientific, spatial, and 

relational data sets. Such patterns can play an important role 

for understanding the nature of these data sets and can be 

used as input to other data-mining tasks detailed 

experimental evaluation shows that FSG can scale 

reasonably well to very large graph data sets provided that 

the graphs contain a sufficiently many different labels of 

edges and vertices. Key elements to FSG‘s computational 

scalability are the highly efficient canonical labelling 

algorithm and candidate generation scheme and its use of a 

TID list-based approach for frequency counting. These three 

features combined allow FSG to uniquely identify the 

various generated subgraphs, generate candidate patterns 

with limited degree of redundancy, and to quickly prune 

most of the infrequent subgraphs without having to resort to 

computationally expensive graph and subgraph isomorphism 

computations. Furthermore, presented and evaluated a 

database partitioning-based approach that substantially 

reduces FSG‘s memory requirement for storing TID lists 

with only a moderate increase in runtime. 

[5].X. Yan and J. Han, ‗‗span: Graph-based substructure 

pattern mining,‘‘ in Proc. IEEE Int. Conf. Data Mining, Dec. 

2002, pp. 721–724. 

 

The new approach for frequent graph-based pattern mining 

in graph datasets and propose a novel a algorithm called 

gSpan (graph-based, substructure pattern mining), which 

discovers frequent substructures without candidate 

generation & a builds a new lexicographic order among 

graphs, and maps each graph to a unique mini- mum DFS 

code as its canonical label. Based on lexicographic order & 

adopts the depth-first search strategy to mine efficiently. 

Performance study shows that gSpan substantially 

outperforms previous algorithm, sometimes by an order of 

magnitude. 

 

Frequent substructure pattern mining has been an emerging 

data mining problem with many scientific and com- metrical 

applications.As a general data structure, labelled graph can 

be used to model much complicated sub- structure patterns 

among data. Two techniques, DFS lexicographic order and 

minimum DFS code, are introduced here, which form a 

novel canonical labelling system to support DFS search. 

GSpan discovers all the frequent subgraphs without 

candidate generation and false positives pruning. It 

combines the growing and checking of frequent subgraphs 

into one procedure, thus accelerates the mining process. 

 

The gSpan uses a sparse adjacency list representation to 

store graphs. Subgraph mining stops searching either when 

the support of a graph is less than minSup, or its code is not 

a minimum code, which means the graph and all its 

descendants have been generated and discovered before. 

A new lexicographic ordering system and developed a 

depth-first search-based mining algorithm gSpan for 

efficient mining of frequent subgraphs in large graph 

database. Performance study shows that gSpan outperforms 
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FSG by an order of magnitude and is capable to mine large 

frequent subgraphs in a bigger graph set with lower 

minimum supports than previous studies. 

 

The problem with one information source, and have obtained 

a simple characterization of the admissible coding rate 

region.Result can be regarded as the Max-flow Min-cut 

Theorem for network information flow.  

 

2.1 OPEN ISSUES OF LITERATURE SURVEY 
1. Frequent sub graph mining algorithm provides a 

distributed solution using MapReduce paradigm has not 

been explored extensively.Since MapReduce is becoming 

the de-facto paradigm for computation on massive data. 

2. Frequent item set discovery algorithms 

providespartitioning-based approach that substantially 

reduces FSG‘s memory requirement for storing lists with 

only a moderate increase in runtime but not high increase in 

runtime. 

3. The connectivity trends between users differentiate 

Twitter, away from conventional social networks; toward a 

collaborative gossip.This makes twitter an ideal medium for 

studying the relative roles these distinct user groups play. 

4. Frequent substructure pattern mining has been an 

emerging data mining problem with many scientific and 

com- metrical applications and does not model complicated 

sub- structure patterns among data 

 

III. METHODOLOGY 

 

Analyzing real-time data is an important aspect of analyzing 

big data. Because social media data is generated in real time 

and the volume of generated data is large, an alternative to 

the general method of analyzing big data is needed .The 

Lambda architecture is a structured methodology for 

merging results that includes newly generated real-time 

data.The Lambda architecture consists of three layers: batch, 

serving, and speed. The batch layer combines the collected 

data and analyzes big data with Map Reduce. The speed 

layer analyzes the real-time data generated during the 

analysis time consumed by the batch layer. The serving layer 

generates a view that was merged from the results of the 

analyses in the batch layer and the speed layer and provides 

the analysis service to a user‘s query.The proposed method 

is implemented on the Map Reduce platform, which is 

suitable for processing big data. This platform executes of 

two consecutive functions: first, it identifies meaningful 

IFVs between two users from their Twitter messages, and 

second, it iteratively merges the IFVs generated in the first 

function. 

 

The speed layer executes a spark streaming function to 

analyze data generated in real time. The spark streaming 

function is identical to the Map Reduce algorithm described 

above. In order to merge the results from the batch layer and 

the results from the speed layer in the serving layer, the 

analysis from the batch layer must be checked to determine 

if it was applied to data generated in real time, and any 

results that do not overlap with the analysis result from the 

speed layer must be merged. To perform this check, generate 

a hash key for each item of data so that the results of the 

analyses from the batch layer and the speed layer can be 

merged without duplication. Just as Hadoop‘s practitioner 

uses the md5sum hash function to distinguish keys, use the 

hash function to create a unique hash key that takes the user 

and date values of the tweet data as input. 

 

The results of the speed and batch layers must be 

summarized for the servicing layer and prepared for the 

user‘s view. Therefore, it is important to be able to 

efficiently navigate through vast amount of high-

dimensional data and present results in aa comprehensible 

way. This can be achieved using various algorithms, and 

because architecture relies on saved data, and propose using 

the skyline algorithm to generate the user‘s view based on 

the information the user considers important .Objective, 

need to get top k tuples from a data stored from the batch 

and serving layers which have been pre-processed and saved 

into a database from which will receive data. 

 

skyline points here represent data points that have values 

among all dimensions that are equal to or greater than the 

corresponding values of other points in the dataset and 

therefore are not dominated. Therefore, in the context of 

social data, the higher a user‘s values in multiple 

dimensions, the more important  is in the social network. A 

naïve method of skyline computation is using nested loops, 

whereby each dimension is scanned and each data point is 

compared with all remaining data points. This approach is 

inefficient, and using a skyline window to compute skyline 

points has higher efficiency. 

 

The sort-filter-skyline is another algorithm that applies a 

monotonic function to sort tuples in relation to each other 

and then minimizing comparison operations by windowing 

dominant skyline points together early in the process There 

are many other more sophisticated methods for skyline 

computations that have been proposed recently; however, 

use these algorithms in the experiments to enable 

comparability with previously published work. In addition, 

the experiments described in the subsequent section showed 

that the sort-filter-skyline is the fastest algorithm. The sort-

filter-skyline approach requires data to be sorted by a 

monotonic function, and that pre-ordered dataset is then used 

in the algorithm. Data points are taken one by one from the 

pre-ordered dataset. The first data point is added to the 

window because there is no data in the skyline window. 

 

For each subsequent data point in the pre-ordered dataset, a 

comparison operation is performed to reveal if such data 

point is dominated, in which case it is not added to the 

window, whereas if it is not dominated, it is added as a 
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skyline point. The size of the skyline window can be varied: 

if the window size is relatively bigger than the number of 

skyline points in the dataset, then one pass of the whole 

dataset will not fill the skyline window and the algorithm 

will terminate by outputting the contents of the skyline. In 

the opposite case, if the skyline window is filled before the 

rest of the files are loaded to the skyline, and then the 

algorithm will output the contents of the skyline window. 

The algorithm terminates when all data points have been 

visited. The major advantage to this approach is that a 

maximum number of data points are discarded and fewer 

data points need to be compared with each other. 

 

IV.  IMPLEMENTATION 

 

4.1 LAMBDA ARCHITECTURE: 

Analyzing real-time data is an important aspect of analyzing 

big data. Because social media data is generated in real time 

and the volume of generated data is large, an alternative to 

the general method of analyzing big data is needed .The 

Lambda architecture is a structured methodology for 

merging results that includes newly generated real-time 

data.The Lambda architecture consists of three layers: batch, 

serving, and speed. The batch layer combines the collected 

data and analyzes big data with Map Reduce. The speed 

layer analyzes the real-time data generated during the 

analysis time consumed by the batch layer. The serving layer 

generates a view that was merged from the results of the 

analyses in the batch layer and the speed layer and provides 

the analysis service to a user‘s query. 

 
Fig: Proposed Architecture 

 

The proposed method is implemented on the MapReduce 

platform, which is suitable for processing bigdata. This 

platform executes of two consecutive functions: first, it 

identifies meaningful IFVs between two users from their 

Twitter messages, and second, it iteratively merges the IFVs 

generated in the first function.Algorithm1 is  implemented in 

MapReduce to extract1-lengthIFVs.The mapper class of 

algorithm 1 extracts all the users included in the given tweet 

data, and the reduce class outputs the IFV that satisfies the 

threshold among the 1-length IFV extracted from the mapper 

class as the final result. Algorithm 2 is the main algorithm 

that finds and merges matching IFVs among the (n−1)-

length IFVs extracted from the previous stage. The mapper 

class of algorithm 2 distinguishes (n-1)-length IFV by key 

and value. For example, if the 2-length IFV consisting of a, 

b, and c is an input to the mapper class, then it passes the 

intermediate result, with ab and bc as keys, to the reduce 

class. The reduce class outputs the 3-length IFV by 

concatenating the extracts from different positions using 

delimiters to see where the intermediate results are extracted. 

 

The speed layer executes a spark streaming function to 

analyze data generated in real-time. In order to merge the 

results from the batch layer and the results from the speed 

layer in the serving layer, the analysis from the batch layer 

must be checked to determine if it was applied to data 

generated in real time, and any results that do not overlap 

with the analysis result from the speed layer must be 

merged. To perform this check, generate a hash key for each 

item of data so that the results of the analyses from the batch 

layer and the speed layer can be merged without duplication. 

Just as Hadoop‘s partitioner uses the hash function to 

distinguish keys, use the hash function to create a unique 

hash key that the user and date values of the tweet data as 

input. 

 

ALGORITHM 1: 

1: class MAPPER  

2: method MAP(docid a, DB D) 

 3: d ←D.Tweet  

4: for all term t ∈Tweet d do  

5: [u1,u2,...]=Extract user(t)  

6: if (Retweet)then 

7: EMIT(pair(u2, u1), count 1)  

8: else  

9: EMIT(pair(u1, u2), count 1)  

1: class REDUCER  

2: method REDUCE(pair(u1, u2), counts [c1,c2,...]) 

 3: sum←0  

4: for all count c∈counts [c1,c2,...] do  

5: sum←sum+c 

6: if sum > support.THRESHOLD then 

 7: EMIT(pair(u1, u2), count sum) 

 

ALGORITHM 2: 

1: class MAPPER 

2: methodMAP(Intermediate DB D)  

3: [u1,u2]←D.directIFV 

4: EMIT(u2, pair(‗A‘+k,u1, u2)) 

5: EMIT(u1, pair(‗B‘+k,u1, u2))  

1: class REDUCER 

2: method REDUCE(uk, pair[(k1, u1, u2), (k2, u1, u2),...])  

3: LA ← new LISTARRAY, LB ← new LISTARRAY 

4: for all pair(k,u1,u2) ∈ pairs [(k1,u1,u2),(k2,u1,u2),...] do 

5: if (STARTWITH(k)=‗A‘)then 

6: LA ←pair (u1,u2)  

7: else if(STARTWITH(k)=‗B‘)then  
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8: LB ←pair (u1,u2) 

9: if (LA 6=EMPTY) AND (LB 6=EMPTY) then 

10: for all pair(u1.A,u2.A) ∈LA do  

11: for all pair(u1.B,u2.B) ∈LB do 

12: EMIT(pair(u1.A,u2.A,u2.B), pair(k.B,t.FW)) 

 

4.2 SKYLINE ALGORITHM: 

The results of the speed and batch layers must be 

summarized for the servicing layer and prepared for the 

user‘s view. Therefore, it is important to be able to 

efficiently navigate through vast amount of high-

dimensional data and present results in aa comprehensible 

way. This can be achieved using various algorithms, and 

because architecture relies on saved data, propose using the 

skyline algorithm to generate the user‘s view based on the 

information the user considers important .Objective, will 

need to get top k tuples from a data stored from the batch 

and serving layers which have been pre-processed and saved 

into a database from which will receive data. Skyline points 

here represent data points that have values among all 

dimensions that are equal to or greater than the 

corresponding values of other points in the dataset and 

therefore are not dominated. Therefore, in the context of 

social data, the higher a user‘s values in multiple 

dimensions, the more important in the social network. A 

naïve method of skyline computation is using nested loops, 

whereby each dimension is scanned and each data point is 

compared with all remaining data points. This approach is 

inefficient, and using a skyline window to compute skyline 

points has higher efficiency. 

 

The sort-filter-skyline is another algorithm that applies a 

monotonic function to sort tuples in relation to each other 

and then minimizing comparison operations by windowing 

dominant skyline points together early in the process There 

are many other more sophisticated methods for skyline 

computations that have been proposed recently; however, 

use these algorithms in experiments to enable comparability 

with previously published work. In addition, the experiments 

described in the subsequent section showed that the sort-

filter-skyline is the fastest algorithm. The sort-filter-skyline 

approach requires data to be sorted by a monotonic function, 

and that pre-ordered dataset is then used in the algorithm. 

Data points are taken one by one from the pre-ordered 

dataset. The first data point is added to the window because 

there is no data in the skyline window. 

 

For each subsequent data point in the pre-ordered dataset, a 

comparison operation is performed to reveal if such data 

point is dominated, in which case it is not added to the 

window, whereas if it is not dominated, it is added as a 

skyline point. The size of the skyline window can be varied: 

if the window size is relatively bigger than the number of 

skyline points in the dataset, then one pass of the whole 

dataset will not fill the skyline window and the algorithm 

will terminate by outputting the contents of the skyline. In 

the opposite case, if the skyline window is filled before the 

rest of the files are loaded to the skyline, then the algorithm 

will output the contents of the skyline window. The 

algorithm terminates when all data points have been visited. 

The major advantage to this approach is that a maximum 

number of data points are discarded and fewer data points 

need to be compared with each other. 

 

ALGORITHM: 

1. Input: Result of speed and batch layers in the 

form of sorted dataset D. 

2. Output: A set of skyline points of dataset D. 

3.  not completed = true 

4. I = getiterator (heap) 

5.  not completed = false 

6.  while (has_data(I,d)) do 

7.  if (―I is not dominated‖) then 

8. if(―skyline window is full‖) then 

9.  not completed=true 

10. break 

11. else 

 ―add d to skyline‖ 

12. if(not completed) then 

13. F=open_new_file_(next_iteration) 

14. write (F,d) 

15.while(has_data(F,d)) do 

16. if(―d not dominated‖) then 

17. write(F,d) 

18. Iterator=next_iteration 

19.‖ send skyline_window data to output‖ 

 

V. ANALYSIS OF METHODOLOGY 

 

The proposed method factored out the quantifiable attributes 

from the dataset of the batch and speed processes, which 

resulted in five attributes or dimensions that were taken as 

the basis of calculations, with approximately 150K tuples. 

Experiments were done on algorithms including naïve, top k, 

block-nested-loops (BNL), and sortfilter-skyline (SFS), and 

they were implemented in Java.Based on the experimental 

results from the batch and speed layers of Lambda-based 

architecture system, the SFS method performed best and 

required the least time to compute the skyline. The BNL 

algorithm was the next most efficient for higher dimensions; 

the BNL algorithm also outperformed the SFS in some 

dimensions because the former algorithm does not require 

data to be ordered by a monotonic function as does SFS. 

Therefore, SFS is slightly limited in lower dimensions due to 

the extra computational time required for monotone scoring 

function and sorting algorithm. However, with more 

dimensions and tuples added into the computation, SFS 

performs faster than other algorithms, as was expected. The 

naïve method was the slowest, which was also expected 

because the naïve method compares each tuple with each 

other tuple without maintaining the candidate window in 

main memory like BNL or SFS. 
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Overall, skyline computations implemented here in the batch 

and layer system, are useful tools in the analysis of social 

data. Skyline algorithms are relatively fast and can 

efficiently service system users by providing them necessary 

information in the form of nodes defined to be the most 

active and influential in social web graph. Therefore, in 

conjunction with a skyline algorithm, particularly SFS 

algorithm, the proposed system provides an important tool 

for data analysis of social media, which is an emerging need 

for many practitioners in the field. 

 

VI. CONCLUSION AND FUTURE WORK 

 

The paper proposes a system that can collect real-time social 

media data and monitor the flow of information distributed 

in the social network. The proposed system is based on a 

Lambda architecture that includes measures to quantify the 

flow of information circulated in social networks and 

enhance the real-time analysis capability of big data. 

Lambda architecture can collect and analyze social media 

data in real time, including a means to quantify social media 

data in terms of information flow and an algorithm to extract 

the information flow path. Data processing architecture 

designed to handle big data using both batch and stream 

processing methods. The sort-filter-skyline approach 

requires data to be sorted by a monotonic function, and that 

pre-ordered dataset is then used in the algorithm. Data points 

are taken one by one from the pre-ordered dataset. The first 

data point is added to the window because there is no data in 

the skyline window. For each subsequent data point in the 

pre-ordered dataset, a comparison operation is performed to 

reveal if such data point is dominated, in which case it is not 

added to the window, whereas if it is not dominated, it is 

added as a skyline point. The size of the skyline window can 

be varied: if the window size is relatively bigger than the 

number of skyline points in the dataset, then one pass of the 

whole dataset will not fill the skyline window and the 

algorithm will terminate by outputting the contents of the 

skyline. In the opposite case, if the skyline window is filled 

before the rest of the files are loaded to the skyline, then the 

algorithm will output the contents of the skyline window. 

The algorithm terminates when all data points have been 

visited. The major advantage is that a maximum number of    

data points are discarded and fewer data points need to be 

compared with each other. Skyline algorithm based on the 

pre-sorting, that is general for use with many skyline 

queries, efficient and well behaved in a relational sorting. 

SFS is a realistic algorithm for implementation of skyline in 

realistic engines. In addition, an improved skyline algorithm 

to enable quick responses to user queries, which an 

important function of the system. The performance of the 

proposed system is validated experimentally. The above 

method works by monitoring the flow of information in 

social networks using information flow vectors extracted 

from social media data .In future the solution should be 

implemented with more accuracy and the time complexity of 

skyline algorithm in existing method is high.  
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