
 © 2019, IJCSE All Rights Reserved 296

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue-15, May 2019 E-ISSN: 2347-2693

An Innovative Approachto Perform Software Defect Prediction

Prakash Behera

1*
, Chimaya Dash

2
, R Chandramma

3
, Prakash Behera

3
, Piyush Kumar Pareek

4
,

Aditya Pai H
5

1,2

Dept. of CSE, Claret College, Jalahalli, Bengaluru and Research Scholar, JJTU, Rajasthan, India
3
Dept. of Computer Science and Engineering, VKIT, Bengaluru and Research Scholar - EWIT, VTU Belgaum, India

4
Department of Computer Science and Engineering, EWIT, Bengaluru, India

5
Dept. of Computer Science and Engineering, K.S. Institute of Technology, Bengaluru and Research Scholar, VTU Belgaum,

Bengaluru, India

DOI: https://doi.org/10.26438/ijcse/v7si15.296303 | Available online at: www.ijcseonline.org

Abstract—identifying defective substances from existing software frameworks is an issue of extraordinary significance for

expanding both software quality and the proficiency of software testing related exercises. We present in this paper a novel

methodology for anticipating software defects utilizing fuzzy decision trees. Through the fuzzy methodology we plan to all the

more likely adapt to clamor and loose data. A fuzzy decision tree will be prepared to recognize whether a software module is

defective or not. Two open source software frameworks are utilized for tentatively assessing our methodology. The acquired

outcomes feature that the fuzzy decision tree approach beats the non-fuzzy one on practically all contextual investigations

utilized for assessment. Contrasted with the methodologies utilized in the writing, the fuzzy decision tree classifier is appeared

to be more effective than the greater part of the other machine learning-based classifiers.

Keywords—Software defect prediction,Machine learning,Decision tree, Fuzzy theory.

I. INTRODUCTION

Software quality assurance is a noteworthy issue in the

software designing field and is utilized to guarantee the

software quality. So as to expand the adequacy of quality

assurance and software testing, defect prediction is utilized to

recognize defective modules in an up and coming variant of a

software framework and is helpful for relegating more

exertion for testing and dissecting those modules [1].

The majority of the machine learning based classifiers

existing in the defect prediction writing are administered.

From this point of view, the issue of precisely foreseeing the

defective modules is a hard one, as a result of the imbalanced

idea of the preparation information (the quantity of non-

defects in the preparation information is a lot higher than the

quantity of defects). Along these lines, it is difficult to

prepare a classifier to perceive the defects, when a little

number of defective models were given amid preparing. A

real test in defect prediction is to build the number of

effectively distinguished defects and to limit the quantity of

misclassified defects. Considerably more, it is difficult to

distinguish the applicable software measurements which

would most likely separate among defects and non-defects.

So as to manage the previously mentioned issues, we are

presenting in this paper a managed machine learning strategy

dependent on fuzzy decision trees for distinguishing defects

in existing software frameworks. Supposedly, our

methodology is novel in the defect prediction writing. The

exploratory assessment of the fuzzy decision tree is

performed on two open source software frameworks and

demonstrates that our proposition gives preferable outcomes

over most comparative existing ones.

The remainder of the paper is sorted out as pursues. The

significance of the software defect prediction issue, just as

the inspiration driving our methodology are displayed in

Section II. The essentials of fuzzy decision trees and a

related work on software defect prediction are given in

Section III. Our approach for identifying software defects

utilizing fuzzy decision trees is presented in Section IV. Area

V gives a test assessment of the fuzzy decision trees on two

open-source software frameworks. An investigation of the

got results and a correlation with comparable existing work

is displayed in Section VI. Area VII blueprints the finishes of

the paper also, gives a few headings for future research.

II. MOTIVATION

Software defect location speaks to the movement through

which software modules which contain mistakes are

distinguished. Surely, the disclosure of such defective

modules plays a significant job in guaranteeing the quality of

the software improvement process. A movement which is

likewise associated with keeping up the software quality is

the code audit. Checking on the current code is tedious and

exorbitant and it is every now and again utilized in the

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 297

coordinated software improvement. Software defect location

can be useful in the code audit procedure to call attention to

parts of the source code where it is probably going to

recognize issues.

From a managed learning point of view, the issue of

recognizing defective software elements is an unpredictable

and troublesome one, primarily on the grounds that the

preparation information is very imbalanced. Clearly, a

software framework contains few defective elements,

contrasted with the quantity of non-defective ones. In this

way, a managed classifier for defect recognition will be

prepared with a lot of defective precedents which is much

littler than the arrangement of non-defective ones. Thusly,

the classifier would be helpless to figure out how to dole out

the larger part class, in particular the non-defective class.

That is the reason, the field of software defect prediction is a

functioning exploration region, being a constant enthusiasm

for creating performance classifiers which can deal with the

imbalanced idea of the software defect information.

A few investigations that have been performed in the defect

prediction writing [2] have demonstrated that defect

information removed from change logs and bug reports

might be boisterous and uncertain [3]. Our past research in

the defect prediction field (like [4]) strengthened that it is

extremely elusive a fresh partition between the defective and

non-defective substances, by and large defective substances

appear to be fundamentally the same as to non-defective

ones. One self-sorting out guide utilized in [4] uncovered that

the defect information contains some dubious zones

(covering zones among defects and non-defects) that can lead

fresh classifiers to wrong predictions. That is the reason we

think about that the fuzzy methodologies would be a decent

decision for attempting to ease the recently referenced issues.

III. FUZZY DECISION TREES

Fuzzy decision trees [5] have been examined in the delicate

registering writing as a hybridization between the traditional

decision trees [6] and the fuzzy rationale. The established

calculations for structure decision trees (ID3, C4.5) were

stretched out toward a fuzzy setting [7] by thinking about

parts of fluffiness and vulnerability. At each inside hub of the

fuzzy tree, all examples from the informational index are

utilized, yet each case has a specific participation degree

related. At the root hub, all examples have the participation

degree 1. Each inward hub contains a quality (chose utilizing

Information Gain - Formula (4)) and has one tyke hub for

each fuzzy capacity related to the chose trait. Every one of

these youngster hubs will contain all cases, yet the

participation level of each case from the parent hub will be

increased by the estimation of the fuzzy capacity for the

given case. A leaf hub from the fuzzy decision tree, rather

than containing a solitary class (target esteem) as in the

traditional methodology, contains the extent of the total

enrolment esteems as for the aggregate enrolment for every

one of the classes.

A fuzzy decision tree is utilized diversely when another

example must be grouped (tried) than a customary one. The

test example will be considered to have a place with all

branches of the fuzzy decision tree with various degrees

given by the stretching fuzzy capacity. A last fuzzy

enrolment esteem will be gotten, along these lines, for each

leaf hub in the tree. All the enrolments for the leaf hubs are

summed for each objective class. The class having the most

extreme related participation esteem will be considered as the

last grouping for the testing occasion.

Normally, the fuzzy decision tree approach thoughtfully joins

the fresh methodology when the participation degrees of the

fuzzy sets utilized in the process portray fresh enrolments.

The exemplary decision tree is accordingly a subclass of the

fuzzy decision tree and the execution of each fuzzy variation

will be in any event in the same class as the fresh reporter.

Be that as it may, the issue of defect prediction is testing

because of the imbalanced idea of the preparation

informational indexes. Normally the defective substances

inside a software venture are fundamentally scarcer than the

non-defective ones and along these lines the arrangement

utilizing decision trees isn't a simple undertaking to be

tackled, in light of the fact that the Entropy and the

Information Gain measures, which have a major impact in

the decision process, are firmly subject to the parity in size

between the objective classes utilized in preparing.

Another issue happens when the likelihood appropriations of

the characteristics inside the informational index are

registered independently on every one of the objective

classes. It would have been liked that the traits display a

typical Gaussian pattern as this will help the decision

procedure, yet the likelihood examination of the

informational indexes immediately uncovered that the greater

part of the traits fall under a lognormal conveyance with

numerous qualities swarmed towards 0. For this situation it is

profoundly hard for any type of decision tree to separate

appropriately between the two classes as the occasions in the

two gatherings will in general have a similar conduct what's

more, are impeccably divergent all through the area making a

clear gathering delimitation a genuine test. Indeed, even in

the fuzzy viewpoint it is extremely hard to settle on one class

and the different as the defective versus non-defective

gatherings cover altogether enough to regard a considerable

lot of the occasions to be characterized dubious.

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 298

IV. RELATED WORKS

Software defect location is a well-examined issue, there are a

wide range of methodologies displayed in the writing that

endeavor to distinguish the defective elements in a software

framework. A writing study distributed in 2011, [8], found

that 208 papers were distributed regarding this matter

somewhere in the range of 2000 and 2010 and from that

point forward the quantity of papers has expanded. A large

portion of these approaches are administered, implying that

they require a few preparing information so as to

manufacture the model. There are a few transparently

accessible informational indexes that can be utilized for

preparing, and in this area we are going to introduce a few

methodologies from the writing that utilization for the trial

assessment the equivalent informational collections that we

have utilized: JEdit and Ant. Okutan and Yildiz present in [9]

a methodology that employments Bayesian Networks and the

K2 calculation for defect discovery.

Other than the effectively existing software measurements

they include two new measurements to the informational

collection: absence of coding quality (LOCQ) and number of

engineers (NOD). For the exploratory assessment, they

utilize 9 openly accessible informational indexes (counting

JEdit and Ant) also, the usage of the K2 calculation from

Weka [10].

In light of the produced Bayesian Networks they examine the

adequacy of various software metric sets for defect

discovery, and presume that the LOC-RFC, RFC-LOCQ,

RFCWMC sets are the best.

Multivariate Logistic Regression is utilized by Malhotra in

[11] to recognize the defective substances in the Ant

framework. The creators initially recognize and expel

anomalies from the information, at that point apply the

Multivariate Logistic Regression utilizing 10-overlap cross

approval. The assembled model incorporates two

measurements from the information set: RFC and CC.

While defect location is generally considered as a twofold

grouping issue, the creators in [12] think of it as a relapse

issue and they endeavour to foresee the accurate number of

defects in every element. They look at six changed relapse

techniques, Linear Regression, Bayesian Ridge Regression,

Bolster Vector Regression, Nearest Neighbours Regression,

Decision Tree Regression, Gradient Boosting Regression,

and presume that Decision Tree Regression gives the best

outcomes regarding exactness and root mean square blunder.

The creators additionally explore the contrast between inside

undertaking defect prediction (when the prediction model is

constructed based on past form of a similar software

framework) and cross project defect prediction (when the

model is based on other ventures). In contrast to other such

investigations, they presume that cross project defect

prediction models are practically identical to inside

undertaking defect prediction models concerning prediction

execution.

The creators in [13] present a cross-venture defect prediction

approach too, yet they plan the issue as a multi-target

enhancement issue where two extraordinary targets must be

considered: the quantity of defect inclined substances

identified and the expense of breaking down the anticipated

defect inclined classes. Their methodology depends on a

multi-objective Hereditary Algorithm, and was tried utilizing

10 unique informational indexes, counting JEdit and Ant.

They infer that the multi-objective approach accomplishes

preferred execution over the single-objective approach they

utilized for examination.

Scanniello et al. present a methodology, where the classes

from the software framework are first bunched, to recognize

groups of emphatically associated classes, at that point

Stepwise Linear Regression is utilized to assemble a defect

location model for each bunch independently [14].

Contrasted with the methodology where all classes are

utilized together to assemble a location model, this

methodology can give an increasingly exact discovery of the

quantity of issues for each class.

V. METHODOLOGY

In this segment we present our fuzzy decision tree based

classifier for recognizing defective software elements in

existing software frameworks. As we have recently presented

in [4], the elements from a software framework (classes,

strategies, capacities) may be spoken to as high-dimensional

vectors speaking to the estimations of a few software

measurements connected to the considered element.

Subsequently, a software framework S is seen as a lot of

substances (occurrences) S = {e1, e2, ..., en} [4]. A lot of

software measurements will be utilized as the list of

capabilities describing the substances from the software

framework, M = {m1,m2, ...,ml}. In this way, an element ei∈

S might be envisioned as a l-dimensional vector, ei = (ei1,

ei2, . . . ,eil), where eij speaks to the estimation of the

software metric mj connected to the software element ei.

As in a directed learning situation, the mark (class) related

for every substance is known (D=defect, N=non-defect). The

initial step before applying the fuzzy decision tree based

learning approach is the information pre-processing step. At

that point, the pre-processed preparing information will be

utilized for structure (preparing) the fuzzy decision tree

based classifier. The fabricated order model will be then tried

so as to assess its execution. These means will be itemized in

the accompanying.

A. Information pre-processing

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 299

Amid this progression, the informational index speaking to

the high dimensional software substances will be pre-

processed. An element determination step will be utilized so

as to distinguish a subset of software measurements that are

pertinent for anticipating software defects.

The informational collections that will be utilized for the

exploratory assessment of our methodology were made for

open-source object oriented software frameworks. In these

informational collections every substance relates to a class

from the software framework and contains information to

distinguish the module (name of the framework, variant of

the framework, name of the class) and the estimation of 20

unique software measurements in addition to the quantity of

bugs in the given element.

Table 1. Thresh hold value for software metrics

Amid the information pre-processing step, we initially

change the number of bugs into a parallel property, to

indicate whether the element is defective or not. The esteem

0 will be utilized for non-defective elements and 1 will be

utilized for the defective ones. So as to diminish the quantity

of software measurements in the information set, we have

utilized the discoveries of a methodical writing audit directed

on 106 papers [15], which ponders the pertinence of 19

diverse software measurements for the assignment of

software issue prediction. Out of the measurements revealed

by the examination as having a solid positive adequacy on

software flaw prediction, three can be found in our

informational indexes, so we have chosen to kill different

measurements. The measurements kept after the pre-

processing are: WMC, CBO and RFC.

So as to construct the fuzzy sets for the chose software

measurements, we have taken motivation from crafted by

Fil'oet al. [16]. They have utilized 111 software frameworks

written in Java and processed the estimation of 17 distinctive

software measurements for each class of the frameworks. For

every metric they have recognizes edges to gather the

estimation of the measurement in three ranges:

Good/Common, Regular/Casual, and Bad/Uncommon.

The edge between the initial two territories was figured as

the 70 percentile of the information, while the second edge

was considered at the 90 percentile. Since the examination

displayed in [16] contains limits for just a solitary one of the

software measurements that we are utilizing, we have chosen

to figure our own edges.

We have taken all informational collections from the Tera-

Promise vault [17] that have a place with the Defect

classification and utilize the equivalent software

measurements as the informational indexes utilized for the

trial assessment. If there should be an occurrence of

informational collections with numerous forms, we have

taken the last form. Along these lines, we have fabricated an

informational index containing 6082 occasions originating

from an aggregate of 30 ventures. We have figured the 70

and 90 percentile for the measurements and utilized these

qualities as edges for structure two trapezoidal participation

capacities for the non-defect and defect classes.

The primary capacity estimates the participation of a given

software metric incentive to the class of non-defective

substances, while the second one quantifies the enrolment to

the class of defective substances. The two fuzzy enrolment

capacities for the WMC software metric are outlined on

Figure 1. Formulae 1 and 2 portray the conditions used to

register the participation degree of a software metric

incentive to the non-defect, individually defect fuzzy sets.

The definite limit esteems utilized for every one of the three

measurements are exhibited in Table 1.

Figure 1. Fuzzy functional membership for software metric

B. Training

Amid the preparation procedure the fuzzy decision tree is

worked from the informational collection that was pre-

processed as exhibited in the past area. Defect identification

informational collections are for the most part imbalanced,

which can impact the preparation procedure and lead to a

fuzzy decision tree where each leaf hub predicts that the

given occasion is non-defective. So as to decrease the

unevenness of the informational index, we improve it before

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 300

the preparation process, by including additional defective

occasions from other information sets. These occasions are

utilized just for the preparation procedure, they are not

considered amid the testing.

1) Building the fuzzy decision tree (FuzzyDT): The structure

process for the fuzzy decision tree proposed in the current

paper looks like the one for a fresh variation of a decision

tree with a few adjustments to adapt to vulnerability and

information irregularity. Both of these angles have a

significant impact on the proposed fuzzy decision tree variant

molding it into a custom variation customized to take care of

the given issue as precisely as could be expected under the

circumstances. So as to deal with the vulnerability of

software defect prediction the defective and non-defective

ideas should have been formalized as fuzzy sets as for every

one of the traits inside the informational collection. The

technique for fuzzy set development for both of the objective

classes was displayed in the past area, in any case, it must be

included that a concentrated choice procedure was important

to feature the properties that may have a helpful sway on the

fuzzy decision process the same number of qualities in the

informational collection were normally not fit to help any

type of arrangement. This is a viewpoint that adds to the

trouble of the defective/non-defective order task. It must be

referenced that all together for the fuzzy way to deal with

work, the fuzzy enrolment capacities utilized in the decision

procedure should be dealt with in all respects carefully

ideally their devise being the product of a cooperation with

software building specialists. On the off chance that the

fuzzy enrolment capacities don't delineate onto genuine

settings, the entire decisional procedure will be influenced.

When the fuzzy enrollment capacities are developed for each

quality, independently on each objective class, the genuine

fuzzy decision tree development may initiate. Now, the other

serious issue examined in the presentation happens:

information irregularity. Because of the scarceness of

defective examples, the defective target class will be plainly

imbalanced with deference to the non-defective target class

on the contemplated traits. In the exemplary fuzzy decision

tree approach, the fuzzy entropy and fuzzy data gain

measures are extremely one-sided with deference to

information lop-sidedness and this effects the decision

procedure in the sense that there is an unmistakable tendency

towards marking cases as non-defective just in light of the

fact that the preparation set contains an essentially expanded

number of non-defective occurrences. This is a significant

issue with profound ramifications in the decisional process

and in this way figuring out how to manage information lop-

sidedness was imperiously vital.

An answer for the awkwardness issue was proposed in [18].

Rather than following other rather short-sighted approaches

that straightforwardly influence the informational index, for

example, oversampling or then again under-inspecting,

which as we would like to think are definitely not fit for the

present issue in light of the fact that the inconsistency

between defective and non-defective examples is excessively

high, the creators propose a method for adapting to the

awkwardness by changing the entropy and data gain

measures. Along these lines, from a constructional

perspective, the main adjustment will be changing the

entropy and data gain formulae to a structure that considers

the unevenness and incorporates it in the calculation, in this

manner weakening its effect. Give us a chance to consider, in

the accompanying, that the defective class is the positive one

also, the non-defective class is the negative one. As we have

referenced in Section III-An, each inner hub from the tree

stores every one of the cases from the preparation

informational index D, however each case has a specific

enrolment degree. The entropy measure at a hub from the

fuzzy tree is processed as in Equation (3) and sums up the

entropy calculation from the fresh case.

Where m+ speaks to the aggregate of the enrolment degrees

for the cases from D having a place with the positive class,

m− wholes the enrolment degrees for the occasions from D

having a place to the negative class and mm is the whole of

m+ and m−. For registering the data addition of a

characteristic a with regard to the arrangement of

occurrences put away at an inward hub from the fuzzy tree, a

sort of disarray lattice at that hub is registered. We mean by

Fa+ also, Fa− the fuzzy capacities related to credit and to the

positive and negative class, separately. By TPFuzzy,

FPFuzzy and FNFuzzy we express the qualities which sum

up (for the fuzzy case) the segments of the perplexity lattice

for the fresh case. More precisely, these qualities are

processed as pursues:

• TPFuzzy entireties the enrollment degrees for the

examples I having a place with the positive class

increased with the aftereffect of applying the

capacity Fa+ on the estimation of trait an in

occurrence I.

• FNFuzzy totals the enrollment degrees for the

examples I having a place with the positive class

duplicated with the aftereffect of applying the

capacity Fa− on the estimation of characteristic an

in occasion I.

• TNFuzzy wholes the enrollment degrees for the

cases I having a place with the negative class

increased with the aftereffect of applying the

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 301

capacity Fa− on the estimation of characteristic an

in occasion I.

• FPFuzzy wholes the enrollment degrees for the

cases I having a place with the negative class

increased with the aftereffect of applying the

capacity Fa+ on the estimation of characteristic an

in occasion I.

C. Testing

After the fuzzy decision tree was prepared (as portrayed in

Segment IV-B1), another case will be delegated appeared

Segment III-A. For assessing the general execution of the

FuzzyDT model, a forget one cross-approval is utilized [19].

In the forget one (LOO) cross-approval on an informational

index with n software elements, the FuzzyDT model is

prepared on n-1 substances and afterward the acquired model

is tried on the occurrence which was forgotten. This is

rehashed n times, for every element from the informational

collection. Amid the cross-approval process, the perplexity

grid [20] for the two potential results (non-defect and defect)

is processed. We are thinking about that the defective class is

the positive one and the non-defective class is the negative

one. The disarray grid contains four qualities, the quantity of

True Positives (TP), True Negatives (TN), False Positives

(FP) what's more, False Negatives (FN). For figuring the

qualities from the disarray grid, we are utilizing the known

names (classes) for the preparation cases.

Table 2. Description of the Data sets for evaluation

Since the software defect prediction information are

exceptionally imbalanced (the quantity of defects is a lot

littler than the number of non-defects) the fundamental test in

software defect prediction is to get a substantial genuine

positive rate and a little false negative rate. For defect

indicators, the precision of the classifier (for example

number of testing occasions which were accurately arranged

- Formula (5)), is anything but a significant assessment

measure, since the imbalanced idea of the information.

A progressively pertinent assessment measure for the

execution of the software defect classifiers is the Area Under

the ROC Bend (AUC) measure [21] (bigger AUC esteems

show better defect indicators). The AUC measure is

generally utilized if there should be an occurrence of

approaches that yield a solitary esteem which is changed into

a class mark utilizing an edge. For such methodologies,

altering the estimation of the edge can prompt various

estimations of the Likelihood of recognition (Formula (6))

and the Probability of false caution (Formula (7)) measures.

For every limit, the point (Pf, Pd) is spoken to on a plot, and

AUC measures the territory under this bend. [11]

If there should arise an occurrence of methodologies where

the yield is legitimately the class mark, there is just one (Pf,

Pd) point, which can be connected to the (0,0) and (1,1)

points, and the zone under this bend can be processed

utilizing Formula (8).

VI. EXPERIMENTAL EVALUATION

FuzzyDT model (portrayed in Section IV) on two open

source software frameworks which were recently utilized in

the software defect prediction writing. We notice that we

have utilized our own execution for FuzzyDT, without

utilizing any outsider libraries. [24] [25]

A. Contextual investigations

For the trial assessment of the FuzzyDT model we have

utilized two transparently accessible informational

collections, made for two software frameworks written in

Java: JEdit (adaptation 4.2)1 and Ant (form 1.7)2. The two

informational indexes are accessible at [17]. Subtleties about

these two informational indexes can be found in Table II.

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 302

The last section of Table II contains the trouble of the

informational indexes. This measure was presented by

Boetticher in [22] and is registered as the level of elements

for which the closest neighbor (disregarding the name of the

substance when registering the separations) has an alternate

name. Since our information sets are imbalanced, when

registering the trouble of the information sets we considered

just the level of defective elements for which the closest

neighbor is non-defective. For every datum set that is utilized

for the test assessment, we will perform two investigations.

In the main trial we are going to utilize the informational

index with no change, while in the second investigation we

are going to improve it by adding to the informational index

defective substances taken from an alternate software

framework. We are adding additional defective elements to

lessen the unevenness in the informational collection. In the

writing, two choices are normally displayed for including

increasingly defective elements: oversampling (at the point

when some defective elements are copied) and Destroyed

(when new minority-class substances are made utilizing the

current ones) [23]. We trust that utilizing genuine defective

substances from an alternate task is superior to making

manufactured substances. For the two informational

collections, we have included as additional defective

substances, all the defective elements from the Tomcat

informational index, which is likewise accessible at the Tera-

Promise archive [17]. Therefore, we have added 77 defective

substances to the two information sets, expanding the level of

defective substances from 0.131 to 0.282 (for JEdit) and

from 0.223 to 0.30 (for Ant). [9] [10]

Table 3. Experimental Evaluation Results

B. Results

Table 3 contains the aftereffects of the trial assessment. As

introduced in the past segment, for every datum set we have

run the FuzzyDT model both for the first informational index

and the informational index improved with the defective

substances taken from the Tomcat framework. We notice that

these defective elements were utilized just for the preparation

of the model, the testing was performed just on the elements

from the JEdit and Ant frameworks. Other than the AUC

execution measure - registered with the Formula (8) - we

have chosen to add to Table 3 the whole disarray network to

permit the calculation of any execution measures for our

methodology, to encourage the examination of our results to

different methodologies. While we contended that exactness

is certifiably not a decent exhibition measure if there should

be an occurrence of imbalanced informational collections, we

have chosen to add it to Table III to demonstrate how diverse

the estimations of this measure are contrasted with AUC.

[13]

VII. CONCLUSION AND FUTURE WORK

A fuzzy decision tree model has been presented for

foreseeing, in an administered way, those elements from

software frameworks which are probably going to be

defective. The test assessment which was performed on two

open-source software frameworks gave results superior to

anything the greater part of the comparable existing

approaches and featured a generally amazing exhibition of

the proposed methodology. Considerably more, the fuzzy

decision tree approach demonstrated to outflank, for the

considered contextual investigations, the fresh DT approach.

Further work will be done so as to expand the test assessment

of the fuzzy decision tree approach proposed in this paper.

We likewise mean to research a hybridization between the

fuzzy DT model and social affiliation rules [26], since we are

sure that relations between the values for various software

measurements would be pertinent in separating among

defective and non-defective software elements.

REFERENCES

[1] R. hua Chang, X. Mu, and L. Zhang, “Software defect prediction using

non-negative matrix factorization.” JSW, vol. 6, no. 11, pp. 2114–

2120, 2011.
[2] J. Aranda and G. Venolia, “The secret life of bugs: Going past the

errors and omissions in software repositories,” in Proceedings of the

31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, pp. 298–308, 2009.

[3] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect

prediction,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,

2011, pp. 481–490, 2011.

[4] Z. Marian, G. Czibula, I.-G. Czibula, and S. Sotoc, “Software defect

detection using self-organizing maps,” Studia Universitatis Babes-

Bolyai, Informatica, vol. LX, no. 2, pp. 55–69, 2015.

[5] M. Umanol, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S.
Umedzu, and J. Kinoshita, “Fuzzy decision trees by fuzzy id3

algorithm and its application to diagnosis systems,” in Proceedings of

the Third IEEE Conference on Fuzzy Systems, 1994. IEEE World
Congress on Computational Intelligence.,,, pp. 2113–2118 vol.3, 1994.

[6] T. M. Mitchell, Machine learning. McGraw-Hill, Inc. New York, USA,

1997.
[7] C. Z. Janikow, “Fuzzy decision trees: issues and methods,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

vol. 28, no. 1, pp. 1–14, 1998.
[8] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A

systematic literature review on fault prediction performance in
software engineering,” IEEE Transactions on Software Engineering,

vol. 38, no. 6, pp. 1276–1304, 2011.

[9] A. Okutan and O. T. Yildiz, “Software defect prediction using
Bayesian networks,” Empirical Software Engineering, vol. 19, no. 1,

pp. 154–181, 2014.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD

Explorations, vol. 11, no. 1,2009.

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 303

[11] R. Malhotra, “A defect prediction model for open source software,” in

Proceedings of the World Congress on Engineering, vol. II, July 2012.

[12] M. Chen and Y. Ma, “An empirical study on predicting defect
numbers,” in Proceedings of the 27th International Conference on

Software Engineering and Knowledge Engineering, pp. 397–402,

2015.
[13] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S.

Panichella, “Multi-objective cross-project defect prediction,” in
Proceedings of the 6th International Conference on Software Testing,

Verification and Validation, pp. 252–261, 2013.

[14] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level
fault prediction using software clustering,” in Proceedings of the 28th

IEEE/ACM International Conference on Automated Software Testing,

pp. 640–645, 2013.
[15] D. Radjenovi´c, M. Heriˇcko, R. Torkar, and A. ˇ Zivkoviˇc, “Software

fault prediction metrics: A systematic literature review,” Information

and Software Technology, vol. 55, no. 8, pp. 1397–1418, 2013.
[16] T. G. S.Fil´o, M. A. S. Bigonha, and K. A. M. Ferreira, “A catalogue

of thresholds for object-oriented software metrics,” in First

International Conference on Advances and Trends in Software
Engineering, 2015.

[17] “Tera-promise repository,” http://openscience.us/repo/.

[18] W. Liu, S. Chawla, D. A. Cieslak, and N. V. Chawla, “N.: A robust
decision tree algorithms for imbalanced data sets,” in In: Proceedings

of the Tenth SIAM International Conference on Data Mining, pp.766–

777, 2010.
[19] G. Wahba, Y. Lin, and H. Zhang, “GACV for support vector machines,

or, another way to look at margin-like quantities,” Advances in Large

Margin classifiers, pp. 297–309, 2000.
[20] D. M. W. Powers, “Evaluation: From precision, recall and f-measure to

roc., informedness, markedness & correlation,” Journal of Machine

Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.
[21] T. Fawcett, “An introduction to ROC analysis,” Pattern Recogn. Lett.,

vol. 27, no. 8, pp. 861–874, 2006.

[22] G. D. Boetticher, “Advances in Machine Learning Applications in
Software Engineering”. IGI Global, ch. Improving the Credibility of

Machine Learner Models in Software Engineering, 2007.

[23] N. V.Chawla, “Data Mining and Knowledge Discovery Handbook”,
Springer US, ch. Data Mining for imbalanced datasets: an overview,

2010/
[24] “Orange data mining,” http://orange.biolab.si/.
[25] N. V. Chawla, K.W. Bowyer, L. O. Hall, andW. P. Kegelmeyer,

“Smote: Synthetic minority over-sampling technique,” J. Artif. Int.

Res., vol. 16, no. 1, pp. 321–357, 2002.
[26] G. Serban, A. Cˆampan, and I. G. Czibula, “A programming interface

for finding relational association rules,” International Journal of

Computers, Communications & Control, vol. I, no. S., pp. 439–444,

June 2006.

Authors Profile

Mr. Prakash Beherais currently working as assistant

professor in St. Claret College. Also pursuing his PhD

degree in Computer Science and Engineering in JJTU

University in Rajasthan. His Area of Specialization is

Software Engineering.

Mr. Chinmaya Dashis currently working as assistant

professor in St. Claret College. Also pursuing his PhD

degree in Computer Science and Engineering in JJTU

University in Rajasthan. His Area of Specialization is

Software Engineering.

Mrs.Chandrammahas received Master’s degree in

Computer science & Engineering from VTU, Belgavi in

2006, B.E in CSE from Bangalore University in

1999.Author has over 18 years of Academic experience. She has

published one book in Lambert Publications, Germany and

published several papers in International Journals and also

published several papers in International or national conferences.

She is currently serving in Department of Computer Science &

Engineering at Vivekananda Institute of Technology Bengaluru and

pursuing her Ph.D in Computer science & Engineering, VTU

Belagavi. Her Interested areas of Research are Natural Language

Processing, Data mining & Machine Learning.

Dr.Piyush Kumar Pareek is a Ph.D (2016)in

Computer Science Engineering from Jain University ,

Bengaluru , M. Tech (2012) from Dayanand

Sagar College of Engineering , Bengaluru & B.E

(2010) from Basaveshwar Engineering College ,

Bagalkote , Author has over 8+ Years of Academic

Experience , He is author or co-author of over 53 international

journal papers or conference proceedings, He has Four Books

published in Lambert Publications , Germany. He is BOS Member –

Alumni – ISE - of Basaveshwar Engineering College, Bagalkote,

He is PhD Alumni Convener of Jain University, Bengaluru. He is

Recognized Research Supervisor in Computer Science &

Engineering (VTU0817401), Visvesvaraya Technological

University, Balagavi . He is currently serving in department of

Computer Science & Engineering at East West Group of

Institutions, Bengaluru. His Interested areas of Research are

Software Engineering, Computer Networks & Machine Learning.

He is Editorial Board Member & Reviewer of International Journal

of Advanced Research in Computer Science & Technology

(IJARCST), Brittany, FRANCE. Reviewer of International journal

of Engineering Research and Technology ESRSA Publications

(IJERT), INDIA , International journal of Computer Science

Research and Technology (IJCSRT), INDIA, Inter Science

Research Network (IRNET), Bhubaneswar, INDIA, International

Journal of Computer Science and Informatics (IJCSI),

Bhubaneswar, INDIA, International Journal of Engineering,

Sciences and Management (IJESM), U.P, INDIA., International

Journal of Scientific & Technology Research (IJSTR), Paris,

FRANCE, Journal of Theoretical and Applied Computer Science

(JTACS), Szczecin, Poland, International Journal of Advanced

Research in Computer Science & Technology (IJARCST), INDIA,

Journal of Harmonized Research in Engineering, INDIA.,IASTER’s

International Research Journals , INDIA, IJMAS Journals , Bhopal ,

INDIA, RR Journals ,INDIA , Reviewer of IRD INDIA & STEM

Journals , INDIA

Mr. Aditya Pai H received the BE degree in Computer

Science and Engineering in VTU, Belgaum in 2009

and pursued his masters MS degree in Information

Technology and Management Manipal University,

Manipal in 2012. He is currently pursuing PhD degree

in Computer Science and Engineering under VTU, Belgaum at East

West Institute of Technology Research Centre, Bengaluru. He has 7

years of teaching experience. Currently working as Assistant

Professor in Department of Computer Science and Engineering,

K.S. Institute of Technology, Bengaluru. He has two books being

published in Lambert Publishing, Germany. He is also the member

of ISTE. His research area is Software Engineering.

