
 © 2019, IJCSE All Rights Reserved 171

Issue-9, Sep 2018E-ISSN: 2347-2693

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue-15, May 2019 E-ISSN: 2347-2693

Self Driving Car Using Deep Neural Networks

Sharmila S
1
, Shivaswaroop S

2
, Sudhakar M

3
, Tejashwini S V

4
, Rajshekhar S A

5*

1,2,3,4,5

Department of Computer Science, East West Institute of Technology, Bengaluru, India

Corresponding Author: rajshekhar@ewit.edu

DOI: https://doi.org/10.26438/ijcse/v7si15.171176 | Available online at: www.ijcseonline.org

Abstract— Automation has a wide role in the current generation which can be deployed into cars making them drive on their

own by considering the surrounding environment as input parameters. Detection of lanes using canny edge lane detection

algorithm helps to detect lanes and ensure the drivable space and have clear information of lane in which the car is moving.

Deep Neural Networks helps in deciding the action to be performed by the car (forward, reverse, right, left, stop, and park).

This paper covers motion control, path detection and obstacle detection. The results have been achieved by the implementation

of Canny Edge Detection Algorithm, Deep Neural Networks Techniques.

Keywords— Deep Neural Network, Canny Edge Detection Algorithm, Obstacle Detection.

I. INTRODUCTION

The number of road accidents is increasing every year. And

the road accidents could be caused either by the human

mistake or the vehicle error. Example for human errors

possibly could be drunk and drive, drowsiness, breaking

traffic rules etc and vehicle errors. To overcome these tough

situations, self driving car has been implemented so as to

reduce the number of accidents on road.

Highway driving and parking assist functions have been

implemented in self driving car which is increasing day by

day. In this system, a Self Driving Car is developed, which

also includes ultrasonic sensors, IR sensors which prevents

the vehicle from getting damaged by an obstacle. The

Vehicle movements i.e. parking of the vehicle are all assisted

by the user. The Motion Control, Obstacle Detection, and

Lane Detection help the car to move in the proper path. The

Motion Control planning has been implemented which helps

in movement of the car. As the rate of road accidents are

increasing by the conditions of road it is important to

consider it aswell to protect our vehicle from it. The Obstacle

Detection module finds the obstacle if present in the

travelling path and sends the alert to the vehicle to stop or

take diversions.The Lane detection module implemented

using the Canny Edge Detection Algorithm helps the vehicle

to find the lane lines on the road easily, even in the wide

variety of conditions.

Typical Deep Neural Network (DNN) structure is illustrated

as shown in Figure 1. Deep learning is the process of

applying deep neural network technologies - that is, neural

network architectures with multiple hidden layers - to solve

problems. Deep neural networks are neural networks with

one hidden layer minimum (see below). Like data mining,

deep learning refers to a process, which employs deep neural

network architectures, which are particular types of machine

learning algorithms.

 Fig 1.1: Deep Learning key terms

As outlined in Figure 1, MLPC consists of multiple layers of

nodes including the input layer, hidden layers (also called

intermediate layers), and output layers. Each layer is fully

connected to the next layer in the network. Where the input

layer, intermediate layers, and output layer can be defined as

follows:

 The input layer consists of neurons that accept the

input values. The output from these neurons is same as

the input predictors. Nodes in the input layer represent

the input data. All other nodes map inputs to outputs by

a linear combination of the inputs with the node’s

weights w and bias b and applying an activation

function. This can be written in matrix form for MLPC

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 172

with K+1 layers as follows :

 Hidden layers are in between input and output layers.

Typically, the number of hidden layers range from one

to many. It is the central computation layer that has the

functions that map the input to the output of a node.

Nodes in the intermediate layers use the sigmoid

(logistic) function, as follows :

 The output layer is the final layer of a neural network

that returns the result back to the user environment.

Based on the design of a neural network, it also signals

the previous layers on how they have performed in

learning the information and accordingly improved their

functions. Nodes in the output layer use softmax

function:

The number of nodes N, in the output layer, corresponds to

the number of class.

Canny Edge Detection is a popular edge detection algorithm.

It was developed by John F. Canny in 1986. It is a multi-

stage algorithm and we will go through each stages.

1. Noise Reduction

Since edge detection is susceptible to noise in the image, first

step is to remove the noise in the image with a 5x5 Gaussian

filter.

2. Finding Intensity Gradient of the Image
Smoothened image is then filtered with a Sobel kernel in

both horizontal and vertical direction to get first derivative in

horizontal direction () and vertical direction (). From

these two images, we can find edge gradient and direction for

each pixel as follows:

Gradient direction is always perpendicular to edges. It is

rounded to one of four angles representing vertical,

horizontal and two diagonal directions.

3. Non-maximum Suppression
After getting gradient magnitude and direction, a full scan of

image is done to remove any unwanted pixels which may not

constitute the edge. For this, at every pixel, pixel is checked

if it is a local maximum in its neighbourhood in the direction

of gradient as shown below:

Point A is on the edge (in vertical direction). Gradient

direction is normal to the edge. Point B and C are in gradient

directions. So point A is checked with point B and C to see if

it forms a local maximum. If so, it is considered for next

stage, otherwise, it is suppressed (put to zero).

In short, the result you get is a binary image with ―thin

edges‖.

4. Hysteresis Thresholding
This stage decides which are all edges are really edges and

which are not. For this, we need two threshold

values, minVal and maxVal. Any edges with intensity

gradient more than maxVal are sure to be edges and those

below minVal are sure to be non-edges, so discarded. Those

who lie between these two thresholds are classified edges or

non-edges based on their connectivity. If they are connected

to ―sure-edge‖ pixels, they are considered to be part of edges.

Otherwise, they are also discarded. See the image below:

 Fig1.2: Hysteresis thresholding

The edge A is above the maxVal, so considered as ―sure-

edge‖. Although edge C is below maxVal, it is connected to

edge A, so that also considered as valid edge and we get that

full curve. But edge B, although it is above minVal and is in

same region as that of edge C, it is not connected to any

―sure-edge‖, so that is discarded. So it is very important that

we have to select minVal and maxValaccordingly to get the

correct result.

This stage also removes small pixels noises on the

assumption that edges are long lines.

So what we finally get is strong edges in the image.

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 173

II. RELATED WORK

[1] Aditya Kumar Jain, ―Working model of Self-driving car

using convolutional Neural Network, Raspberry Pi and

Arduino‖, where, this paper proposes a working model of

self-driving car which is capable of driving from one location

to the other or to say on different types of tracks such as

curved tracks, straight tracks and straight followed by curved

tracks. A camera module is mounted over the top of the car

along with Raspberry Pi sends the images from real world to

the CNN which then predicts one of the following directions

.i.e., left, stop, right or forward.

[2] Mihir Mody,‖ Low Cost and Power CNN/Deep Learning

Solution for Automated Driving‖ In the case of automated

driving, one of the key functionality is "finding drivable free

space", which is addressed using deep learning techniques

like CNN. These CNN networks pose huge computing

requirements in terms of hundreds of GOPS/TOPS (Giga or

Tera operations per second), which seems beyond the

capability of today's embedded SoC. This paper covers

various techniques consisting of fixed-point conversion,

sparse multiplication, fusing of layers and network pruning,

for tailoring on the embedded solution. These techniques are

implemented on the device by means of optimized Deep

learning library for inference. The paper concludes by

demonstrating the results of a CNN network running in real

time on TI’s TDA2X embedded platform producing a high-

quality drivable space output for automated driving.

III. METHODOLOGY

This paper consists of 5 modules, which are,

1. Image Processing: Images are captured at the rate of 32

frames per minute using raspberry pi camera. These images

are given as input to the raspberry pi on which the canny

edge algorithm is applied to detect edges or lanes. And also it

detects the angle of curvature of the road so as the car has to

adjust its turning radius to ensure that the car is moving in

the proper lane.

 Fig3.1: Lanes before detection

Fig3.2: Lanes after detection

2. Obstacle detection: As every vehicle needs its own

driving space, it is very often to meet up an obstacle. Hence

in order to avoid collisions with obstacles, the minimum

distance has to be maintained between our car and the

obstacle at the front. Therefore, we use appropriate sensors

(Ultrasonic & Infrared) to ensure there is no obstacle within

the range of driving space so that our car can move without

any collisions. Where the ultrasonic sensors gives the

difference of distance between our car and the obstacle in the

front and infrared sensors detects the immediate obstacle

around the car and based on these outputs, the motion of the

car can be decided(right, left, forward, stop or backward).

3. Deep Neural Networks: It is a neural network with a

certain level of complexity and with more than 2 layers. It

uses sophisticated mathematical modelling to process data in

complex ways. It takes lanes angles and distance to the

barricades if exists and also the obstacle distance as inputs

and helps in making a decision (turning radius, right, left,

forward, backward or stop). It is given with the learning

dataset upon which it learns and makes an optimal

predictions. It has higher accuracy and precisions about

83.37 percent on all the decisions it makes. This helps is to

ensure the proper and safe movement of the car within its

lane.

.

4. Motion Planning: The motion of the car is an important

aspect to be considered. The motion planning has 4 modules

within it where each module defines the direction in which

direction the car has to move or what type of motion to be

made by the car. The modules such as:

Right(): indicates to turn right.

Left(): indicates to turn left.

Forward(): indicates to move forward.

Reverse(): indicates to move backward.

Stop(): indicates to stop.

5. Parking: There are situations which cannot be predicted.

Henceforth on a precautionary measure considering the

safety of the passengers of the car there is a parking switch

provided which on activation commands the car for

emergency and has to park the vehicle towards left as per

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 174

Indian traffic rules where it initially determines the lane in

which it is running currently and decides either to stop onthe

same line(if running in left lane) or to change its lane and

then stop(if running in right lane)

IV ALGORITHMS USED

1. CANNY EDGE DETECTION:

This technique is used to detect the edges or the lanes on the

road.

 Canny edge detection algorithm:

Step I: Noise reduction by smoothing:
 Mathematically, the smooth resultant image is given

by

 F(i,j) = G * I(i,j)

Step II: Finding Gradients:
In this step we detect the edges where the change in

grayscale intensity is maximum. Sobel operators are used to

determine the gradients at each pixel of smoothened images.

 -1 0 +1 -1 +2 +1

D[I] = -2 0 +2 D[J]= 0 0 0

 -1 0 +3 -1 -2 -1

These sobel marks are convolved with smoothed image and

giving gardients in i and j directions.

 Gi=Di*F(i,j) and Gj=Dj*F(i,j)

Therefore edge strength or magnitude of gradient of a pixel is

given by:

 G= (Gi² +Gj²)½

The direction of gradient is given by:

 Ɵ= arctan(Gj/Gi)

Step III: Non maximum suppressions:
 Non maximum suppression is carried out to preserves all

local maxima in the gradient image, and deleting everything

else this results in thin edges. For a pixel M (i, j):

• Firstly round the gradient direction nearest45°,then

compare the gradient magnitude of the pixels in positive and

negative gradient directions.

• If the edge strength of pixel M (i, j) is largest than that of E

(i, j) and W (i, j), then preserve the value of gradient and

mark M (i, j) as edge pixel, if not then suppress or remove.

Step IV: Hysteresis Thresholding:
For a pixel M (i, j) having gradient magnitude G following

conditions exists to detect pixel as edge:

• If G >789 than discard the edge.

• If G > than 565 keep the edge.

• If 789 < G < and565 and any of its neighbors in a 3

×3 region around it have gradient magnitudes

greater than565, keep the edge.

2. OBSTACLE DETECTION:

3. DEEPLEARNING:

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function ˆ Q with weights ¯ θ =

θ

For episode = 1, M do

 Initialize sequence s1=x1 and preprocessed

sequenced φ1 = φ(s1) For t =1, T do

With probability ϵ select a random action at

Set s(t+1)=st,at,x(t+1)

 Store transition (φt, at, rt, φt+1) in D

Sample random mini batch of transitions (φj , aj , r

j,φj+1) from D.

 Set yj={rj, if episode terminates at step j+1

 {rj + γ max′ aˆ Q(φj+1,a ′; ¯ θ), otherwise

 perform a gradient descent step on (yjQ(φj,aj;θ))2

w.r.t. network parameters θ

 Every C steps,reset Q’=Q

 End for

End for

IV. RESULTS AND DISCUSSION

The model has run within its lane by detecting the right or

left edges and drive within the proper lane. It detects the

curve in the lane and decides the angle at which the car has

to rotate so as to move in the proper lane in order to avoid

collisions and in case of emergency the car is provided with

emergency parking and also barricades in front of the car.

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 175

 Fig 4.1: Lane detection

 Fig 4.2: Barricade detection

 Fig 4.3: Emergency Parking

 Fig 4.4: Turns left to park

 Fig 4.5: Parks on left

 Fig 4.6: Detects obstacle ahead

 International Journal of Computer Sciences and Engineering Vol. 7(15), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 176

Fig 4.7: changes lane for drivable space

Fig 4.8: Moves on the free lane

V. CONCLUSION AND FUTURE SCOPE

Conclusion: This paper presents the working prototype of

self driving car which uses Canny Edge Detection algorithm

for detecting lanes and neural networks to make optimal

decisions which can help to reduce most of the road risks.

Future work: There are many improvisations that can be

brought to this model such as implementing GPS, NLP and

so on. Therefore it can be made interactive with the user and

keep monitor of every parameters of the car for the safer

drive.

VI ACKNOWLEDGMENT

Sharmila S, Shivaswaroop S,Sudhakar M and Tejaswini S V

would like to thank my guide Mr. Rajshekhar S A

Associate Professor, CSE Dept., East West Institute of

Technology for providing the facilities.

Finally, I would like to thank all the Teaching, Technical

faculty and supporting staff members of Department of

Computer Science and Engineering, East West Institute of

Technology, Bengaluru, for their support.

REFERENCES

[1] TU-Automotive, ―Driverless vehicles will continue to dominate

auto headlines tu automotive [online],‖ April, 2016, available:

http://analysis.tu-auto.com/autonomous-car/driverless-vehicles-

willcontinue- dominate-auto-headlines. [Accessed: 10-April-

2018].

[2] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B.

Jenik, J. Terwilliger, J. Kindelsberger, L. Ding, S. Seaman, H.

Abraham, A. Mehler, A. Sipperley, A. Pettinato, B. Seppelt, L.

Angell, B. Mehler, and B. Reimer, ―Mit autonomous vehicle

technology study: Large-scale deep learning based analysis of

driver behavior and interaction with automation,‖ Nov 2017,

available:https://arxiv. org/abs/1711.06976.

[3] WHO, ―Global status report on road safety 2015. world health

organization,‖ 2015.

[4] Saha, Anik, et al. "Automated road lane detection for intelligent

vehicles." Global Journal of Computer Science and Technology

(2012).

[5] Pannu, Gurjashan Singh, Mohammad Dawud Ansari, and Pritha

Gupta. "Design and implementation of autonomous car using

Raspberry Pi." International Journal of Computer Applications

113.9 (2015)

[6] Mohanapriya, R., Hema, L. K., Yadav, D., & Verma, V. K.

(2014). Driverless Intelligent Vehicle for Future Public Transport

Based On GPS. International Journal of Advanced Research in

Electrical, Electronics and Instrumentation Engineering, 3.

[7] Working model of Self-driving car using Convolutional Neural

Network, Raspberry Pi and Arduino Aditya Kumar Jain

Electronics and Communication Department Dharmsinh Desai

University Gujarat, India

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,D. Anguelov,

D.Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE Conference on computer

Vision and Pattern Recognition, pages 1–9, 2015.

[9] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, Dmitry

Kalenichenko. Quantization and Training of Neural Networks for

Efficient Integer-Arithmetic-Only Inference. arXiv:1712.05877,

2017.

https://arxiv/

