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Abstract— Automation has a wide role in the current generation which can be deployed into cars making them drive on their 

own by considering the surrounding environment as input parameters. Detection of lanes using canny edge lane detection 

algorithm helps to detect lanes and ensure the drivable space and have clear information of lane in which the car is moving. 

Deep Neural Networks helps in deciding the action to be performed by the car (forward, reverse, right, left, stop, and park). 

This paper covers motion control, path detection and obstacle detection. The results have been achieved by the implementation 

of Canny Edge Detection Algorithm, Deep Neural Networks Techniques. 
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I.  INTRODUCTION 

 

The number of road accidents is increasing every year. And 

the road accidents could be caused either by the human 

mistake or the vehicle error. Example for human errors 

possibly could be drunk and drive, drowsiness, breaking 

traffic rules etc and vehicle errors. To overcome these tough 

situations, self driving car has been implemented so as to 

reduce the number of accidents on road.  

 

Highway driving and parking assist functions have been 

implemented in self driving car which is increasing day by 

day. In this system, a Self Driving Car is developed, which 

also includes ultrasonic sensors, IR sensors which prevents 

the vehicle from getting damaged by an obstacle. The 

Vehicle movements i.e. parking of the vehicle are all assisted 

by the user. The Motion Control, Obstacle Detection, and 

Lane Detection help the car to move in the proper path. The 

Motion Control planning has been implemented which helps 

in movement of the car. As the rate of road accidents are 

increasing by the conditions of road it is important to 

consider it aswell to protect our vehicle from it. The Obstacle 

Detection module finds the obstacle if present in the 

travelling path and sends the alert to the vehicle to stop or 

take diversions.The Lane detection module implemented 

using the Canny Edge Detection Algorithm helps the vehicle 

to find the lane lines on the road easily, even in the wide 

variety of conditions.  

 

Typical Deep Neural Network (DNN) structure is illustrated 

as shown in Figure 1. Deep learning is the process of 

applying deep neural network technologies - that is, neural 

network architectures with multiple hidden layers - to solve 

problems. Deep neural networks are neural networks with 

one hidden layer minimum (see below). Like data mining, 

deep learning refers to a process, which employs deep neural 

network architectures, which are particular types of machine 

learning algorithms. 

 

 
                     Fig 1.1: Deep Learning key terms 

 

As outlined in Figure 1, MLPC consists of multiple layers of 

nodes including the input layer, hidden layers (also called 

intermediate layers), and output layers. Each layer is fully 

connected to the next layer in the network. Where the input 

layer, intermediate layers, and output layer can be defined as 

follows:  

 The input layer consists of neurons that accept the 

input values. The output from these neurons is same as 

the input predictors. Nodes in the input layer represent 

the input data. All other nodes map inputs to outputs by 

a linear combination of the inputs with the node’s 

weights w and bias b and applying an activation 

function. This can be written in matrix form for MLPC 
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with K+1 layers as follows :

 
 Hidden layers are in between input and output layers. 

Typically, the number of hidden layers range from one 

to many. It is the central computation layer that has the 

functions that map the input to the output of a node. 

Nodes in the intermediate layers use the sigmoid 

(logistic) function, as follows : 

 
 The output layer is the final layer of a neural network 

that returns the result back to the user environment. 

Based on the design of a neural network, it also signals 

the previous layers on how they have performed in 

learning the information and accordingly improved their 

functions. Nodes in the output layer use softmax 

function:  

 

The number of nodes N, in the output layer, corresponds to 

the number of class. 

Canny Edge Detection is a popular edge detection algorithm. 

It was developed by John F. Canny in 1986. It  is a multi-

stage algorithm and we will go through each stages. 

 

1. Noise Reduction 

Since edge detection is susceptible to noise in the image, first 

step is to remove the noise in the image with a 5x5 Gaussian 

filter. 

 

2. Finding Intensity Gradient of the Image 
Smoothened image is then filtered with a Sobel kernel in 

both horizontal and vertical direction to get first derivative in 

horizontal direction ( ) and vertical direction ( ). From 

these two images, we can find edge gradient and direction for 

each pixel as follows: 

 

 
Gradient direction is always perpendicular to edges. It is 

rounded to one of four angles representing vertical, 

horizontal and two diagonal directions. 

 

3. Non-maximum Suppression 
After getting gradient magnitude and direction, a full scan of 

image is done to remove any unwanted pixels which may not 

constitute the edge. For this, at every pixel, pixel is checked 

if it is a local maximum in its neighbourhood in the direction 

of  gradient as shown  below: 

 
 

Point A is on the edge ( in vertical direction). Gradient 

direction is normal to the edge. Point B and C are in gradient 

directions. So point A is checked with point B and C to see if 

it forms a local maximum. If so, it is considered for next 

stage, otherwise, it is suppressed ( put to zero). 

In short, the result you get is a binary image with ―thin 

edges‖. 

 

4. Hysteresis Thresholding 
This stage decides which are all edges are really edges and 

which are not. For this, we need two threshold 

values, minVal and maxVal. Any edges with intensity 

gradient more than maxVal are sure to be edges and those 

below minVal are sure to be non-edges, so discarded. Those 

who lie between these two thresholds are classified edges or 

non-edges based on their connectivity. If they are connected 

to ―sure-edge‖ pixels, they are considered to be part of edges. 

Otherwise, they are also discarded. See the image below:

 
  Fig1.2: Hysteresis thresholding 

 

The edge A is above the maxVal, so considered as ―sure-

edge‖. Although edge C is below maxVal, it is connected to 

edge A, so that also considered as valid edge and we get that 

full curve. But edge B, although it is above minVal and is in 

same region as that of edge C, it is not connected to any 

―sure-edge‖, so that is discarded. So it is very important that 

we have to select minVal and maxValaccordingly to get the 

correct result. 

 

This stage also removes small pixels noises on the 

assumption that edges are long lines. 

So what we finally get is strong edges in the image. 
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II. RELATED WORK  

 

[1] Aditya Kumar Jain, ―Working model of Self-driving car 

using convolutional Neural Network, Raspberry Pi and 

Arduino‖, where, this paper proposes a working model of 

self-driving car which is capable of driving from one location 

to the other or to say on different types of tracks such as 

curved tracks, straight tracks and straight followed by curved 

tracks. A camera module is mounted over the top of the car 

along with Raspberry Pi sends the images from real world to 

the CNN which then predicts one of the following directions 

.i.e., left, stop, right or forward. 

 

[2] Mihir Mody,‖ Low Cost and Power CNN/Deep Learning 

Solution for Automated Driving‖ In the case of automated 

driving, one of the key functionality is "finding drivable free 

space", which is addressed using deep learning techniques 

like CNN. These CNN networks pose huge computing 

requirements in terms of hundreds of GOPS/TOPS (Giga or 

Tera operations per second), which seems beyond the 

capability of today's embedded SoC. This paper covers 

various techniques consisting of fixed-point conversion, 

sparse multiplication, fusing of layers and network pruning, 

for tailoring on the embedded solution. These techniques are 

implemented on the device by means of optimized Deep 

learning library for inference. The paper concludes by 

demonstrating the results of a CNN network running in real 

time on TI’s TDA2X embedded platform producing a high-

quality drivable space output for automated driving. 

 

III. METHODOLOGY 

 

This paper consists of 5 modules, which are, 

1. Image Processing: Images are captured at the rate of 32 

frames per minute using raspberry pi camera. These images 

are given as input to the raspberry pi on which the canny 

edge algorithm is applied to detect edges or lanes. And also it 

detects the angle of curvature of the road so as the car has to 

adjust its turning radius to ensure that the car is moving in 

the proper lane. 

 

 
     Fig3.1: Lanes before detection 

 

 
Fig3.2: Lanes after detection 

 

2. Obstacle detection: As every vehicle needs its own 

driving space, it is very often to meet up an obstacle. Hence 

in order to avoid collisions with obstacles, the minimum 

distance has to be maintained between our car and the 

obstacle at the front. Therefore, we use appropriate sensors 

(Ultrasonic & Infrared) to ensure there is no obstacle within 

the range of driving space so that our car can move without 

any collisions. Where the ultrasonic sensors gives the 

difference of distance between our car and the obstacle in the 

front and infrared sensors detects the immediate obstacle 

around the car and based on these outputs, the motion of the 

car can be decided(right, left, forward, stop or backward).  

 

3. Deep Neural Networks: It is a neural network with a 

certain level of complexity and with more than 2 layers. It 

uses sophisticated mathematical modelling to process data in 

complex ways. It takes lanes angles and distance to the 

barricades if exists and also the obstacle distance as inputs 

and helps in making a decision (turning radius, right, left, 

forward, backward or stop). It is given with the learning 

dataset upon which it learns and makes an optimal 

predictions. It has higher accuracy and precisions about 

83.37 percent on all the decisions it makes. This helps is to 

ensure the proper and safe movement of the car within its 

lane. 

. 

4. Motion Planning: The motion of the car is an important 

aspect to be considered. The motion planning has 4 modules 

within it where each module defines the direction in which  

direction the car has to move or what type of motion to be 

made by the car. The modules such as: 

Right(): indicates to turn right. 

Left(): indicates to turn left. 

Forward(): indicates to move forward. 

Reverse(): indicates to move backward. 

Stop(): indicates to stop. 

 

5. Parking:  There are situations which cannot be predicted. 

Henceforth on a precautionary measure considering the 

safety of the passengers of the car there is a parking switch 

provided which on activation commands the car for 

emergency and has to park the vehicle towards left as per 
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Indian traffic rules where it initially determines the lane in 

which it is running currently and decides either to stop onthe 

same line(if running in left lane) or to change its lane and 

then stop(if running in right lane) 

 

IV ALGORITHMS USED 

 

1. CANNY EDGE DETECTION: 

This technique is used to detect the edges or the lanes on the 

road. 

 Canny edge detection algorithm: 

Step I: Noise reduction by smoothing: 
 Mathematically, the smooth resultant image is given 

by   

      F(i,j) = G * I(i,j)  

 

Step II: Finding Gradients: 
In this step we detect the edges where the change in 

grayscale intensity is maximum. Sobel operators are used to 

determine the gradients at each pixel of smoothened images. 

  

         -1       0       +1              -1    +2     +1 

 

D[I] =         -2       0       +2     D[J]=            0     0     0 

 

         -1       0        +3  -1    -2     -1 

 

 

 

These sobel marks are convolved with smoothed image and 

giving gardients in  i and j  directions. 

  Gi=Di*F(i,j) and Gj=Dj*F(i,j) 

Therefore edge strength or magnitude of gradient of a pixel is 

given by: 

  G= (Gi² +Gj²)½ 

The direction of gradient is given by: 

  Ɵ= arctan(Gj/Gi) 

 

Step III: Non maximum suppressions: 
 Non maximum suppression is carried out to preserves all 

local maxima in the gradient image, and deleting everything 

else this results in thin edges. For a pixel M (i, j): 

• Firstly round the gradient direction  nearest45°,then 

compare the gradient magnitude of the pixels in positive and 

negative gradient directions. 

• If the edge strength of pixel M (i, j) is largest than that of E 

(i, j) and W (i, j), then preserve the value of gradient and 

mark M (i, j) as edge pixel, if not then suppress or remove. 

  

Step IV: Hysteresis Thresholding:  
For a pixel M (i, j) having gradient magnitude G following 

conditions exists to detect pixel as edge: 

•  If G >789 than discard the edge. 

•  If G > than 565 keep the edge. 

•  If 789 < G < and565 and any of its neighbors in a 3 

×3 region around it have gradient magnitudes 

greater than565, keep the edge.  

 

2. OBSTACLE DETECTION: 

 

 

 
 

3. DEEPLEARNING: 

Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights θ  

Initialize target action-value function ˆ Q with weights ¯ θ = 

θ  

For episode = 1, M do 

 Initialize sequence s1=x1 and preprocessed 

sequenced φ1 = φ(s1) For t =1, T do 

With probability ϵ select a random action at  

Set s(t+1)=st,at,x(t+1) 

 Store transition (φt, at, rt, φt+1) in D 

Sample random mini batch of transitions (φj , aj , r 

j,φj+1)  from D. 

 Set yj={rj,             if episode terminates at step j+1 

             {rj + γ max′ aˆ Q(φj+1,a ′; ¯ θ), otherwise 

 perform a gradient descent step on (yjQ(φj,aj;θ))2          

w.r.t. network parameters θ  

 Every C steps,reset Q’=Q 

 End for 

End for 

 

IV. RESULTS AND DISCUSSION 

 

The model has run within its lane by detecting the right or 

left edges and drive within the proper lane. It detects the 

curve in the lane and decides the angle at which the car has 

to rotate so as to move in the proper lane in order to avoid 

collisions and in case of emergency the car is provided with 

emergency parking and also barricades in front of the car. 
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  Fig 4.1: Lane detection 

 

 
  Fig 4.2: Barricade detection 

 

 
  Fig 4.3: Emergency Parking 

 
  Fig 4.4: Turns left to park 

 

 
  Fig 4.5: Parks on left 

 

 
  Fig 4.6: Detects obstacle ahead 
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Fig 4.7: changes lane for drivable space 

 

 
Fig 4.8: Moves on the free lane 

 

V. CONCLUSION AND FUTURE SCOPE  

 

Conclusion: This paper presents the working prototype of 

self driving car which uses Canny Edge Detection algorithm 

for detecting lanes and neural networks to make optimal 

decisions which can help to reduce most of the road risks.  

 

Future work: There are many improvisations that can be 

brought to this model such as implementing GPS, NLP and 

so on. Therefore it can be made interactive with the user and 

keep monitor of every parameters of the car for the safer 

drive. 
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