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Abstract— Currently, low power Metal Oxide Gas Sensors (MOXs) are widely employed in gas detection because of its 

benefits, such as high sensitivity and low cost. However, MOX presents several problems, as well as lack of selectivity and 

environment effect. Semiconducting Zinc Oxide was used for sensing methane, where alloys of noble metals, mostly pure or 

binary alloys, were used to increase the sensor parameters of the device. Experimental results of such noble metals or their 

binary alloys were used to develop the corresponding artificial neural network model describing the three pivotal attributes of 

the sensor device, viz. response magnitude, response time and recovery time. The models were used in a novel approach to 

design ternary alloys with superior performance using multi-objective optimization technique, where the Pareto front thus 

developed was used for designing ternary catalysts. The present scheme of prescriptive data analytics seems to provide some 

definite clue for experimental study aiming the pre-determined set of sensor parameters. 
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I.  INTRODUCTION  

 

A highly volatile hydrocarbon such as Methane (CH4), if 

combines with ambient air, it can form a highly explosive 

mixture and can damage the safety in coal mine 

environment. A reliable sensor is thus required to be 

developed for the early detection of the harmful mixture 

present in the atmosphere. It is important to observe the 

emission of Methane in the atmosphere to reduce the 

environmental pollution [1]. It is proved that various kinds 

of oxide semiconductor materials are successful in detecting 

the presence of CH4 [2-7]. Semi-conductor ZnO can be 

efficiently used to sense the reducing gases of different types 

at low temperature [8]. ZnO acts as very promising catalyst, 

in detection of methane , when the sensing temperature 

varies between 200 °C and 250 °C ( depending on the ZnO 

synthesis route) [9-11]. The contact electrodes (alloys of 

noble metals ) are used in gas sensor devices for improving 

the device sensitivity, i.e. response time, response magnitude 

and recovery time. Noble metals acting as a catalyst by itself 

is kept inert to the reactions comes in handy in this type of 

gas sensors. A direct interaction between the promoter and 

the semi-conductor surface brings a sensitization in these 

type of sensor devices. The electronic state of the 

semiconductor changes with the change in the oxidation 

state of the promoter. In presence of air, two promoters of 

Ag and Pd form stable oxides (Ag2O and PdO), but get 

reduced to metals quite easily in presence of a combustible 

gas [5]. Each promoter in the oxidised form produces a 

strong electron-depleted space charge inside the semi-

conductor, and is indicated in the work function by the 

corresponding shifts [12]. The electronic interaction   

jeopardized, when it is reduced to metal [12]. Hydrogen gas 

( inflammable gases ) is highly susceptible in coal mines , 

for the improvement of the system properties of the sensor 

device for  the detection of leakage of methane gas , 

different metals and binary alloys with varying combination 

and composition have been tried by the earlier researcher 

[9,11,13,14].  In the present work, since ternary alloys were 

never used for this purpose, to explore the possibility of 

developing ternary alloys which can improve the 

performance of the gas sensor devices, an information based 

approach has been adopted. The three key sensor parameters 

for quantifying the performance of a sensor device are: 

Response magnitude, Response time, Recovery time, but in 

the optimization parameters they often found to have 

varying requirement.  Genetic algorithm (GA) [16], plays a 

significant role in cases of multi-objective optimization [15], 

and is used for the design of alloys with varying objectives 

successfully [17, 18]. A data driven model from the data 

generated on binary alloys by the earlier researchers has 

been evolved by using Artificial Neural Network (ANN) 

[19, 20] for the three aspects mentioned above, in the 

absence of any suitable analytical model correlating the 

properties and the alloy composition. An ANN map [21, 22] 

is used to outline the input-output spaces of complex 
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materials systems. The objective functions for the 

optimization process utilizes the developed ANN models.  

The earlier researchers have successfully used the ANN 

models as objective functions for GA based optimizations in 

materials systems [23, 24]. In the current case, for designing 

ternary alloys a novel computational design was adopted by 

using a database consisting of pure metal and binary alloys. 

To detect the trend of combinations and compositions to 

finally design the alloy there is an application of an outcome 

of the optimization process developed The” Pareto 

fronts”[16] consisting non-dominated optimal solution. 

 

II. RELATED WORK  

 

In respect to the traditional way of designing new materials, 

a trial and error approach , with pre –scheduled performance 

often leads to a complete drainage of resources is a time 

consuming process. In attaining the desired goal, the 

computational materials design, powered by intelligent data 

analytics techniques conducts lesser experiments and offer 

faster processing. By reducing the search space 

computationally, modelling, simulation and optimization 

reduces the number of trials. To improve the performance of 

materials the concept of materials informatics is used by 

generating inherent correlation between the process 

parameters and its performance based on the available 

dataset and materials chemistry. To unite scientific 

information and material discovery Data analytics serves as 

an effective tool. In the current case, the performance of the 

device is described through three main elements: Response 

magnitude, Response time, and Recovery time. They often 

vary in nature due to which genetic algorithm is used. An 

optimum balance of response time, response magnitude and 

recovery time were observed in the current attempts. The 

objective functions for the optimization study uses three 

separate ANN models to describe the above three attributes 

with respect to the input parameters.   

 

III. METHODOLOGY 

 

From the earlier published literatures based on the 

experimental study done by different researchers, the 

database was created [9,11,13,14].The database consists of 

alloy compositions including Methane(CH4) concentration 

pure metals and binary combinations of Au, Ag, Pt, Pd, Rh 

,testing temperature and size of the ZnO particles as inputs 

and three attributes : Response magnitude, Response time 

and Recovery time as output. Table1 consists of the detailed 

database. As mentioned above the objective functions for the 

optimization study uses three separate ANN models which is 

prepared by the data present in the table to describe the 

above three output parameters with respect to the input 

parameters. 

 

Table  1:  shows the List of inputs for three different output 

variables with their minimum, maximum, average and 

standard deviation values [9, 11, 13, 14] 

 

IV. RESULTS AND DISCUSSION 

 

From the database we did the three different Artificial 

Neural Network plot for each output variable. 

 

Table  2: List of input and output variables with their 

minimum and maximum value with Response Magnitude 

 

 

Input variables Min Max Mean 

Standard 

Deviation 

CH4 conc. (%) 0.01 1.5 0.524754 0.426081395 

Temperature 

(oC) 100 350 225.4098 64.54517205 

ZnO Size (nm) 20 60 57.72131 15.47054314 

Pt (wt%) 0 100 8.196721 27.65912729 

Pd (wt%) 0 74 34.42623 31.57660474 

Rh (wt%) 0 100 22.95082 42.40063924 

Ag (wt%) 0 70 27.86885 27.30779828 

Au (wt%) 0 100 6.557377 24.95898275 

Output 

variable 

    
Response 

Magnitude (%) 20 83.6 45.93888 18.74628351 

Response Time 

(S) 2.69 86 36.11855 18.91098114 

Recovery Time 

(S) 16 102 55.48555 22.39324979 

Sl. No.  Input variable  Minimum 

value  

Maximum 

value  

1.  CH4 conc.  0.01  1.5  

2.  Pt (wt %)  0  100  

3.  Pd (wt %)  0  74  

4.  Rh (wt %)  0  100  

5.  Ag (wt %)  0  70  

6.  Au (wt %)  0  100  

7.  Temperature(0C)  100  350  

8.  ZnO  crystal size 

(nm)  

20  107  

Sl.No.  Output variable  Minimum 

value  

Maximum 

value  

1.  Response 

magnitude  

28  88.55  
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Figure 1:   Achieved (A) vs. Target (T) values of Response 

Magnitude 

 

The plot of target vs. the achieved values of response 

magnitude, wherein the blue circle represents the data 

points. The blue dotted line is the A=T (achieved 

value=target value) line. The red solid line is the best linear 

fit line. The coefficient of regression (R) is 0.85. 

 

Table 3: List of input and output variables with their 

minimum and maximum value with Response Magnitude. 

 

Sl.No.  Input variable  Minimum 

value  

Maximum 

value  

1.  CH4 conc. 0.01  1.5  

2.  Pt (wt %)  0  100  

3.  Pd (wt %)  0  74  

4.  Rh (wt %)  0  100  

5.  Ag (wt %)  0  70  

6.  Au (wt %)  0  100  

7.  Temperature(0C)  100  350  

8.  ZnO crystal size 

(nm)  

20  107  

Sl.no.  Output variable  Minimum 

value  

Maximum 

value  

1.  Response time (s)           0     330 

 

 
Figure. 2:   Achieved (A) vs. Target (T) values of Response 

Time 

 

The plot of target vs the achieved values of response time, 

wherein the blue circle represents the data points. The blue 

dotted line is the A=T (achieved value=target value) line. 

The red solid line is the best linear fit line. The coefficient of 

regression (R) is 0.966.  

 

 
Figure.3: Pareto front of Response Magnitude vs. Response 

time considering generation and population as 500. 
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The results obtained from GA are plotted as follows. The X-

axis had the Pareto solutions numbers for response 

magnitude arranged in ascending order and the y-axis had 

the compositional input variables and testing temperature. 

 

 
Figure.4: Variation of Pt in the Pareto Solution of Response 

Magnitude 

 

 
Figure. 5: Variation of Rh in the Pareto Solution of  

Response Magnitude 

 

 
Figure.6: Variation of Pd in the Pareto Solution of Response 

Magnitude 

 
Figure.7: Variation of Ag in the Pareto Solution  of  

Response Magnitude 

 

 
Figure. 8: Variation of Au in the Pareto Solution Of 

Response Magnitude 

 

The role of compositional variables extracted from the 

Pareto front are presented below:  

 

i) In Fig 4 there is no effect of Platinum addition on the 

response magnitude, i.e. for low to high values of response 

magnitude there is practically no variation in the amount of 

Platinum addition, it is nearly equal to seventy one.  

ii) The optimized solution shows that Rh takes a value 

nearly equal to zero for all values of response magnitude, 

which suggests that Rh might not be required in the 

composition in Fig 5. 

iii) In Fig 6 Pd takes a value of nearly 13 for response 

magnitude, magnitude.  

iv) Ag takes a value close to its highest value 11 for all 

values of response magnitude, in Fig 7 

 

v) In Fig 8, Au takes a value close to its highest value 4 for 

all values of response magnitude.  
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Figure.9: Variation of Temperature in the Pareto Solution of 

Response Magnitude 

 

 
Figure.10: Variation of CH4 in the Pareto Solution Of 

Response Magnitude. 

 

 
Figure. 11: Variation of ZnO crystal size (nm) in the Pareto 

Solution of  Response  Magnitude. 

Role of the process variables, gas concentration and size of 

the metal oxide crystals are presented below:  

 

i) The plot for testing temperature shows some variation in 

the range 115 to 124, with temperature increasing with 

increase in response magnitude in Fig 9. 

ii) The plot for testing CH4 concentration shows some 

variation in the range 0.47 to 0.56, with temperature 

increasing with increase in response magnitude in Fig 10. 

 

iii) In Fig 11. As well as grain size increase response 

magnitude will increasing. It takes a small range of variation 

of 38 to 41 with the Response Magnitude. 

 

Table 4: List of different variables related to the Pareto 

solutions at lower, medium and higher response magnitude. 

 

 

The model suggests an alloy composition of Pt- 72, Pd-14, 

Ag-10 and Au-4 (in wt %) for the optimum property which 

gives a higher response magnitude (Sensitivity) for ternary 

alloy composition. 

 

The model suggests an alloy composition of Pt- 72, Pd-14, 

Ag-10 and Au-4 (in wt %) for the optimum property which 

gives a higher response magnitude (Sensitivity) for ternary 

alloy composition. 
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