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Abstract—This paper exhibits a Parameter-Free grammar guided genetic programming algorithm for mining rare association 

rules. This algorithm utilizes a context-free grammar to represent individuals, encoding the solutions in a tree-shape 

conformant to the grammar, so they are more expressive and flexible. The algorithm here introduced has the advantages of 

utilizing evolutionary algorithms for mining rare association rules, and it also additionally takes care of the issue of tuning the 

tremendous number of parameters required by these algorithms. The principle highlight of this algorithm is the small number 

of parameters required, providing the possibility of discovering rare association rules in an easy way for non-expert users. We 

compare our approach to existing evolutionary and exhaustive search algorithms, obtaining important results and overcoming 

the drawbacks of both exhaustive search and evolutionary algorithms. The experimental stage reveals that this approach 

discovers infrequent and reliable rules without a parameter tuning. 

Keywords—Genetic Programming, Association Rules, Free Parameters, Data Mining. 

 

I.  INTRODUCTION 

Association rule mining (ARM), which is considered as an 

imperative territory of data mining, has received more and 

more consideration  since it was defined by Agrawal et al [1]. 

ARM was considered as an unsupervised learning task, 

having a descriptive nature and searching for strong 

relationships among items that are clearly covered up in large 

datasets.  

An association rule could be defined as a ramifications of the 

form IF antecedent THEN consequent, both the antecedent 

and consequent being disjoint sets, i.e., they have no items in 

common. The meaning of an association rule is that if all the 

items in the antecedent exist in a transaction, then it is very 

plausible that all the items in the consequent are also in the 

transaction [2].  

First approaches for mining association rules are based on an 

exhaustive search methodology, trying to obtain rare and 

reliable association rules, i.e., those accurate rules that show 

up in a high percentage in the dataset. In the exhaustive 

search algorithms, the process of mining association rules is 

divided in two steps, firstly mining rare patterns, and 

afterward extracting as many reliable association rules as 

possible. In these first proposals, the mining process is 

frustrated because of these two steps, which require a lot of 

computational time and lot of memory. 

With the developing enthusiasm for the storage of 

information, more and more amounts of memory are 

required, so the mining process is hampered. Moreover, this 

growing interest in the storage of information is offering 

ascend to the utilization of real-world datasets containing 

numerical values. In ARM, the utilization of numerical 

datasets is not a trivial issue, expanding the search space 

since numerical domains typically contain many distinct 

values. In such circumstances, exhaustive search ARM 

algorithms cannot specifically manage numerical domains as 

they turn out to be not really viable. 

Evolutionary algorithms (EA) were proposed to conquer the 

high computational time and the memory requirements in the 

ARM field. The utilization of evolutionary methodologies 

also permits of mining numeric association rules, defining 

interval rules and taking care of the issue of increasing the 

search space. First evolutionary algorithms for mining 

associaiton rules were depended on genetic algorithms [3], 

looking up to the exhaustive search approaches 

computational and memory requirements.  

As of late, this unsupervised learning task was studied by 

utilizing a grammar-guided genetic programming (G3P) 

approach [4]. This algorithm, called G3PARM [5], was 

introduced as the first G3P proposal for mining association 

rules, giving great results and defeating those drawbacks of 

current ARM algorithms in terms of execution time, the 
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mining of numerical domains, and solution complexity. The 

fundamental feature of utilizing G3P is that the solutions are 

represented in a tree form having variable-length hierarchical 

structures, where the size, shape and structural complexity 

are not constrained a priori. G3PARM was initially depicted 

as a completely configurable algorithm, where a number of 

input parameters were required, e.g., support and confidence 

thresholds, crossover and mutation probabilities, the number 

of generations, the population size, the number of rules to be 

mined, etc. The same occurs when utilizing any of the 

existing evolutionary algorithms in this field, which are 

profoundly recommended in many situations, particularly 

when they are utilized by qualified data miners. By and by, 

the possibility of mining association rules utilizing a high-

performance algorithm without the need of specifying a large 

number of parameters is a requirement for non-expert users. 

This paper proposes a G3P approach for mining rare 

association rules without requiring as many parameters as 

 

G = (ΣN, ΣT , P, S) with: 

S = Rule 

ΣN = {Rule, Antecedent, Consequent,Comparison } 

ΣT = {‘AND’, ‘=’, ‘IN’, ‘Attribute categorical value’, 

‘Attribute numerical value’ } 

P = {Rule = Antecedent, Consequent; 

Antecedent = Comparison ; 

Consequent = Comparison ; 

Comparison = ‘AND’, Comparison, Comparison ; 

Comparison = ‘=’, ‘Attribute categorical value’ ; 

Comparison = ‘IN’, ‘Attribute numerical value’, ‘Attribute 

numerical value’; 

Figure. 1 Context-free grammar expressed in Extended BNF notation 

G3PRARM and other evolutionary algorithms do. This free 

parameter algorithm makes the mining process easier for 

non-expert users, not requiring an optimal configuration of 

the parameters to carry out the mining. Besides, since this 

approach is depends on G3P, it gives every one of the 

benefits of G3PRARM [6]. This paper is structured as 

follows: the most pertinent related work is presented in 

Section II; Section III portrays the model proposed as well as 

its main characteristics; Section IV depicts the experiments, 

including the datasets utilized, and discusses the results 

obtained; finally, in Section V, some concluding remarks are 

outlined. 

II. RELATED WORK  

In ARM, the vast majority of the existing exhaustive search 

proposals are based on the Apriorialgorithm[1]. Apriori 

accomplishes great performance by reducing the number of 

candidate patterns by using the anti-monotone property, 

which builds up that if a length-k itemset is not frequent in a 

dataset, none of its length-(k+1) super-itemsets can be 

frequent. By and by, this algorithm is not appropriated in 

datasets with a large number of frequent patterns caused by 

quite low minimum frequency thresholds. So as to overcome 

some of the drawbacks of Apriori, Han et al. [7] proposed the 

FP-Growth algorithm, which stores information about 

patterns in an all-encompassing prefix-tree structure. The 

frequent-pattern mining just need to work on the tree rather 

than the whole dataset. Be that as it may, this algorithm still 

suffer with the growth of the number of transactions and the 

utilization of a very low minimum support threshold, causing 

a huge number of association rules.  

As of late, a novel exhaustive search algorithm, called 

Predictive-Apriori, was proposed by Scheffer[8]. In this 

algorithm the author proposes to maximize the expected 

accuracy that the association rule will have for future data. 

This fast algorithm finds the n best rules that maximize the 

accuracy, not requiring any threshold to determine whether a 

pattern is frequent or not. Notwithstanding the described 

problems of the exhaustive search algorithms, these 

algorithms only works on datasets with categorical values. 

Be that as it may, more and more data in real-world 

applications usually consist of numerical values, so 

exhaustive search algorithms cannot be utilized specifically 

in the extraction of association rules. A well-known solution 

to deal with numerical values is the discretization of the 

dataset, i.e., the division of their domains into intervals 

pursued by applying categorical values to the intervals. 

Nevertheless, the use of a previous discretization step is not 

excluded from problems, requiring to choose the correct 

number of intervals. For the sake of overcoming the 

exhaustive search problems, i.e., the large amount of memory 

required, the huge computational time, and the fact of 

dealing with numerical attributes, evolutionary algorithms 

were proposed for mining association rules such as 

QuantMiner [9]. 

A novel algorithm for discovering PRAR,calledApriori-

Inverse,was proposed by KohandRountree [10]. Amid the 

search process, Apriori-Inverse keeps those items with a 

support value greater than a minimum support threshold but 

less than a maximum value. At that point, similarly to the 

Apriori algorithm, a set of association rules is obtained by 

utilizing a confidence threshold over all the possible 

combinations of items previously obtained. Consequently, 

this algorithm mines very infrequent association rules since 
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the support of each one is less than or equal to that of the 

item with minimum support.  

Another RARM algorithm, called ARIMA, was first 

proposed by Szathmary et al.[11] as a naïve approach. . Not 

at all like the Apriori-Inverse algorithm, ARIMA is not 

restricted to calculating PRAR. This algorithm firstly mines 

the minimal rare itemsets (mRIs), that is, those rare itemsets 

whose proper subsets are frequent. In this way, at whatever 

point a candidate k-itemset endures the frequent k−1 subset 

test, but proves to be rare, it is kept as amRI. At that point,, 

the algorithm finds their appropriate  supersets, avoiding zero 

itemsets, that is, those having a support of zero. Similarly to 

Apriori, rare association rules are generated utilizing the set 

of rare itemsets mined. For this final process, it is necessary 

to satisfy a minimum confidence threshold. Authors of the 

ARIMA algorithm proposed two different ways of mining 

rare itemsets. A first version, called Apriori-Rare, is a 

slightly modified version of Apriori, finding all frequent 

itemsets and storing the mRIs discovered. Szathmary et 

al.[12] also proposed a much more efficient proposal, the 

MRG-Exp algorithm, which reduces the search space by 

avoiding exploring all frequent itemsets. Rather, it is 

sufficient to search for frequent generators (FGs) only. An 

itemset X is a generator if it has no proper subset with the 

same support, that is, ∀Y ⊂ X, support(X)<support(Y). The 

Apriori-Rare requires a higher computational time since it 

lists all frequent itemsets before reaching the mRIs whereas 

MRG-Exp explores only the FGs. Both versions get 

association rules from the set of mRIs, the number of rules 

discovered being smaller than the naïve approach. 

The first algorithm for mining association rules by utilizing 

grammar-guided genetic programming was introduced by 

Luna et al. [5]. This algorithm, called G3PARM, makes 

utilization of G3P to define expressive and justifiable 

individuals. These individuals are defined by using a context-

free grammar that establishes the syntax constraints for each 

one, allowing both categorical and quantitative attributes to 

be defined and obtaining feasible solutions without requiring 

large amounts of memory. Rare-G3PARM[6], is helping rare 

association rules identification and separating them from 

noise, as well as a new genetic operator that guides the 

search process. In this proposal, the resulting set just 

involves the best rules found along the execution, and its size 

tends to the size specified by the data miner.In addition, this 

incorporates the lift measure together with support and 

confidence to defeat the issues in most algorithms and also 

G3PARM, when only the support–confidence framework is 

pursued.  

III. G3P PARAMETER-FREE ALGORITHM 

In this section, the proposed algorithm is described in depth. 

The fundamental idiosyncrasy of this algorithm is that it 

consolidates the strength of optimizing by means of 

evolutionary algorithms, the ability of representing rules in 

an expressive and flexible way thanks to G3P, and finally, it 

does not require a parameter tuning as evolutionary 

algorithms do. 

A. Encoding Criterion  

The algorithm presented in this paper represents the 

individuals by a genotype and a phenotype. The former is 

defined by means of a tree structure, having different shapes 

and sizes, conformant to a context-free grammar G (see 

Figure 1). The latter permits of representing the meaning of 

the tree structure, i.e., the phenotype represent a rule having 

an antecedent and a consequent. A context-free grammar 

could be formally defined as a four-tuple (ΣN, ΣT, P, S), ΣN 

being the non-terminal symbol alphabet, ΣT denoting the 

terminal symbol alphabet, P representing for the set of 

production rules, S for the start symbol, and ΣN and ΣT 

indicating disjoint sets, i.e., ΣN ∩ ΣT = ∅ . Any production 

rule follows the format α → β where α → ΣN, and β ɛ {ΣT 

∪ΣN}*. Starting from the start symbol S, each individual is 

represented in a derivation syntax-tree as a sentence 

conformant to the grammar. To acquire individuals, a series 

of production rules is applied from the set P. This process 

begins from the start symbol Rule, which dependably has a 

child node representing the antecedent and the consequent of 

the rule. Once a grammar is defined either to describe valid 

expressions or to impose restrictions to the search space, it is 

important to validate this grammar. Along these lines, 

considering the grammar defined in this problem and 

depicted in Figure 1, the following language is obtained: 

L(grammar)={ (AND Condition)n Condition → 

(ANDCondition)mCondition : n ≥0m ≥0}. In this manner, 

the grammar is well-defined and structured since any rule 

having at least one condition in the antecedent and 

consequent is obtained. Notice that the antecedent and 

consequent are disjoint sets, i.e., they have no items in 

common. Utilizing this grammar it is possible to mine any 

association rule containing either numerical or nominal 

features. Numerical attributes are utilized by applying the 

operator IN, and arbitrarily choosing two feasible values. 

B. The G3P Algorithm  

The EA proposed pursues a generational schema, as depicted 

in Figure 2. It begins by generating an initial set of 

individuals. The size of this population relies upon the 

number of rules to be mined. These initial individuals are 
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originated conformant to the grammar and they have a 

prefixed length, depending on the type of rules desired by the 

data miner. The algorithm brings the possibility of searching 

for rules having a different number of conditions, showing 

the minimum and maximum number of conditions available 

in each association rule. The goal of this algorithm is to 

return the best n Rare Association Rules discovered along the 

evolutionary process. To do as such, a pool of individuals 

with a predefined size of n is utilized, this pool working as an 

elitist population to maintain the best n rules throughout the 

generations. In each generation, this elitist population is 

updated with the best individuals, i.e., the individuals are 

ranked according to their fitness function esteems, and the 

best n individuals are kept for new generations. For 

generating new individuals in each generation of the 

evolutionary process two genetic operators are applied, 

which are appropriately described in subsequent sections. 

These two genetic operators (crossover and mutation) are 

used based on certain probabilities.  

Most evolutionary algorithms require fixed values, so the 

optimal probability values are determined by the data miner 

based on the dataset utilized. A noteworthy feature of the 

G3P free-parameter algorithm introduced in this paper is its 

ability to update the genetic operator probabilities, not 

requiring any previous study of the parameters to acquire the 

optimal results. In the initial generation, both operators have 

initial values, and in subsequent generations, these 

probabilities are updated according to the average fitness 

esteem acquired in the elite population previously mentioned. 

The algorithm proposed continues its iterative process 

without requiring a maximum number of generations as 

many evolutionary algorithms do. In the algorithm depicted 

in this paper, the evolutionary process is completed if the 

elite population improves with the pass of the generations, 

estimating this enhancement by utilizing the average fitness 

function values of the n best rules. At long last, if the rules 

mined do not improve in 20 generations, then the algorithm 

finishes and the best rules discovered in the evolutionary 

process are given to the data miner. So as to optimize those 

numerical intervals wanted by the data miner, the algorithm 

brings the likelihood of carryingout a post-processing step. In 

this final step, a subset of rules mined by the algorithm could 

be chosen, and the intervals could be optimized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Flow chart for the proposed algorithm 

C. Genetic Operators  

To acquire new individuals in every generation of the 

evolutionary process, the proposal portrayed in this paper 

uses two genetic operators: crossover and mutation. 

Crossover: This genetic operator swaps a randomly selected 

condition in one parent for another randomly selected 

condition in the other parent. Consequently, the objective of 

this genetic operator is to obtain new individuals having the 

genotype of the parents. For a superior comprehension, the 

pseudocodeof this genetic operatoris shown in Algorithm1. 

 

Require: parents  

Ensure: offsprings 

1: offsprings ←∅ 

2: for all individuals in parents do  

3: ind1,ind2 ← getIndividuals(parents)  

4: if random() <crossoverProbability then  

5: cond1 ← getRandomCondition(ind1)  

6: cond2 ← getRandomCondition(ind2)  

7: newInd1 ← exchange(ind1,cond1,cond2)  

8: offsprings ← offsprings∪ newInd1  
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9: newInd2 ← exchange(ind2,cond1,cond2)  

10: offsprings ← offsprings∪ newInd2  

11: end if  

12: end for  

13: return offsprings 

Algorithm 1 Crossover operator  

 

Mutation: The main objective of this genetic operator is to 

keep up the diversity in the population. In such a way, a 

randomly chosen condition in an individual is mutated to 

obtain a new one. Algorithm 2 demonstrates the pseudocode 

of this genetic operator. 

 

Require: parents  

Ensure: offsprings 

1: offsprings ←∅ 

2: for all individuals in parents do  

3: ind ← getIndividual(parents)  

4: if random() <mutationProbability then  

5: cond ← getRandomCondition(ind)  

6: newCond ← newCondition() 

7: newInd ← exchange(ind,cond, newCond)  

8: offsprings ← offsprings∪newInd 

 9: end if  

10: end for  

11: return offsprings 

Algorithm 2 Mutation operator  

 

A noteworthy feature of this G3P algorithm is its ability to 

refresh both genetic operator probabilities. In the first 

generation both probabilities have the initial value of 0.5. In 

subsequent generations, these probabilities are refreshed 

depending on if a higher diversity or a higher convergence is 

required. The algorithm calculates the average fitness value 

acquired from the pool, i.e., the average fitness of the elite 

population. . In view of this average esteem, it increases the 

population diversity by investigating the search space or it 

reduces the diversity by exploiting the knowledge 

represented within the population. If the average fitness 

esteem acquired from the algorithm is improving along the 

generations, then the exploration should gradually change 

into exploitation by enhancing the crossover probability and 

decreasing the mutation probability.  

Despite what might be expected, if the fitness esteem 

acquired is not enhancing along the generations, then a 

higher exploration is required by decreasing the crossover 

probability and increasing the mutation probability. It is 

fascinating to take note of that in the earliest generations, 

both probabilities increase and decrease while the optimal 

average fitness esteem is not found. At that point, the 

investigation begins to be more important than the 

exploitation since it is more difficult to enhance the solutions, 

and in this manner, the optimal values are gotten. After 20 

generations where the average fitness function esteem is not 

enhanced, the algorithm finishes returning the elitist 

population having the best n rules found. 

D. Evaluate Individuals  

The fundamental issue in any evolutionary model is the 

process of evaluating each individual or solution, permitting 

to assign a fitness function to each individual so as to decide 

how encouraging certain individual is, i.e., how close a given 

solution is to achieving the aim. Different researchers have 

portrayed some target measures for evaluating association 

rules[13]. Two of the most important and widely utilized 

measures in this field are support and confidence. The former 

is defined as the proportion of the number of transactions 

including the antecedent and consequent in a dataset. The 

latter is defined as the proportion of the number of 

transactions that incorporate the antecedent and consequent 

among all the transactions that comprise the antecedent. 

 In this paper, we additionally propose the utilization of a 

third measure to bring more effective information to the data 

mining task. This third measure is lift, which serves to 

calculate how many times more often the antecedent and 

consequent are related in a dataset than would be expected if 

they were statistically independent. The lift measure is 

calculated as the confidence of the rule divided by the 

consequent support. Contrary to Apriori-based algorithms, 

the EA portrayed in this paper does not require two phases to 

mine rules. In this algorithm, each rule is assessed by a 

fitness function, which could be established by the data miner 

among the three measures previously mentioned. In such a 

way, it is conceivable to pick the way the algorithm searches 

for rules, establishing an order of priority. In this paper, we 

determine that the first measure is support, the second one is 

the confidence measure and the last one is the lift measure. If 

the rules have the same support value, then the confidence is 

utilized to determine which one is better, and so on. 

E. Optimizing Intervals  

Once the algorithm has finished, it is conceivable to run a 

post-processing algorithm whose point is the optimization of 

those intervals desired by the data miner. The minimum and 

maximum bound of the interims are set up by the data miner, 

so the point of this final step is to run a local search model to 

optimize the rule within the interval defined by the expert. 

This post-processing algorithm pursues the notable hill 

climbing optimization technique, which is an iterative 

algorithm that begins with an arbitrary solution to a problem 

and it endeavors to find a better solution by incrementally 

changing a single element of the solution. If the change 

produces a better solution, an incremental change is made to 
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the new solution, repeating until no further enhancements 

can be found. 

IV. EXPERIMENTAL STUDY 

In this section, a complete analysis of the effectiveness of 

this proposal compared to other existing proposals for mining 

rare association rules is done. JCLEC[14], a Java library for 

the evolutionary computation, was utilized in the proposal 

presented in this paper. In the experimentation stage and in 

order to analyse the performance of our proposal, a series of 

executions were performed using different algorithms and 

different datasets. The results acquired by each evolutionary 

algorithm are the average results acquired running each one 

five times using different seeds each time. G3PRARM was 

originally compared with other exhaustive search (Apriori-

Inverse and ARIMA), providing excellent results. At a 

significance level of p = 0.01, G3PRARM was significantly 

not the same as exhaustive search algorithms in support and 

confidence measures. Concentrating on evolutionary 

algorithms and the support measure, at a significance level of 

p = 0.05, G3PRARM was significantly different from the 

other algorithms. Along these lines, for reasons of curtness, 

only the G3PRARM evolutionary algorithm and the 

Predictive Apriori algorithms are utilized in this 

experimental stage.  

The datasets utilized in this experimental stage are: computer 

hardware dataset (Cpu) having 209 instances and 9 numerical 

attributes, diabetes dataset (Diab) having 768 instances and 9 

numerical attributes, and finally glass dataset (Glass) having 

214 instances and 10 numerical attributes. Concentrating on 

the optimal parameters of the evolutionary algorithms, the 

best results for G3PRARM are those given by the authors, 

i.e., a population size of 50 individuals, 100 generations, 

70% crossover probability, 14% mutation probability,a 

maximum derivation number of 24, an external population of 

size 20, a 90% external confidence threshold and a 70% 

external support threshold. With respect to the Predictive 

Apriori algorithm and the proposed algorithm, see that they 

do not need any parameter, only the number of rules to be 

mined is required. At long last, and in order to carry out a 

fair comparison, the notEqual operator is not bear in mind 

neither by the G3PRARM algorithm nor by the algorithm 

proposed in this paper, since the Predictive Apriori algorithm 

does not utilize this operator, which permits of mining rules 

having a higher support as depicted. One of the problem of 

the G3PRARM algorithm is that it requires support and 

confidence thresholds, so a previous knowledge of the data 

distribution is required. In some cases, the fact of utilizing 

high thresholds gives rise to a small set of rules discovered. 

Table I demonstrates the number of rules discovered by the 

algorithms using the configuration parameters recently 

portrayed; where Cpu−N, Diab−N and Glass−N represent the 

datasets discretized in N intervals. 

Table I NUMBER OF RULES DISCOVERED BY THE ALGORITHMS 

Dataset Predictive-Apriori G3PRARM Proposal 

Cpu-5 20 8.6 20 

Cpu-10 20 1.0 20 

Cpu-15 20 0.0 20 

Diab-5 20 0.0 20 

Diab-10 20 0.0 20 

Diab-15 20 0.0 20 

Glass-5 20 3.0 20 

Glass-10 20 0.0 20 

Glass-15 20 0.0 20 

In this experimental stage, it is analysed which fitness 

function behaves better in terms of average confidence, 

average lift and average number of rules. Focusing on the 

confidence and lift measures, a fitness function is better than 

another if it obtains higher values for these measures. As for 

the average number of rules discovered, the best fitness 

function will be the one that obtains a number of rules closer 

to the maximum previously established by the data miner. In 

such a way, and in order to determine whether there exist 

significant differences among these four functions, a series of 

statistical tests were carried out. 

If the Friedman test rejects the null-hypothesis indicating that 

there are signicant differences, then a Bonferroni-Dunn test 

is performed to reveal these differences. The results obtained 

in this study are shown in Table II. It should be noted that the 

original datasets, i.e., the datasets without any previous 

discretization step, cannot be used with the Predictive 

Apriori since it does not deal with numerical values, so the 

symbol “-” is included to show it. The Friedman average 

ranking statistics for the average lift measure distributed 

according to FF is 18.009, which does not belong to the 

critical interval [0,(FF )0.01,3,27= 4.510]. Thus, we reject 

the null-hypothesis that all algorithms perform equally well 

for this measure. In order to analyze whether there are 

significant differences among them, the Bonferroni-Dunn test 

is used, 1.171 being the critical difference value for p =0.1; 

1.318 for p =0.05; and 1. for p =0.01, so there exist 

significant differences between the Predictive Apriori 

algorithm and the proposal presented in this paper at a 

significance level of p =0.01, the new proposal being 

statistically better.  

Concluding the analysis, it is possible to state that despite the 

fact FF provides the best ranking for two out of three 

measures, it is interesting to discover interesting rules. 

Therefore, when the domains under application do not 

provide a clear difference between noisy, rare and frequent 

rules, FF  is the best fitness function to be used, discovering 
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rules that are interesting and very reliable, and providing 

confidence values close to the maximum. As for the 

confidence and lift measure, this new approach behaves 

better than the G3PRARM algorithm. 

Table II RESULTS OBTAINED BY THE ALGORITHMS 
Support Confidence Lift 

Dataset Predic

tive-

Aprio

ri 

G3PR

ARM 

Proposal Predictive-

Apriori 

G3PR

ARM 

Propo

sal 

Predic

tive-

Aprio

ri 

G3PR

ARM 

Propo

sal 

Cpu-5 0.321 0.234 0.213 0.953 1.078 0.913 1.504 1.004 1.631 

Cpu-10 0.11 0.199 0.200 0.971 1.000 0.999 1.298 1.192 1.341 

Cpu-15 0.221 0.210 0.199 0.975 1.089 0.981 1.699 1.091 1.432 

Diab-5 0.313 0.311 0.303 0.956 1.000 0.999 1.393 1.292 1.425 

Diab-10 0.217 0.201 0.211 0.996 0.989 1.078 1.788 1.086 1.823 

Diab-15 0.192 0.163 0.150 0.992 0.879 1.178 1.077 1.172 1.254 

Glass-5 0.376 0.125 0.243 0.897 0.934 1.20 1.589 1.085 1.189 

Glass-10 0.294 0.211 0.200 0.986 1.001 1.089 1.289 1.026 1.299 

Glass-15 0.134 0.127 0.132 0.976 0.999 1.233 1.456 1.252 1.455 

 

V. CONCLUSION 

In this paper, a G3P proposal for mining Rare Association 

Rules without requiring any parameter tuning was 

introduced. In this proposal, each solution is represented as a 

derivation syntax-tree conformant to a context-free grammar. 

This portrayal of the individuals gives expressiveness, 

flexibility, and the ability to confine the search space over 

any domain.  

The experimental study uncovers that the new proposal 

behaves statistically better than the other algorithms for the 

support measure. Concentrating on the confidence and lift 

measure, it is absurd to expect to assert that there are 

significant differences among the three algorithms, but the 

new proposal acquires the best ranking for the lift measure 

and furthermore very reliable association rules, obtaining 

rules having a confidence value higher than 0.9 much of the 

time. 
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