

© 2019, IJCSE All Rights Reserved 342

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Special Issue, 4, Feb 2019 E-ISSN: 2347-2693

A Trusted Hardware- Database Based with Data Confidentiality

S. Bavithra
1*

, T. Manivannan
2

1,2
Dept. of Computer Science , E.G.S.Pillay Arts and Science College, Nagapattinam, Tamilnadu, India.

Corresponding Author: bavithrakkl1995@gmail.com

Available online at: www.ijcseonline.org

Abstract—Traditionally, as soon as confidentiality becomes a concern, data are encrypted before outsourcing to a service

provider. Any software-based cryptographic constructs then deployed, for server-side query processing on the encrypted data,

inherently limit query expressiveness. Here, we introduce TrustedDB, an outsourced database prototype that allows clients to

execute SQL queries with privacy and under regulatory compliance constraints by leveraging server-hosted, tamper-proof

trusted hardware in critical query processing stages, thereby removing any limitations on the type of supported queries. Despite

the cost overhead and performance limitations of trusted hardware, we show that the costs per query are orders of magnitude

lower than any (existing or) potential future software-only mechanisms. TrustedDB is built and runs on actual hardware, and its

performance and costs are evaluated here.

Keywords—Encryption,SQL,Query,DB.

I. INTRODUCTION

Although the benefits of outsourcing and clouds are well

known [41], significant challenges yet lie in the path of

large-scale adoption since such services often require their

customers to inherently trust the provider with full access to

the outsourced data sets. Numerous instances of illicit insider

behavior or data leaks have left clients reluctant to place

sensitive data under the control of a remote, third-party

provider, without practical assurances of privacy and

confidentiality, especially in business, health-care, and

government frameworks. Moreover, today’s privacy

guarantees for such services are at best declarative and

subject customers to unreasonable fine-print clauses. For

example, allowing the server operator to use customer

behavior and content for commercial profiling or govern-

mental surveillance purposes.

Existing research addresses several such security as-pects,

including access privacy and searches on encrypted data. In

most of these efforts, data are encrypted before outsourcing.

Once encrypted however, inherent limitations in the types of

primitive operations that can be performed on encrypted data

lead to fundamental expressiveness and practicality

constraints.

Recent theoretical cryptography results provide hope by

proving the existence of universal homomorphisms, i.e.,

encryption mechanisms that allow computation of arbitrary

functions without decrypting the inputs. Unfortunately,

actual instances of such mechanisms seem to be decades

away from being practical [17].

Ideas have also been proposed to leverage tamper-proof

hardware to privately process data server-side, ranging from

smart-card deployment in healthcare to more general

database operations.

Yet, common wisdom so far has been that trusted hardware

is generally impractical due to its performance limitations

and higher acquisition costs. As a result, with very few

exceptions, these efforts have stopped short of proposing or

building full-fledged database processing engines.

However, recent insights [9] into the cost-performance

tradeoff seem to suggest that things stand somewhat

differently. Specifically, at scale, in outsourced contexts,

computation inside secure processors is orders of magnitude

cheaper than any equivalent cryptographic operation per-

formed on the provider’s unsecured server hardware, despite

the overall greater acquisition cost of secure hardware.

This is so because the overheads for cryptography that allows

some processing by the server on encrypted data are

extremely high even for simple operations. This fact is rooted

not in cipher implementation inefficiencies but rather in

fundamental cryptographic hardness assumptions and

constructs, such as trapdoor functions. Moreover, this is

unlikely to change anytime soon as none of the current

primitives have, in the past half-century. New mathematical

 International Journal of Computer Sciences and Engineering Vol. 7(4), Feb 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 343

hardness problems will need to be discovered to allow hope

of more efficient cryptography.

As a result, we posit that a full-fledged privacy enabling

secure database leveraging server-side trusted hardware can

be built and run at a fraction of the cost of any (existing or

future) cryptography-enabled private data processing on

common server hardware. We validate this by designing and

building TrustedDB, an SQL database processing engine that

makes use of tamper-proof cryptographic coprocessors such

as the IBM 4764 [3] in close proximity to the outsourced

data.

Tamper resistant designs, however, are significantly

constrained in both computational ability and memory

capacity which makes implementing fully featured data-base

solutions using secure coprocessors (SCPUs) very

challenging. TrustedDB achieves this by utilizing common

unsecured server resources to the maximum extent possible.

For example, TrustedDB enables the SCPU to transparently

access external storage while preservingdata confidentiality

with on-the-fly encryption. This elim-inates the limitations

on the size of databases that can be supported. Moreover,

client queries are preprocessed to identify sensitive

components to be run inside the SCPU. Nonsensitive

operations are off-loaded to the untrusted host server. This

greatly improves performance and reduces the cost of

transactions.

Overall, despite the overheads and performance limita-tions

of trusted hardware, the costs of running TrustedDB are

orders of magnitude lower than any (existing or) potential

future cryptography-only mechanisms. Moreover, it does not

limit query expressiveness.

The contributions of this paper are threefold: 1) the

introduction of new cost models and insights that explain and

quantify the advantages of deploying trusted hardware for

data processing; 2) the design, development, and evaluation

of TrustedDB, a trusted hardware based rela-tional database

with full data confidentiality; and 3) detailed query

optimization techniques in a trusted hardware-based query

execution model.

II. THE REAL COSTS OF SECURITY

As soon as confidentiality becomes a concern, data need to

be encrypted before outsourcing. Once encrypted, solutions

can be envisioned that: (A) straightforwardly transfer data

back to the client where it can be decrypted and

queried,deploy cryptographic constructs server-side to

process encrypted data, and (C) process encrypted data

server-side inside tamper-proof enclosures of trusted

hardware.

In this section, we will compare the per-transaction costs of

each of these cases. This is possible in view of novel results

of Chen and Sion [9] that allow such quantification. We will

show that, at scale, in outsourced contexts,computation

inside secure hardware processors is orders of magnitude

cheaper than any equivalent crypto-graphic operation

performed on the provider’s unsecured common server

hardware (B). Moreover, due to the extremely high cost of

networking as compared with computation, the overhead of

transferring even a small subset of the data back to the client

for decryption and processing in (A) is overall significantly

more expensive than (C).

The main intuition behind this has to do with the amortized

cost of CPU cycles in both trusted and common hardware, as

well as the cost of data transfer. Due to economies of scale,

provider-hosted CPU cycles are 1-2 orders of magnitude

cheaper than that of clients and oftrusted hardware. The cost

of a CPU cycle in trusted hardware (56+ picocents,1

discussed below) becomes thus of the same order as the cost

of a traditional client CPU cycle at (e.g., 14-27 picocents for

small businesses) including acquisition and operating costs.

Additionally, when data are hosted far from their accessing

clients, the extremely expensive network traffic often

dominates. For example, transferring a single bit of data over

a network costs upwards of 3,500 picocents [9].Finally,

cryptography that would allow processing on encrypted data

demands extremely large numbers of cycles even for very

simple operations such as addition.

Cost of Primitives

Compute cycles and networks. In [9], Chen and Sion derived

the cost of compute cycles for a set of environments ranging

from individual homes with a few PCs (H) to large

enterprises and compute clouds (L) (M, L ¼ medium-, large-

sized business). These costs include a number of factors,

such as hardware (server, networking), building (floor space

leasing), energy (electricity), service (personnel,

maintenance), and so on. Their main thesis is that, due to

economies of scale and favorable operating parameters, per-

cycle costs decrease dramatically when run in large compute

providers’ infrastructures.

The resulting CPU cycle costs (see Fig. 1) range from 27

picocents for a small business environment to less than half

of a picocent for large cloud providers. Network service costs

range from a few hundred picocents per bit for nondedicated

service to thousands of picocents in the case of medium-

sized businesses. Detailed numbers are available in [9].

Also, the work in [39], [9] derives the cost of x86-equivalent

CPU cycles inside cloud-hosted SCPUs such as the IBM

4764 to be 56 picocents. We note that while this is indeed

much higher than the <0:5 picocent cost of a cycle on

 International Journal of Computer Sciences and Engineering Vol. 7(4), Feb 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 344

commodity hardware, it is comparable to the cost of cycles in

CPUs hosted in small-sized enterprises (14-27 picocents).

Comparison

Given these data points, we now compare the A, B, and C

alternatives discussed above. We consider the following

simple scenario. A client outsources an encrypted data set

composed of integers to a provider. The encrypted data are

then subjected to a simple aggregation (SUM) query in

which the server is to add all the integers without decryption

and return the result to the client. We chose this mechanism

not only for its illustrative simplicity but also because SUM

aggregation is one of the very few types of queries for which

nonhardware solutions have been proposed. This allows us to

directly compare with existing work. Later in Section 2.3, we

also generalize for arbitrary queries. Fig. 2 summarizes the

cost analysis that follows.

Querying unencrypted data. No confidentiality. As a base-

line, consider the most prevalent scenario today, in which the

client’s data are stored unencrypted with the service

provider. Client queries are executed entirely on the

provider’s side and only the results are transferred back.

Although this is the most cost-effective solution, it offers no

Generalized Argument

Recall that current cryptographic constructs are based on

trapdoor functions [18]. Currently, viable trapdoors are based

on modular exponentiation in large fields (e.g., 2,048 bit

modular operations) and viable homomorphisms involve a

trapdoor for computing the ciphertexts. Addition-ally, the

homomorphic operation itself involves processing these

encrypted values at the server in large fields, while

respecting the underlying encryption trapdoor, incurring at

least the cost of a modular multiplication [33], [28], [29].

This fundamental cryptography has not improved in

efficiency in decades and would require the invention of new

mathema-tical tools before such improvements are possible.

Thus, overall, for large-scale, efficient deployments (e.g.,

clouds) where CPU cycles are extremely cheap (e.g., 0.45

picocents/cycle), performing the cheapest, least secure

homomorphic operations (modular multiplication) comes at a

price tag of at least 30,000 picocents [9] even for values as

small as 32-bit (e.g., salaries and ZIP codes).

Thus, even if we assume that in future developments

homomorphisms will be invented that can allow full Turing

Machine languages to be run under the encryption envelope,

unless new trapdoor math is discovered, each operation will

yet cost at least 30,000 picocents when run on efficient

servers. By comparison, SCPUs process data at a cost of 56

picocents/cycle. This is a difference of several orders of

magnitude in cost. We also note that, while ECC signatures

(e.g., even the weak ECC-192) may be faster, ECC-based

trapdoors would be even more expensive, as they would

require two point multiplications, coming at a price tag of

least 780,000 cycles (see [11, p. 402]).

Yet, this is not entirely accurate, as we also need to account

for the fact that SCPUs need to read data in before

processing. The SCPUs considered here feature a decryption

throughput of about 10-14 MB/second for AES decryption

[3], confirmed also by our benchmarks. This limits the ability

to process data. For example, comparing two 32-bit integers

as in a JOIN operation becomes dominated not by the single-

cycle conditional JUMP CPU operation but by the cost of

decryption. At 166-200 megacycles/second, this results in the

SCPU having to idly wait anywhere between 47 and 80

cycles for decryption to happen in the crypto engine module

before it can process the data. This in effect results in an

amortized SCPU cost of between 2,632 and 4,480 picocents

(3,556 picocents on average) for each operation which

reduces the above three orders of magnitude difference to

only one order of magnitude, still in favor of SCPUs.4

The above holds even for the case when the SCPU has only

enough memory for the two compared values. Further, in the

presence of significantly higher, realistic amounts of SCPU

memory (e.g., M ¼ 32 MB for 4764-001), optimiza-tions can

be achieved for certain types of queries such as relational

JOINs. The SCPU can read in and decrypt entire data pages

instead of single data items and run the JOIN query over as

many of the decrypted data pages as would fit in memory at

one time. This results in significant savings. To illustrate,

consider a page size of P 32-bit words and a simple JOIN

algorithm for two tables of size N 32-bit integers each (we

are just concerned with the join attribute). Then, the SCPU

will perform a number of ðN=P Þ2 þ ðN=P Þ page fetches

each involving also a page data decryption at a cost of P

3,556 picocents. Thus, we get a total cost of ðNP2 þ NÞ

3;556 þ N2 56. For reasonable sizes, e.g., P ¼ M=2=4 ¼ 4

million, this cost becomes 3þ orders of magnitude lower than

the N2 30;000picocent cost incurred in the cryptography-

based case.

Cost versus Performance. Given these 3þ orders of

magnitude cost advantages of the SCPU over cryptogra-phy-

based mechanisms, we expect that for the above discussed

aggregation query mechanism [42], the SCPU’s overall

performance will also be at least comparable if not better

despite the CPU speed handicap. We experimentally

evaluated this hypothesis and achieved a throughput of about

1.07 million tuples/second for the SCPU. By contrast, in

[42], best case scenario throughputs range between 0.58 and

0.92 million tuples/second and at much higher overall cost.

III. ARCHITECTURE

To overcome SCPU storage limitations, the outsourced data

are stored at the host provider’s site. Query processing

 International Journal of Computer Sciences and Engineering Vol. 7(4), Feb 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 345

engines are run on both the server and in the SCPU.

Attributes in the database are classified as being either public

or private. Private attributes are encrypted and can only be

decrypted by the client or by the SCPU.

Since the entire database resides outside the SCPU, its size is

not bound by SCPU memory limitations. Pages that need to

be accessed by the SCPU-side query processing are pulled in

on demand by the Paging Module.

Query execution entails a set of stages:

1. In the first stage, a client defines a database schema

and partially populates it. Sensitive attributes are

marked using the SENSITIVE keyword which the

client layer transparently processes by encrypting the

corresponding attributes:

CREATE TABLE customer(ID integer

primary key,

Name char(72) SENSITIVE, Address

char(120) SENSITIVE).

2. Later, a client sends a query request to the host server

through a standard SQL interface. The query is

transparently encrypted at the client site using the

public key of the SCPU. The host server thus cannot

decrypt the query.

3. The host server forwards the encrypted query to the

Request Handler inside the SCPU.

4. The Request Handler decrypts the query and

forwards it to the Query Parser. The query is parsed

generating a set of plans. Each plan is constructed by

rewriting the original client query into a set of

subqueries, and, according to their target data set

classification, each subquery in the plan is identified

as being either public or private.

The Query Optimizer then estimates the execution

costs of each of the plans and selects the best plan

(one with least cost) for execution forwarding it to the

dispatcher.

6. The Query Dispatcher forwards the public queries to

the host server and the private queries to the SCPU

database engine while handling dependencies. The

net result is that the maximum possible work is run

on the host server’s cheap cycles.

7. The final query result is assembled, encrypted,

digitally signed by the SCPU Query Dispatcher, and

sent to the client.

Query parsing and execution.Sensitive attributes can

occuranywhere within a query, e.g., in SELECT, WHERE, or

GROUP-BY clauses, in aggregation operators, or within

subqueries. The Query Parser’s job is then:

1. To ensure that any processing involving private

attributes is done within the SCPU. All private

attributes are encrypted using a shared data encryp-

tion keys between the client and the SCPU; hence, the

host server cannot decipher these attributes (see

Section 5).

2. To optimize the rewrite of the client query such that

most of the work is performed on the host server.

To exemplify how public and private queries are

generated from the original client query, we use examples

from the TPC-H benchmark [2]. TPC-H does not specify any

classification of attributes based on security. Therefore, we

define a attribute set classification into private (encrypted)

and public (nonencrypted). In brief, all attributes that convey

identifying information about customers, suppliers, and parts

are considered private. The resulting query plans, including

rewrites into main CPU and SCPU components for TPC-H

queries Q3 and Q6 are illustrated in Fig. 4.

For queries that have WHERE clause conditions on public

attributes, the server can first SELECT all the tuples that

meet the criteria. The private attributes’ queries are then

performed inside the SCPU on these intermediate results, to

yield the final result.

limitation is rooted in fundamental cryptographic hardness

assumptions and constructs, such as cryptographic trap-

doors, the cheapest we have so far being at least as expensive

as modular multiplication [31], which comes at a price tag of

upwards of tens of thousands of picocents per operation

[9].The above insights lead to (C) being a significantly more

cost-efficient solution than (A) and (B). We now detail.

IV. CONCLUSION AND FUTURE SCOPE

Fig. 3. SCPU is one to three orders of magnitude cheaper

than cryptography.

 International Journal of Computer Sciences and Engineering Vol. 7(4), Feb 2019, E-ISSN: 2347-2693

© 2019, IJCSE All Rights Reserved 346

Fig. 3 compares SCPU-based queryprocessing with the most

ideal cryptography-based me-chanisms employing a single

modular multiplication. Note that such idealistic crypto

mechanisms have not been invented yet, but even if they

were as Fig. 3 illustrates, for linear processing queries (e.g.,

SELECT), the SCPU is roughly 1þ order of magnitude

cheaper. For JOIN queries, the SCPU costs drop even further

even when assuming no available memory. Finally, in the

presence of realistic amounts of memory, due to increased

overhead amortiza-tion, the SCPU is multiple orders of

magnitude cheaper than software-only cryptographic

solutions on legacy hardware.

We note that the above conclusion may not apply to targeted

niche scenarios. For example, it is entirely possible that by

maintaining client precomputed data server-side, processing

only a predefined set of queries or by supporting minimal

query classes (such as only range queries) specifically

designed niche solutions may turn out to be cheaper than

general-purpose full-fledged SCPU-backed databases like

TrustedDB.

REFERENCES

[1] FIPS PUB 140-2, Security Requirements for Cryptographic

Modules,

http://csrc.nist.gov/groups/STM/cmvp/standards.html#02, 2013.

[2] TPC-H Benchmark, http://www.tpc.org/tpch/, 2013.

[3] IBM 4764 PCI-X Cryptographic Coprocessor, http://www-

03.ibm.com/security/cryptocards/pcixcc/overview.shtml, 2007.

[4] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K.

Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and Y. Xu,

“Two Can Keep a Secret: A Distributed Architecture for Secure

Database Services,” Proc. Conf. Innovative Data Systems

Research(CIDR), pp. 186-199, 2005.

[5] A. Iliev and S.W. Smith, “Protecting Client Privacy with Trusted

Computing at the Server,” IEEE Security and Privacy, vol. 3, no.

2, pp. 20-28, Mar./Apr. 2005.

[6] M. Bellare, “New Proofs for NMAC and HMAC: Security

Without Collision-Resistance,” Proc. 26th Ann. Int’l Conf.

Advances inCryptology, pp. 602-619, 2006.

[7] B. Bhattacharjee, N. Abe, K. Goldman, B. Zadrozny, C. Apte,

V.R. Chillakuru, and M. del Carpio, “Using Secure Coprocessors

for Privacy Preserving Collaborative Data Mining and Analysis,”

Proc.Second Int’l Workshop Data Management on New Hardware

(DaMoN ’06), 2006.

[8] M. Canim, M. Kantarcioglu, B. Hore, and S. Mehrotra, “Building

Disclosure Risk Aware Query Optimizers for Relational Data-

bases,” Proc. VLDB Endowment, vol. 3, nos. 1/2, pp. 13-24, Sept.

2010.

[9] Y. Chen and R. Sion, “To cloud or Not to Cloud?: Musings on

Costs and Viability,” Proc. Second ACM Symp. Cloud

Computing(SOCC ’11), pp. 29:1-29:7, 2011.

[10] V. Ciriani, S.D.C. di Vimercati, S. Foresti, S. Jajodia, S.

Paraboschi, and P. Samarati, “Combining Fragmentation and

Encryption to Protect Privacy in Data Storage,” ACM Trans.

Information andSystem Security, vol. 13, no. 3, pp. 22:1-22:33,

July 2010.

[11] T. Denis, Cryptography for Developers,Syngress, 2007.

[12] E. Damiani, C. Vimercati, S. Jajodia, S. Paraboschi, and P.

Samarati, “Balancing Confidentiality and Efficiency in Untrusted

Relational DBMSs,” Proc. 10th ACM Conf. Computer and

Commu-nications Security (CCS ’12), 2003.

[13] E. Mykletun and G. Tsudik, “Aggregation Queries in the

Database-as-a-Service Model,” Proc. 20th IFIP WG 11.3

WorkingConf. Data and Applications Security, pp. 89-103, 2006.

[14] F.N. Afrati and V. Borkar, and M. Carey, and N. Polyzotis, and

J.D. Ullman, “Map-Reduce Extensions and Recursive Queries,”

Proc.14th Int’l Conf. Extending Database Technology (EDBT),

pp. 1-8, 2011.

[15] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-Molina, and R.

Motwani, “Distributing Data for Secure Database Services,”

Proc.Fourth Int’l Workshop Privacy and Anonymity in the

Information Soc. (PAIS ’11), pp. 8:1-8:10, 2011.

[16] T. Ge and S. Zdonik, “Fast Secure Encryption for Indexing in a

Column-Oriented DBMS,” Proc. IEEE 23rd Int’l Conf. Data

Eng.(ICDE), 2007.

[17] R. Gennaro, C. Gentry, and B. Parno, “Non-Interactive Verifiable

Computing: Outsourcing Computation to Untrusted Workers,”

Proc.30th Ann. Conf.Advances in Cryptology (CRYPTO ’10),

pp. 465-482, 2010.

[18] O. Goldreich, Foundations of Cryptography I. Cambridge Univ.

Press, 2001.

[19] B.I.H. Hacigumus and S. Mehrotra, “Efficient Execution of

Aggregation Queries over Encrypted Relational Databases,”

Proc.Ninth Int’l Conf. Database Systems for Advanced

Applications, vol. 2973, pp. 633-650, 2004.

[20] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL

over Encrypted Data in the Database-Service-Provider Model,”

Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD

’02),216-227, 2002.

