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Abstract—Traditionally, as soon as confidentiality becomes a concern, data are encrypted before outsourcing to a service 

provider. Any software-based cryptographic constructs then deployed, for server-side query processing on the encrypted data, 

inherently limit query expressiveness. Here, we introduce TrustedDB, an outsourced database prototype that allows clients to 

execute SQL queries with privacy and under regulatory compliance constraints by leveraging server-hosted, tamper-proof 

trusted hardware in critical query processing stages, thereby removing any limitations on the type of supported queries. Despite 

the cost overhead and performance limitations of trusted hardware, we show that the costs per query are orders of magnitude 

lower than any (existing or) potential future software-only mechanisms. TrustedDB is built and runs on actual hardware, and its 

performance and costs are evaluated here. 
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I.  INTRODUCTION 

 

Although the benefits of outsourcing and clouds are well 

known [41], significant challenges yet lie in the path  of  

large-scale  adoption  since such  services  often require their 

customers to inherently trust the provider with full access to 

the outsourced data sets. Numerous instances of illicit insider 

behavior or data leaks have left clients reluctant to place 

sensitive data under the control of a remote, third-party 

provider, without practical assurances of privacy and 

confidentiality, especially in business, health-care,  and  

government  frameworks.  Moreover,  today’s privacy 

guarantees for such services are at best declarative and 

subject customers to unreasonable fine-print clauses. For 

example, allowing the server operator to use customer 

behavior and content for commercial profiling or govern-

mental surveillance purposes. 

 

Existing research addresses several such security as-pects, 

including access privacy and searches on encrypted data. In 

most of these efforts, data are encrypted before outsourcing. 

Once encrypted however, inherent limitations in the types of 

primitive operations that can be performed on encrypted data 

lead to fundamental expressiveness and practicality 

constraints. 

 

Recent theoretical cryptography results provide hope by 

proving the existence of universal homomorphisms, i.e., 

encryption mechanisms that allow computation of arbitrary 

functions without decrypting the inputs. Unfortunately,  

 

actual instances of such mechanisms seem to be decades 

away from being practical [17]. 

 

Ideas have also been proposed to leverage tamper-proof 

hardware to privately process data server-side, ranging from 

smart-card deployment in healthcare to more general 

database operations. 

 

Yet, common wisdom so far has been that trusted hardware 

is generally impractical due to its performance limitations 

and higher acquisition costs. As a result, with very few 

exceptions, these efforts have stopped short of proposing or 

building full-fledged database processing engines. 

 

However, recent insights [9] into the cost-performance 

tradeoff seem to suggest that things stand somewhat 

differently. Specifically, at scale, in outsourced contexts, 

computation inside secure processors is orders of magnitude 

cheaper than any equivalent cryptographic operation per-

formed on the provider’s unsecured server hardware, despite 

the overall greater acquisition cost of secure hardware. 

 

This is so because the overheads for cryptography that allows 

some processing by the server on encrypted data are 

extremely high even for simple operations. This fact is rooted 

not in cipher implementation inefficiencies but rather in 

fundamental cryptographic hardness assumptions and 

constructs, such as trapdoor functions. Moreover, this is 

unlikely to change anytime soon as none of the current 

primitives have, in the past half-century. New mathematical 
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hardness problems will need to be discovered to allow hope 

of more efficient cryptography. 

 

As a result, we posit that a full-fledged privacy enabling 

secure database leveraging server-side trusted hardware can 

be built and run at a fraction of the cost of any (existing or 

future) cryptography-enabled private data processing on 

common server hardware. We validate this by designing and 

building TrustedDB, an SQL database processing engine that 

makes use of tamper-proof cryptographic coprocessors such 

as the IBM 4764 [3] in close proximity to the outsourced 

data. 

 

Tamper resistant designs, however, are significantly 

constrained in both computational ability and memory 

capacity which makes implementing fully featured data-base 

solutions using secure coprocessors (SCPUs) very 

challenging. TrustedDB achieves this by utilizing common 

unsecured server resources to the maximum extent possible. 

For example, TrustedDB enables the SCPU to transparently 

access external storage while preservingdata confidentiality 

with on-the-fly encryption. This elim-inates the limitations 

on the size of databases that can be supported. Moreover, 

client queries are preprocessed to identify sensitive 

components to be run inside the SCPU. Nonsensitive 

operations are off-loaded to the untrusted host server. This 

greatly improves performance and reduces the cost of 

transactions. 

 

Overall, despite the overheads and performance limita-tions 

of trusted hardware, the costs of running TrustedDB are 

orders of magnitude lower than any (existing or) potential 

future cryptography-only mechanisms. Moreover, it does not 

limit query expressiveness. 

 

The contributions of this paper are threefold: 1) the 

introduction of new cost models and insights that explain and 

quantify the advantages of deploying trusted hardware for 

data processing; 2) the design, development, and evaluation 

of TrustedDB, a trusted hardware based rela-tional database 

with full data confidentiality; and 3) detailed query 

optimization techniques in a trusted hardware-based query 

execution model. 

 

II. THE REAL COSTS OF SECURITY 

 

As soon as confidentiality becomes a concern, data need to 

be encrypted before outsourcing. Once encrypted, solutions 

can be envisioned that: (A) straightforwardly transfer data 

back to the client where it can be decrypted and 

queried,deploy cryptographic constructs server-side to 

process encrypted data, and (C) process encrypted data 

server-side inside tamper-proof enclosures of trusted 

hardware. 

In this section, we will compare the per-transaction costs of 

each of these cases. This is possible in view of novel results 

of Chen and Sion [9] that allow such quantification. We will 

show that, at scale, in outsourced contexts,computation 

inside secure hardware processors is orders of magnitude 

cheaper than any equivalent crypto-graphic operation 

performed on the provider’s unsecured common server 

hardware (B). Moreover, due to the extremely high cost of 

networking as compared with computation, the overhead of 

transferring even a small subset of the data back to the client 

for decryption and processing in (A) is overall significantly 

more expensive than (C). 

 

The main intuition behind this has to do with the amortized 

cost of CPU cycles in both trusted and common hardware, as 

well as the cost of data transfer. Due to economies of scale, 

provider-hosted CPU cycles are 1-2 orders of magnitude 

cheaper than that of clients and oftrusted hardware. The cost 

of a CPU cycle in trusted hardware (56+ picocents,1 

discussed below) becomes thus of the same order as the cost 

of a traditional client CPU cycle at (e.g., 14-27 picocents for 

small businesses) including acquisition and operating costs. 

Additionally, when data are hosted far from their accessing 

clients, the extremely expensive network traffic often 

dominates. For example, transferring a single bit of data over 

a network costs upwards of 3,500 picocents [9].Finally, 

cryptography that would allow processing on encrypted data 

demands extremely large numbers of cycles even for very 

simple operations such as addition.  

 

Cost of Primitives 

Compute cycles and networks. In [9], Chen and Sion derived 

the cost of compute cycles for a set of environments ranging 

from individual homes with a few PCs (H) to large 

enterprises and compute clouds (L) (M, L ¼ medium-, large-

sized business). These costs include a number of factors, 

such as hardware (server, networking), building (floor space 

leasing), energy (electricity), service (personnel, 

maintenance), and so on. Their main thesis is that, due to 

economies of scale and favorable operating parameters, per-

cycle costs decrease dramatically when run in large compute 

providers’ infrastructures. 

 

The resulting CPU cycle costs (see Fig. 1) range from 27 

picocents for a small business environment to less than half 

of a picocent for large cloud providers. Network service costs 

range from a few hundred picocents per bit for nondedicated 

service to thousands of picocents in the case of medium-

sized businesses. Detailed numbers are available in [9]. 

 

Also, the work in [39], [9] derives the cost of x86-equivalent 

CPU cycles inside cloud-hosted SCPUs such as the IBM 

4764 to be 56 picocents. We note that while this is indeed 

much higher than the <0:5 picocent cost of a cycle on 
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commodity hardware, it is comparable to the cost of cycles in 

CPUs hosted in small-sized enterprises (14-27 picocents). 

 

Comparison 

Given these data points, we now compare the A, B, and C 

alternatives discussed above. We consider the following 

simple scenario. A client outsources an encrypted data set 

composed of integers to a provider. The encrypted data are 

then subjected to a simple aggregation (SUM) query in 

which the server is to add all the integers without decryption 

and return the result to the client. We chose this mechanism 

not only for its illustrative simplicity but also because SUM 

aggregation is one of the very few types of queries for which 

nonhardware solutions have been proposed. This allows us to 

directly compare with existing work. Later in Section 2.3, we 

also generalize for arbitrary queries. Fig. 2 summarizes the 

cost analysis that follows. 

 

Querying unencrypted data. No confidentiality. As a base-

line, consider the most prevalent scenario today, in which the 

client’s data are stored unencrypted with the service 

provider. Client queries are executed entirely on the 

provider’s side and only the results are transferred back. 

Although this is the most cost-effective solution, it offers no 

 

Generalized Argument 

Recall that current cryptographic constructs are based on 

trapdoor functions [18]. Currently, viable trapdoors are based 

on modular exponentiation in large fields (e.g., 2,048 bit 

modular operations) and viable homomorphisms involve a 

trapdoor for computing the ciphertexts. Addition-ally, the 

homomorphic operation itself involves processing these 

encrypted values at the server in large fields, while 

respecting the underlying encryption trapdoor, incurring at 

least the cost of a modular multiplication [33], [28], [29]. 

This fundamental cryptography has not improved in 

efficiency in decades and would require the invention of new 

mathema-tical tools before such improvements are possible. 

Thus, overall, for large-scale, efficient deployments (e.g., 

clouds) where CPU cycles are extremely cheap (e.g., 0.45 

picocents/cycle), performing the cheapest, least secure 

homomorphic operations (modular multiplication) comes at a 

price tag of at least 30,000 picocents [9] even for values as 

small as 32-bit (e.g., salaries and ZIP codes). 

 

Thus, even if we assume that in future developments 

homomorphisms will be invented that can allow full Turing 

Machine languages to be run under the encryption envelope, 

unless new trapdoor math is discovered, each operation will 

yet cost at least 30,000 picocents when run on efficient 

servers. By comparison, SCPUs process data at a cost of 56 

picocents/cycle. This is a difference of several orders of 

magnitude in cost. We also note that, while ECC signatures 

(e.g., even the weak ECC-192) may be faster, ECC-based 

trapdoors would be even more expensive, as they would 

require two point multiplications, coming at a price tag of 

least 780,000 cycles (see [11, p. 402]). 

 

Yet, this is not entirely accurate, as we also need to account 

for the fact that SCPUs need to read data in before 

processing. The SCPUs considered here feature a decryption 

throughput of about 10-14 MB/second for AES decryption 

[3], confirmed also by our benchmarks. This limits the ability 

to process data. For example, comparing two 32-bit integers 

as in a JOIN operation becomes dominated not by the single-

cycle conditional JUMP CPU operation but by the cost of 

decryption. At 166-200 megacycles/second, this results in the 

SCPU having to idly wait anywhere between 47 and 80 

cycles for decryption to happen in the crypto engine module 

before it can process the data. This in effect results in an 

amortized SCPU cost of between 2,632 and 4,480 picocents 

(3,556 picocents on average) for each operation which 

reduces the above three orders of magnitude difference to 

only one order of magnitude, still in favor of SCPUs.4 

 

The above holds even for the case when the SCPU has only 

enough memory for the two compared values. Further, in the 

presence of significantly higher, realistic amounts of SCPU 

memory (e.g., M ¼ 32 MB for 4764-001), optimiza-tions can 

be achieved for certain types of queries such as relational 

JOINs. The SCPU can read in and decrypt entire data pages 

instead of single data items and run the JOIN query over as 

many of the decrypted data pages as would fit in memory at 

one time. This results in significant savings. To illustrate, 

consider a page size of P 32-bit words and a simple JOIN 

algorithm for two tables of size N 32-bit integers each (we 

are just concerned with the join attribute). Then, the SCPU 

will perform a number of ðN=P Þ2 þ ðN=P Þ page fetches 

each involving also a page data decryption at a cost of P 

3,556 picocents. Thus, we get a total cost of ðNP2 þ NÞ 

3;556 þ N2 56. For reasonable sizes, e.g., P ¼ M=2=4 ¼ 4 

million, this cost becomes 3þ orders of magnitude lower than 

the N2 30;000picocent cost incurred in the cryptography-

based case. 

 

Cost versus Performance. Given these 3þ orders of 

magnitude cost advantages of the SCPU over cryptogra-phy-

based mechanisms, we expect that for the above discussed 

aggregation query mechanism [42], the SCPU’s overall 

performance will also be at least comparable if not better 

despite the CPU speed handicap. We experimentally 

evaluated this hypothesis and achieved a throughput of about 

1.07 million tuples/second for the SCPU. By contrast, in 

[42], best case scenario throughputs range between 0.58 and 

0.92 million tuples/second and at much higher overall cost. 

 

III. ARCHITECTURE 

 

To overcome SCPU storage limitations, the outsourced data 

are stored at the host provider’s site. Query processing 
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engines are run on both the server and in the SCPU. 

Attributes in the database are classified as being either public 

or private. Private attributes are encrypted and can only be 

decrypted by the client or by the SCPU. 

 

Since the entire database resides outside the SCPU, its size is 

not bound by SCPU memory limitations. Pages that need to 

be accessed by the SCPU-side query processing are pulled in 

on demand by the Paging Module. 

Query execution entails a set of stages: 

1. In the first stage, a client defines a database schema 

and partially populates it. Sensitive attributes are 

marked using the SENSITIVE keyword which the 

client layer transparently processes by encrypting the 

corresponding attributes: 

 

CREATE TABLE customer(ID integer 

primary key, 

 

Name char(72) SENSITIVE, Address 

char(120) SENSITIVE). 

2. Later, a client sends a query request to the host server 

through a standard SQL interface. The query is 

transparently encrypted at the client site using the 

public key of the SCPU. The host server thus cannot 

decrypt the query. 

 

3. The host server forwards the encrypted query to the 

Request Handler inside the SCPU. 

 

4. The Request Handler decrypts the query and 

forwards it to the Query Parser. The query is parsed 

generating a set of plans. Each plan is constructed by 

rewriting the original client query into a set of 

subqueries, and, according to their target data set 

classification, each subquery in the plan is identified 

as being either public or private. 

 

The Query Optimizer then estimates the execution 

costs of each of the plans and selects the best plan 

(one with least cost) for execution forwarding it to the 

dispatcher. 

 

6. The Query Dispatcher forwards the public queries to 

the host server and the private queries to the SCPU 

database engine while handling dependencies. The 

net result is that the maximum possible work is run 

on the host server’s cheap cycles. 

 

7. The final query result is assembled, encrypted, 

digitally signed by the SCPU Query Dispatcher, and 

sent to the client. 

 

Query parsing and execution.Sensitive attributes can 

occuranywhere within a query, e.g., in SELECT, WHERE, or 

GROUP-BY clauses, in aggregation operators, or within 

subqueries. The Query Parser’s job is then: 

 

1. To ensure that any processing involving private 

attributes is done within the SCPU. All private 

attributes are encrypted using a shared data encryp-

tion keys between the client and the SCPU; hence, the 

host server cannot decipher these attributes (see 

Section 5). 

 

2. To optimize the rewrite of the client query such that 

most of the work is performed on the host server. 

 

To exemplify how public and private queries are 

generated from the original client query, we use examples 

from the TPC-H benchmark [2]. TPC-H does not specify any 

classification of attributes based on security. Therefore, we 

define a attribute set classification into private (encrypted) 

and public (nonencrypted). In brief, all attributes that convey 

identifying information about customers, suppliers, and parts 

are considered private. The resulting query plans, including 

rewrites into main CPU and SCPU components for TPC-H 

queries Q3 and Q6 are illustrated in Fig. 4. 

 

For queries that have WHERE clause conditions on public 

attributes, the server can first SELECT all the tuples that 

meet the criteria. The private attributes’ queries are then 

performed inside the SCPU on these intermediate results, to 

yield the final result. 

limitation is rooted in fundamental cryptographic hardness 

assumptions and constructs, such as cryptographic trap-

doors, the cheapest we have so far being at least as expensive 

as modular multiplication [31], which comes at a price tag of 

upwards of tens of thousands of picocents per operation 

[9].The above insights lead to (C) being a significantly more 

cost-efficient solution than (A) and (B). We now detail. 

 

IV. CONCLUSION AND FUTURE SCOPE  

 
 

Fig. 3. SCPU is one to three orders of magnitude cheaper 

than cryptography. 
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Fig. 3 compares SCPU-based queryprocessing with the most 

ideal cryptography-based me-chanisms employing a single 

modular multiplication. Note that such idealistic crypto 

mechanisms have not been invented yet, but even if they 

were as Fig. 3 illustrates, for linear processing queries (e.g., 

SELECT), the SCPU is roughly 1þ order of magnitude 

cheaper. For JOIN queries, the SCPU costs drop even further 

even when assuming no available memory. Finally, in the 

presence of realistic amounts of memory, due to increased 

overhead amortiza-tion, the SCPU is multiple orders of 

magnitude cheaper than software-only cryptographic 

solutions on legacy hardware. 

 

We note that the above conclusion may not apply to targeted 

niche scenarios. For example, it is entirely possible that by 

maintaining client precomputed data server-side, processing 

only a predefined set of queries or by supporting minimal 

query classes (such as only range queries) specifically 

designed niche solutions may turn out to be cheaper than 

general-purpose full-fledged SCPU-backed databases like 

TrustedDB. 
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