

 © 2019, IJCSE All Rights Reserved 25

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue, 5, March 2019 E-ISSN: 2347-2693

Generation of Certain Patterns Using Array-Token Petri Nets

V. Sharon Philomena

1*
, P. Usha

2
, R. Santhiya

3

1,3

PG Department of Mathematics, Women’s Christian College, Chennai-6
2
Department of Mathematics, D.G. Vaishnav College, Chennai-106

*Corresponding Author: sharonphilo2008@gmail.com, Tel.: +00-80156-67977

DOI: https://doi.org/10.26438/ijcse/v7si5.2529 | Available online at: www.ijcseonline.org

Abstract— A Petri net is a specific type of Mathematical modeling which is useful in data analysis, simulations, business

process modeling and other such scenarios. There are different types of Petri net models which models the behaviour of

distributed systems. This paper presents some applications of array token Petri nets by generating certain pattern of picture

languages using evolutionary rules on transitions. An Array-token Petri net (ATPN) was first defined by Beulah Immanuel by

labeling tokens by arrays which generates picture languages. This paper contains two rules called elementary evolution rule

(EER) and parallel evolution rule (PER) which is used to generate same pattern of picture languages in different sizes.

Application of ATPN which generates English alphabetic letters treated as rectangular arrays was examined and also Petri net

which generates kolam pattern was also studied. Motivated by these papers, we have generated certain patterns of picture

languages using ATPNs by applying some evolution rules on transitions.

Keywords— Petri net, Array-token Petri net, Picture languages.

I. INTRODUCTION

The concept of Petri net was introduced by Carl Adam Petri

in 1962. A Petri net is one of several mathematical tools used

to model the functionality or behavior of a distributed system

with concurrency. It is a bipartite graph which has place

nodes, transition nodes and directed arcs which connects

places with transitions. The place from which the arc enters a

transition is called the input place of the transition and the

place to which an arc enters from a transition is called the

output place of the transition. Places may hold any number of

tokens. The tokens circulate the system between places via

transitions. Distribution of tokens over the places of a net is

called a marking. Transitions act on input tokens by a

process known as firing. A transition triggers whenever there

is at least one token in all the input places. When the

transition fires, tokens are removed from its input places and

added at all output places of the transition.

Syntactic methods of generation and recognition of patterns

and pictures have been developed for many years by

researchers with different motivations and have been applied

in practical problems such as character recognition, two-

dimensional mathematical symbols, 3D object recognition

and many others. Several two-dimensional grammars which

constitute one such area of syntactic methods, have been

proposed and studied in [7].

A coloured Petri net (CPN) has a transition which can fire

with respect to its colours [3]. An extension of this coloured

Petri net called string-token Petri net was introduced in [1]

by labeling the tokens with strings and the transitions with

evolution rules. On the other hand, an extension of the string-

token Petri net called array-token Petri net was introduced in

[4] by labeling tokens by arrays and is used to generate

picture languages. A Petri net model to generate English

alphabetic letters using array-token Petri net was examined in

[9]. Petri net model to generate array of tiles and kolam

patterns was studied in [5, 6]. In this paper, we have

generated certain patterns of picture languages using ATPNs

by applying some evolution rules on transitions.

II. PRELIMNARIES

Definition 2.1
An Array-token Petri net (ATPN) is a 6-tuple N = (P, T, C,

A, R, M0) where

(i) P is a set of places;

(ii) T is a set of transitions;

(iii) C is set of symbols (colours) and CAY is the set of all

rectangular arrays over this colour set C, that are associated

with the tokens.

(iv) A (P  T)  (T  P) is a set of arcs;

(v) R(t) is the set of evolution rules associated with a

transition t;

(vi) M0, the initial marking, is a function defined on P such

that, for pP, M0(p) [CAY]MS.

Definition 2.2

https://doi.org/10.26438/ijcse/v7si5.14

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 26

 An Elementary Evolution Rule (EER) [8] over VAY, where

V an alphabet, is one of the following:

(i) Identity, which keeps the array unaltered;

(ii) Column insertion a (l/r, according as it is left or

right);

(iii) Row insertion a (u/d, according as it is up or down);

(iv) Column deletion: a (l/r, according as it is left or

right);

(v) Row deletion: a (u/d, according as it is up or down);

(vi) Substitution: ab, where a, bV and  is the empty

word.

The following subnets illustrate how column insertion rules

are applied on the left and right of the array A respectively.

The rule a(l), inserts a column of a’s to the left of the

array A , the rule a(r), inserts a column of a’s to the right

of the array A.

A

p
j

p
i

t1

a(l)

A

p
j

p
i

t1

a(r)

Figure. 1: Sub nets used for the column insertion

Similarly, the rule a(u), inserts a row of a’s to the top of

the array A and the rule a(d), inserts a row of a’s to the

bottom of the array A. Similar would be the case for the

column deletion and row deletion. Substitution rule ab just

replaces a by b.

Definition 2.3
The language, which is generated by ATPN with EER on

transition is denoted by AERL.

Definition 2.4

A Parallel Evolution Rule (PER) over VAY, where V an

alphabet, is one of the following:

(i) The rule a(u, d, l, r) inserts ‘a’ simultaneously on up

and down rows, left and right columns.

(ii) The rule a(u, d);b(l, r) inserts ‘a’ on up and down

rows; ‘b’ on left and right columns simultaneously.

(iii) Let c1, c2, c3 and c4 denote top left, top right, bottom left

and bottom right corners of rectangular array respectively,

the rule a(c1, c2, c3, c4) inserts ‘a’ on top left, top right,

bottom left and bottom corners of rectangular array

simultaneously.

(iv) The rule alt[a, b (u, d, l, r)] inserts a and b

alternatively on up and down rows, left and right columns

respectively.

The following subnets illustrate how insertion rule is applied

on up, down, left and right simultaneously of a rectangular

array A.

A

p
j

p
i

t1

b(u,d,l,r) x(c1,c2,c3,c4) p
k

t2

Figure. 2: Sub nets used for the array representation

shown in Figure. 3(iii)

III. RESULTS AND DISCUSSION

Theorem 3.1

There exist ATPNs with PER on transitions which generate

certain patterns of picture languages.

Proof:

We construct ATPNs to generate certain picture languages

obtained by pattern generation.

(i) Consider the following square tiles of same size as in

Figure. 4. Using these tiles and parallel evolution rules (PER)

on transitions of ATPN, let us generate a pattern called

flower pattern as in Figure. 6.

A B C D E

F G

Figure. 4: Tiles used in ATPN1

Construct the ATPN1 as in the Figure. 5. In ATPN1, when the

transition t1 fires it removes the token A from the input place

p1, performs the rule [B(u);C(d);E(l);D(r)] on the array as

indicated at the transition and deposits the array

in p2 and again when the transition t2 fires it performs the rule

 [G(c1,c4);F(c2,c3)] and deposits the array

 in p3.

Now consider the array deposited in p3 as P. When the

transition t3 fires it removes the token P from p3, performs

the rule P(u, d, l, r) and deposits the array

 in

p4 and at last when the transition t4 fires, it performs the rule

P(c1,c2,c3,c4) and deposits the array

 in p3, we

generate a pattern called flower pattern as in Figure. 6(iv).

We can generate different sizes of this picture language as

the number of times t3 and t4 fire.

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 27

[B(u);C(d);E(l);D(r)]

[G(c1,c4);F(c2,c3)] P(u,d,l,r)

P(c1,c2,c3,c4)

p
1

p
2

p
3

p
4

1t

2t
3t

4t

A

P

Figure. 5: ATPN1

(i) When t1 fires (ii) When t1t2 fires

(iii) When t1t2t3 fires

(iv)When t1t2t3t4 fires

Figure. 6: Generation of flower pattern using ATPN1

(ii) Consider the following square tiles of same size as in

Figure. 7. Using these tiles and parallel evolution rules (PER)

on transitions of ATPN, we can generate another pattern

called swastik pattern which is given in Figure. 9.

A B C D

Figure. 7: Tiles used in ATPN2

Construct the ATPN2 as in the Figure. 8. In ATPN2, when the

transition t1 fires it removes the token A from the input place

p1, performs the rule [C(u, d);B(l, r)] on the array as

indicated at the transition and deposits the array

in p2 and again when the transition t2 fires it performs the rule

 [D(c1,c2,c3,c4] and deposits the array

 in p3.

Now consider the array deposited in p3 as P. When the

transition t3 fires it removes the token P from p3, performs

the rule P(u, d, l, r) and deposits the array

 in

p4 and at last when the transition t4 fires, it performs the rule

P(c1,c2,c3,c4) and deposits the array

 in p3, we

generate a pattern called swastik pattern as in Figure. 9. We

can generate different sizes of this picture language as the

number of times t3 and t4 fire.

[C(u,d);B(l,r)]

[D(c1,c2,c3,c4)] P(u,d,l,r)

P(c1,c2,c3,c4)

p
1

p
2

p
3

p
4

1t

2t
3t

4t

A

P

Figure. 8: ATPN2

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 28

Figure. 9: Generation of swastik pattern using ATPN2

(iii) Here we generate another swastik pattern using the same

PER and the tiles as defined in Figure. 7.

Construct ATPN3 as in Figure. 10. When the transition t1

fires it removes the tokens A, B from p1, performs the rule

alt[B, A (r)] and deposits the array

 in p1 and when the transition t2

fires it performs the rule alt[D,C(u, d)] and deposits the

array

 in p2 and when the

transition t3 fires it performs the rule alt[B, A(u, d)] and

deposits the array

 in p3, we

generate a pattern called swastik pattern as in Figure. 10. We

can generate different sizes of this picture language as the

number of times t2 and t3 fire.

p
1

2
p

3
p

1

2 3

t

t t

alt[B,A(r)]

alt[D,C(u,d)] alt[B,A(u,d)]

A,B

Figure. 10: ATPN3

Figure. 11: Generation of another swastik pattern using

ATPN3

IV. CONCLUSION

In this paper, we have generated certain patterns of picture

languages using some evolution rules on transitions of

ATPNs. Also it is observed that using the above ATPNs the

same patterns of picture languages can be generated in

different sizes.

REFERENCES

[1] B. Immanuel, K. Rangarajan, K.G. Subramanian, “String token-

Petri nets”, Proceedings of the European Conference on Artificial

Intelligence, One day workshop on Symbolic Networks, at

Vanlencia, Spain, 2004.

[2] B. Immanuel, K.G. Subramanian, P. Usha, “Array token petri nets

and character Generation”, Proceedings of National Conference

on Computational Mathematics and Soft Computing, Women’s

Christian College, pp. 68-72, 2009.

[3] K. Jensen, “Coloured Petri nets”, Lecture Notes in Computer

Science, 254, 1987 (248-299).

[4] S. Kannamma, K. Rangarajan, D.G. Thomas, N.G. David, “Array

token Petri nets, Computing and Mathematical Modeling”, Narosa

Publishing House, New Delhi, India, pp. 299-306, 2006.

[5] D. Lalitha and K. Rangarajan, “Characterisation of Pasting

System using Array Token Petri Nets”, International Journal of

Pure and Applied Mathematics, Vol. 70, No.3, pp. 275-284, 2011.

[6] D. Lalitha and K. Rangarajan, “Petri nets generating Kolam

Patterns”, Indian Journal of Computer Science and Engineering,

Vol. 3, No.1, pp. 68-74, 2012.

[7] A. Rosenfeld and R. Siromoney, “Picture languages – a survey,

languages of design”, Vol. 1, pp. 229-245, 1993.

[8] G. Siromoney, R. Siromoney and Kamala Krithivasan, “Abstract

families of Matrices and Picture Languages”, Computer Graphics

and Image Processing 1, pp. 282-307, 1972.

[9] P. Usha, B. Immanuel, R. Sattanathan, “Application of Array token

Petri nets in generating English Alphabetic letters”, The Journal of

Combinatorial Mathematics and Combinatorial Computing, Vol.

79, pp. 91-98, 2011.

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 29

Authors Profile

Mrs.V. Sharon Philomena pursed Bachelor of Science from

University of Madras, Chennai in 2002 and Master of

Science from University of Madras in year 2004. She is

currently pursuing Ph.D in Graph labeling. and working as

Assistant Professor in PG Department of Mathematics,

University of Madras, Chennai since 2010. She is a life

member of Anna Periyar All India Mathematical Society.

She has published more than 15 research papers in reputed

International Journals including IJAER, International Journal

of Computing algorithms. Organized conferences including

UGC sponsored National workshops. She has received UGC

–MRP a grant of 5 lakhs on Graph matching towards Women

related Cancer. She has 15 years of teaching experience .

R. Santhiya pursed Bachelor of Science from Thiruvalluvar

University, Vellore in 2017 and currently pursuing Master of

Science from University of Madras, Chennai.

