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Abstract— Abstract  For a connected graph         of order at least two, a set   of vertices of   is a Strong edge 

Monophonic set if every edge of   is contained in a fixed monophonic path between any pair of vertices of   . The minimum 

cardinality of the strong edge monophonic set is the strong edge monophonic number of   denoted my       . In this paper, 

certain general properties of the strong edge monophonic sets are studied. Also the strong monophonic number of some 

families of graph are determined. 
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I.  INTRODUCTION  

By a Graph               we mean a finite undirected 

connected graph without loops or multiple edges. For 

vertices   and   in a connected graph   , the distance        

is the length of the shortest     path in  . An     path of 

length        is called     geodesic. A set        is 

called a geodetic set if all the vertices of   should lie in the 

    geodesic of the vertices of   . The minimum cardinality 

of the geodetic set is the geodetic number of  .  

 

The Strong geodetic problem is a variation of the geodetic 

problem. It is defined as follows.[9] Let               be 

a graph. A set        is a strong geodetic set if for each 

pair of vertices           , let  ̃      be a selected fixed 

shortest path between   and   . Then  

     
 ̃       ̃             (1) 

 

and    ̃         ̃  ̃       ̃  . If    ̃      for some  ̃    , 

then the set   is called a strong geodetic set. The minimum 

cardinality of a strong geodetic set is the strong geodetic 

number. The Strong geodetic problem is NP-Complete for 

general graphs. 

   A chord of a path   is an edge joining two non-

adjacent vertices of  . A path   is called a monophonic path 

if it is a chord less path. A set          of a  graph   is a 

monophonic set of   if each vertex of   lies on a     

monophonic path in   for some      . A set         is a 

edge monophonic set of   if each edge of   lies on a     

monophonic path of   for         . The minimum 

cardinality of the edge monophonic set is the edge 

monophonic number. Let               be a non-trivial 

connected graph. Let        , then for each pair of 

vertices       ,     , let  ̃      be the selected fixed 

monophonic path between   and   . Then we set  

 

 ̃    { ̃               }               (2) 

 

 and    ̃         ̃  ̃       ̃ . If    ̃            for some 

 ̃    then the set   is called the Strong monophonic set. The 

minimum cardinality of the strong monophonic set is the 

strong monophonic number [10] . The monophonic distance 

        is defined as the length of a longest     

monophonic path in  . Many variants of the monophonic set 

that are equivalent to geodetic concepts had been studied in 

the literature. In this paper we define the Strong edge 

monophonic number of a graph and its properties. 
 

Theorem 1 [2] Each extreme vertex of a connected graph   

belongs to every monophonic set of  . Moreover, if the set   

of all extreme vertices of   is a monophonic set, then   is the 

unique minimum monophonic set of  .  
 

Theorem 2 [8] Each simplicial vertex of   belongs to every 

edge monophonic set of  .  
 

Theorem 3 [8] Let   be a connected graph with cut vertex 

 and let   be a edgemonophonic set of G. Then every 

component of      contains an element of    
 

Theorem 4 [8] No cut vertex of a connected graph   belongs 

to any minimum edge monophonic set of  .  

 

II. STRONG EDGE MONOPHONIC SET 

The strong edge monophonic number of a graph         

is defined as follows. Let        , then for each pair of 

vertices       ,     , let  ̃      be the selected fixed 

monophonic path between   and   . Then we set  
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 ̃      ̃                                (3) 

 

 and    ̃         ̃  ̃       ̃ . If    ̃            for some 

 ̃    then the set   is called the Strong edge monophonic set. 

In other words a set        is called a strong edge 

monophonic set if each edge of   lies on one fixed 

monophonic path between pairs of vertices from  . The 

minimum cardinality of strong edge monophonic set is the 

strong edge monophonic number. It is denoted by       .  

 

Example 1: Consider the graph   given in fig1, the strong 

monophonic set is           . But    is not a strong edge 

monophonic set. Let     
                 clearly    will cover all the edges of the 

graph in a unique path. Hence         .  
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Figure  1: 

   

A vertex   in a connected graph   is a simplicial vertex (or) 

extreme vertex if the subgraph induced by its neighbour is 

complete. Also a vertex   is said to be a semi simplicial 

vertex if                  . A set   of vertices of a 

connected graph  is called a cut set of   if the graph     is 

connected. In particular, a vertex        is a cut vertex of 

  if     is disconnected.  

 

Theorem 5 If   is a graph with order   and monophonic 

diameter      then     ⌈
  √       

 
⌉.  

Proof. Let          ,    the monophonic diameter and   

be the minimum Strong edge geodetic set of   ,Such that 

          . Since monophonic diameter of   is   , each 

monophonic path will have length at most    and covers at 

most edges of    . As the graph is covered with 

(
       

 
)  monophonic paths,  

    (
    
 

)     

 Which in turn implies  

         
  

  
                   (4) 

 Since     is a non-negative integer we conclude  

    ⌈
  √       

 
⌉.                               (5) 

 Also the bound is sharp for a Path graph    and a Theta 

graph        as shown in the figures  below. 

 
Figure  2: 

 

 
Figure  3: 

 

 

Corollary 1 For the complete graph                 
 . 

 

Proof. For a complete graph         each vertex is a 

simplicial vertex. Also each strong edge monophonic set is a 

edge monophonic set, the result follows from theorem 2.  

  

  

Theorem 6 For a Connected graph   of order  ,   
                   . 

 

Proof. The set of two end vertices of a path    is its unique 

minimum monophonic set       . Also every strong 

edge monophonic set is a edge monophonic set and every 

edge monophonic set is a monophonic set , therefore 

                 . By Corollary 1,           .  

  

 

Remark  For a complete graph          and for a path 

graph            . Hence the bounds in theorem 6 are 

sharp. 

For the graph   given in the fig 4,             , 
      ,                    ,         and 

                          ,         . Therefore 

                     . 
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Figure  4: 
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Theorem 7 Every Strong edge monophonic set  of a graph 

contains its simplicial vertices. 

 

Proof: Since every strong edge monophonic set is a edge 

monophonic set the result follows from theorem 2.  

Theorem 8 Let   be a connected graph with order   and   

simplicial vertices then                    .  

 

 

Theorem 9 For a   dimensional hexagonal silicate 

network       with   simplicial vertices,             .  

Proof: Let   be the    dimensional hexagonal silicate 

network. The simplicial vertices of       are marked by 

white vertices in fig.5. It is easy to verify that the set of 

simplicial verices forms a strong monophonic set. Hence the 

result follows from theorem 8. 

 

 

  
Figure  5:  

   

Theorem 10 Let   be a connected graph with cut vertex  . 

Then each Strong edge monophonic set contains at least one 

vertex from each component of    .  

Proof. The proof follows from theorem 3 as every strong 

edge monophonic set is a edge monophonic set.  

  

Theorem 11 For a non-trivial tree  with   extreme vertices, 

then the Strong edge monophonic number is the number of 

extreme vertices,              .  

Proof. Let   be the set of all end vertices of  . By theorem 7, 

        . Now consider a vertex   such that   is a cut 

vertex of  . Since every strong edge monophonic set is a 

edge monophonic set and by theorem 4 it is clear that   . 

Also for an internal vertex   of   there exist end vertices     

of   such that   lies on the unique     monophonic path in 

 . Thus an internal vertex   of   , will lie on exactly 

(
 
 
) distinct monophonic paths of vertices in   . Hence 

        .  

  

Corollary 2 For positive integers     such that       

there exist a connected graph  of order   , with      
        .  

Proof. For     the result follows from corollary1. Also for 

each pair of integers with      , there exist a tree of 

order   and   extreme vertices. Hence the result follows 

from theorem 11.  

  

Theorem 12 Let   be a connected graph. Then          

if and only if     .  

Proof. Suppose     . Then it is obvious that         . 

Now let us assume that         . This is possible only if 

there exists two non-adjacent vertices   and   in the graph  , 

such that    ̃             . In other words if there exists 

two non-adjacent vertices   and   such that all edges of   lie 

on a unique     monophonic path. This implies that the 

graph   is a path graph.  

Theorem 13 If    is a cycle of order  , then         .  

Proof. By theorem 12          . Any three vertices of a 

cycle will form a strong edge monophonic set. Hence 

          

 
  

   

Figure  6:  

  

Theorem 14 For a theta Graph        the Strong edge 

monophonic number    (      )  ⌈
 

 
⌉  

Proof. Consider a theta graph        . Let   be the number of 

levels of the theta graph and   be the number of vertices in 

each level.For a strong edge monophonic set , choose a 

vertex from alternate levels which forms a monophonic path 

as shown in  figure 2. Hence    (      )  ⌈
 

 
⌉     

  

Theorem 15 For a Grid      the Strong edge monophonic 

number            .  

Proof. By theorem 12,            . Now assume that 

           . Let                           be the 

strong edge monophonic set of      then there exist three 

paths between the vertices of   which is not enough to cover 

all edges of     . For example consider the grid      in 

figure 7 . Hence                                   , 

            which is a contradiction to our assumption. 
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Also these     paths is enough to cover all the edges of the 

grid in a unique monophonic path. Therefore              

 

 

 
Figure  7: 

  

Theorem 16 For a Circulant graph            The Strong 

edge monophonic number is  .  

Proof. Let   be a circulant graph           . Since we are 

considering a circulant graph            with            , 
there exists a chord between any three vertices of the graph 

 . From the definition it clear that a monophonic path is a 

chord less path. Hence if                      leaving 

  , the edges         and       will not be covered. 

Therefore                  .  

 

Corollary 3 If   is a connected graph of order      with 

exactly one universal vertex then the Strong edge 

monophonic number will be           . 

 

Corollary 4 For the Wheel graph and Star graph with 

     ,                            .  

  
Theorem 18 For a non-trivial tree   of order   and 

monophonic diameter    ,               if an only 

if   is a Caterpillar.  

Proof. Let   be a non-trivial tree. Let 

                     be a monophonic diametrical path. 

Let   be the internal vertices of   other than                 

and   be the no. of end vertices of  . Then        
   . By theorem    ,         , and so          
      . Therefore               if and only if, 

   , if an only if all the internal vertices of   lie on a 

monophonic diametrical path if and only if   is a caterpiller. 

 

Theorem 19 For any graph  ,                
 

III. REALIZATION RESULT 

 

Theorem 20 For any two positive integers     with     
  and     there exist a connected graph   with        
 .  

Proof. Let                         be a path. Consider 

the graph   constructed from    by joining     new 

vertices. Then the graph  is a tree with            

        and we have         )number of leaves. 

Hence by theorem 11,          .  
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  Figure  8: 
    

 

Theorem 21 For any positive integers       there exist 

a connected graph  such that        and         
 .  

Proof. If    , consider a tree with   end vertices. Then by 

theorem                 .  

For        , then for the graph in the figure 

       and         .  

 
           Figure  9:  

  

  If        , consider the graph in figure, 

obtained from the path on five vertices                 . 

Now add     independent vertices and join each      
       to    and   . Then it is clear that the monophonic 

set             . From the definition of Strong edge 

monophonic set, there should be a unique monophonic path 

between any two vertices of the element of  . Hence 

                             . 
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 If    ,    ,      , the graph   is obtained from the 

path on five vertices                 .. Now add     

independent vertices and join each             to    

and   . Also add                   new vertices and join 

each             to    and   . Since each    is a 

simplicial vertex of  , it is clear that it belongs to every 

monophonic set of . Since                     is not a 

monophonic set of  , we have           as the 

monophonic set of  . Therefore       . Next we have to 

show         . Obviously all the simplicial vertices 

belongs to the strong edge monophonic set. Since the strong 

edge monophonic set set should have a unique monophonic 

path any two vertices of  ,                          
                           . 
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For    ,     and      , consider the graph   

constructed as follows. Let               and 

              be two paths of length 4. let   and   be two 

independent vertices. Now join    and    to   ,and join    

and    to  . Also add             independent 

vertices and add them to  . Now join   and    . Let   
                    be the set of simplicial vertices of  . It 

is clear that   is contained in every monophonic set of . 

Hence       . It is also clear that the set   is the strong 

monophonic set. But   is the not a strong edge monophonic 

set. However       is a strong edge monophonic set. Hence 

            . 
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