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Abstract—The Chess engine alludes to a program that examines chess and chess variation positions. The first ever chess 

engine to have won against a human grandmaster was IBM’s DeepBlue in 1999. Since then multiple chess engines have 

emerged with improved search heuristics, hardware sets and dictionaries. Though in recent years many chess engines with a 

machine learning approach have produced striking achievements in comparison to the typical bruteforce chess engines. This 

paper aims to review the selected chess engines which generate counter moves automatically. Their respective specialties will 

be explained and compared to give insight on direction of research on chess game in modern world. 
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I.  INTRODUCTION  

 

The chess game is an intriguing mathematical problem, 

approached by many researchers and mathematicians over 

the years to find an optimal solution. The chess in itself may 

not hold much importance but solving it requires 

understanding of the chess environment, defining win 

conditions and working out a series of changes in the 

environment in counter to the uncontrollable events, also 

affecting the environment, to achieve the win condition. 

Attempts to find better solutions have been made since 

decades from dictionaries, endgames, brute force to finally 

machine learning. More successful research on this will 

provide insight that will help in tackling other real-world 

situations, like: 

 Better Heuristic search in management of workforce in 

telecommunications companies 

 Applications and improvements in medical field like 

Heart sound analysis, drug creation, and toxicology and 

disease symptoms analysis. 

 In transportation, DSP transmission in automobiles with 

fuzzy logic, and autonomous vehicles. 

 Automated reasoning, automated theorem proving, 

automated proof checking, reasoning by analogy 

induction and abduction. 

 Image restorations, Mobile advertisings and many more. 

In order to comprehend how chess engines generate moves 

and solve the problem of chess, a few required topics are to 

be learned. These algorithms also have significance in 

solving many real life problems, which is the main motive 

behind the research in chess computing. 

A. THE PROBLEM OF CHESS 

In chess, all the information (pieces, position, turn, rules and 

win condition) is very clear and discrete. The main goal of 

any player, white or black is to either win or force a draw. 

The white has first turn to make a move in chess. As such in 

the beginning it has 20 possible moves, of which, one it 

selects and moves. Similarly, black also has 20 possibilities 

[2]. The first move by white cannot be judged as good or bad 

because there are alternate scenarios where each move can be 

good or bad, but of course, we can state certain moves safer 

than others based on a database of previous games. So to 

make a move, we have two strategies to choose on move in 

any turn [1]: 

 Always choose certain move from the list of possible 

legal moves, which is pure calculated strategy. 

 Choose a random move from the list of possible legal 

moves, which isn’t a pure strategy but doesn’t mean will 

fail. 

But doing any of these or having a dictionary (having a 

correct move for all positions based on previous games or 

created by a chessmaster) is equally impractical. Because the 

total no. of positions and moves is too big to be evaluated in 

a feasible time.  

Figure 1. Possible Moves 

20 possible white 

moves 

20 possible black moves for one of 

white’s moves 
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As can be seen, the black has 20*20=400 possible moves (in 

strategy) depending on whites move. And the white in next 

turn has 400*20=800 number of possible legal moves and 

this number keeps increasing. A typical game lasts for 40 

moves until resignation, this is inferior to the aim of the 

target chess engine, but even this will generate 10
120

 moves. 

And evaluating which will take years even if the machine 

evaluates one move per micro second [1]. 

 

B. THE EVALUATION FUNCTION 

The way to deal with choosing the decency or 

disagreeableness of a move can be summed up in view of 

specialists’ surveys. The most widely recognized component 

to choose which group is winning is the quantity of pieces in 

every player still in play. The more pieces a player has, 

progressively the odds of winning. In any case, not all pieces 

are similarly important, so a coefficient esteem can be given 

to each class of piece. For instance, ruler can be given 9, 

Rook be given 6, bishop and knight 4 and pawn 1. Then for a 

given position, Evaluation function E(P) can be calculated: 

 

E(P) = 9(Q’-Q)+6(R’-R)+4(B’-B)+4(K’-K)+(P’-P) 

 

The unprimed letters are pieces of the opponent. If the 

function evaluates a positive value the team is winning, if it’s 

negative the opponent is winning and if it’s 0 then leading to 

a draw. 

 

C.  DESCRIPTION OF THE ALGORITHMS 

These algorithms show how evaluation function is used to 

predict moves and also self asses own moves and how the 

searching problem can be minimized in a way. 

 

1)  Minimax 

This is the most normally utilized calculation for turn based 

games to choose a victor. In this calculation, the Max tries to 

expand its assessment by choosing a move which favors it. 

Thus, the Min additionally tries to limit the value of 

evaluation function, choosing a move favoring it most. Since 

the value of evaluation function is a negative ramifications to 

rival. 

Figure 2. Example of MAX  

 

As can be seen in example figure, at 0, Max will try to 

maximize the function value so it’ll choose -8 move. While 

min will try to minimize it so it’ll choose -8 over 20. In this 

way they both work up ideally to win. 

 

2)   Alpha Beta Pruning 

This is like an extension to MiniMax. We have alpha and 

beta, a maximum assured value for minimizer and a 

minimum assured value for the maximizer. The idea is, in 

case of a maximizer, to not search further children nodes if 

any 1 children node gives a value which is higher than the 

value of sibling of the maximizer, because the parent 

minimizer will never select values from any children nodes 

of the current maximizer. Conversely, in the case of a 

minimizer, is to not search further children nodes if any one 

children returns a value less than the value of the sibling of 

the minimizer, because the maximizer will always select the 

maximum one [4]. 

Figure 3. Alpha Beta Pruning 

 

As can be seen in the given example, in the minimizer node 

with value 4, its sibling has value 5, first exploration returns 

7, which is higher than 5, but it has to minimize it, it searches 

further to find 4 this is less than 7 but also less than 5, which 

means going further will either return unacceptable (greater 

than 4 which the minimizer will discard) or values less than 4 

which the parent maximizer will discard. So it doesn’t need 

to search further. Alpha beta pruning can, in this way, reduce 

the branching factor and increase search depth in limited 

time. 

 

D.  FACTORS IN EVALUATION 

1)  Distributed Computing 

Generally, in a large system, the processing work is divided 

and distributed among different node processors in the form 

of a client-server model(very large scale projects) or in the 

form of threads and processes(in the case of chess engines). 

This is called distributed computing, as it saves time by 

searching tree nodes in parallel. 

2)  Race Condition 
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When in context of computing, race is an anomaly that 

occurs due to improper synchronization between the threads 

of a process [8].  

 

3)  Non Deterministic Algorithm 

 It is an algorithm that can, for same inputs, in different 

iterations, execute differently or have different behavior, as 

opposed to in deterministic algorithm. For example, 

concurrent algorithm performs differently in different runs 

because of race condition [9]. 

II. VARIOUS CHESS ENGINE 

These are the various chess engines under consideration. 

They have been selected based on their performance criteria 

in tournaments and their respective unique characteristics. 

 

A.  ASMFISH (FORK OF STOCKISH) 

It is a free open source UCI compatible chess engine which 

keeps improving with the help of its huge community 

contribution. In order to not analyze the same position 

several times, a transposition table is used. This is essentially 

memorization applied to the search function. 

 

B.  KOMODO 

Komodo is a UCI compatible chess engine developed by 

Mark Lefler and Don Dailey, improved by GM Larry 

Kaufman. Komodo is a business chess engine however more 

seasoned versions are free for non-profit utilization. Komodo 

intensely depends on assessment instead of profoundity, and 

therefore has an unmistakable positional style. 

 

C.  HOUDINI 

Houdini is a UCI compatible chess engine created by Robert 

Houdart. It has been inspired by open source engines like 

Stockfish, and Crafty. Houdini 5 utilized aligned assessments 

in which engine scores connect specifically with the win 

hope in the position. 

 

D.  RYBKA 

Rybka is a PC chess engine outlined by International Master 

Vasik Rajlich. Rybka is a shut source program, yet at the 

same time a few points of interest have been uncovered: 

Rybka utilizes a bitboard portrayal and is an alpha-beta 

searcher with a generally expansive desire window. It utilizes 

exceptionally forceful pruning, prompting imbalanced search 

trees.  

 

E.  GIRAFFE 

A trial open source chess engine by Matthew Lai under the 

GNU General Public License in 2015. Giraffe utilizes the 

Eigen linear variable based math library, and Pradyumna 

Kannan's magic move generator. Giraffe's assessment work 

is a profound neural system prepared by TDLeaf. 

III. COMPARISON AND ANALYSIS 

 

A. COMPARISON TABLE OF THE OF CHESS ENGINES 

The beginning, mid game and endgame of chess engines 

matter less in the overall result of the match but it’s still 

worth noting their respective natures for a personalized 

review. 

 

Table 1. Comparison of Chess Engines 

As can be seen, there are sufficiently capable in all 

beginning, middle and endgames but their nature changes a 

little which may result in different choices and possible 

mistakes. 

 

B.  TEST RESULTS STATISTICS FROM CCRL DATABASE 

CCRL 40/40 Rating List is a Chess engine database where 

users can custom select engines to test and compare between 

them under following conditions: 

 

Ponder is turned off, General book is allowed up to 12 

moves, End Game Table Base for 3-4-5 pieces is allowed. 

Time control: Equivalent to 40 moves in 40 minutes on 

athlon 64 X2 4600+ (2.4 GHz), about 15 minutes on a 

modern Intel Central Processing Unit (CPU). 
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Computed on December 30, 2017 with Bayeselo based on 

774'825 games. 

The engines to be compared, mentioned above were custom 

selected in CCRL and the following results were obtained: 

 

1.  Results Matrix 

It shows the number of wins, losses and draws of each 

engine. Here for each win, 1 score is awarded to winner, 0.5 

to both engines in case of draws. This table shows how many 

wins each of the pair of engines have won. The score of the 

engine in row is taken as +ve and the one in column is taken 

as –ve. 

Table 2. Result Matrix  

 
 

As can be seen, asmFish won 6 matches against Houdini, lost 

2 matches and 38 matches were drawn, hence its score was 

38*0.5+6=25. But since a lot of the matches were draws with 

a few exceptions, asmFish gained 10 points in its elo rating 

after the assessment. 

 

B.  Score Matrix 

This matrix shows the percentage of wins of chess engines in 

row against the one in column. The number of wins and the 

total number of matches are also shown. 

 

Table 2. Score Matrix 

 
 

As can be seen, asmFish has greater number of wins against 

both komodo 11.2 and Houdini 6. It wins 25 out of 46 

matches against Houdini and won 29 matches and 1 draw out 

of 49 against komodo 11.2. asmFish wins all its matches 

against Giraffe, So do Houdini and Komodo. 

 

C.  ANALYSIS 

Stockfish has obviously shown that straightforward, brute-

force methodologies ought not be immediately disposed of. 

Also, iterative procedures, specifically, thoughts created for 

alpha-beta pursuit and iterative developing, are pertinent to 

other search areas. Stockfish has clearly exhibited the 

insufficiency of ordinary AI strategies for realtime 

calculation. Stockfish does not utilize AI languages or 

learning portrayal strategies, for these traditions are too 

moderate for a continuous, high performance application. 

But still stockfish needs to be improved in its endgames 

phase. 

 

Komodo is reasonably solid in all phases of the game. 

Usually does not favor sacrificial lines but it is more 

susceptible to sacrifice when compared to other engines, 

which is a good thing in a few cases.  

 

Houdini’s understanding of beginning is not as greater than 

others in comparison. But its endgames are where it shines. 

In terms of tactics, Houdini performs well, but still tends to 

defend more in complicated positions. Houdini despite being 

very good at strategic moves loses to stockfish due to horizon 

effect.  

 

Rybka loses the competition in the early phases, its 

understanding of early game pawn structures is poor. Despite 

being good in endgames, it is too slow for competition. Its 

biggest advantage is that it has very good positional 

understanding. It also loses to other chess engines due to 

horizon effect. 

 

Giraffe has good positional understanding which is verified 

by STS tests, but it is outperformed by other chess engines 

by a long shot. But its real strength lies in being able to see 

the positions in a unbiased way given enough hardware 

support, which is also why it cannot achieve grandmaster 

level of chess game play with its current neural network. 

Along with other chess engines giraffe is also subjected to 

STS test under the same conditions. As giraffe learns reflects 

on its score of STS test and improves and after thousands of 

iteration of learning, converges to 9641 score. Here is the 

score of other chess engines on same test. 

 

Table 3. STS Score 

Engines Avg. ELO 

rating 

STS score 

asmFish 051117 3422 9420 

Houdini 6 3410 9378 

Komodo 11.2 3404 9350 

Rybka 4 3154 8561 

Giraffe 20150908[3] 2461 

 

9641 

As can be seen in the above table, giraffe also has attained 

STS score rivaling the top chess engines, in a comparatively 

very short amount of time. 

IV.  CONCLUSION 

 

Overall, in terms of performance and win rates, asmfish 

051117 is the best engine among the chosen chess engines 

with a win rate of 17.89% and a draw rate of 78.94% in 95 

matches. Houdini 6 has a winrate of 11.53% and a draw rate 
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of 81.7% out of 104 matches. Komodo has winrate of 1.86% 

and draw rate of 78.5% out of 107 matches. Although the 

number of matches aren’t nearly as enough to evaluate 

engines performance independently but for comparison it 

suffices. Giraffe is out of their league because of the time 

constraints in each move. However except giraffe, all of 

them rely on heuristics and simple search algorithm with 

bruteforce to attain deeper searches in same time, so it hasn’t 

actually solved the problem of chess. In terms of solving the 

problem of chess, the only chess engine that has learned how 

to play chess is Giraffe. It gives an example of how a 

unbiased solution however slow, to a unknown problem 

using machine learning, can be reached. Giraffe learned to 

play chess in a relatively less time too. So further 

improvements in giraffe performance can make it beat other 

grandmaster level chess engines, and hence further research 

on chess with machine learning approach is encouraged. 
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