

 © 2019, IJCSE All Rights Reserved 209

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.7, Special Issue.3, Feb. 2019 E-ISSN: 2347-2693

Comparison of Chess Engines: A Review

Rajesh Kumar Singh

1*
, Satish Kumar Negi

2
, Pusphendra Kumar Chandra

3

1,2,3

Dept. of Computer Science & Engineering, Guru Ghasidas University, Bilaspur (CG), India

*Corresponding Author: rajeshkumarsingh381@gmail.com, Tel.: +91-8247697341

Available online at: www.ijcseonline.org

Abstract—The Chess engine alludes to a program that examines chess and chess variation positions. The first ever chess

engine to have won against a human grandmaster was IBM’s DeepBlue in 1999. Since then multiple chess engines have

emerged with improved search heuristics, hardware sets and dictionaries. Though in recent years many chess engines with a

machine learning approach have produced striking achievements in comparison to the typical bruteforce chess engines. This

paper aims to review the selected chess engines which generate counter moves automatically. Their respective specialties will

be explained and compared to give insight on direction of research on chess game in modern world.

Keywords—Chess Engine, Pruning, Minimax

I. INTRODUCTION

The chess game is an intriguing mathematical problem,

approached by many researchers and mathematicians over

the years to find an optimal solution. The chess in itself may

not hold much importance but solving it requires

understanding of the chess environment, defining win

conditions and working out a series of changes in the

environment in counter to the uncontrollable events, also

affecting the environment, to achieve the win condition.

Attempts to find better solutions have been made since

decades from dictionaries, endgames, brute force to finally

machine learning. More successful research on this will

provide insight that will help in tackling other real-world

situations, like:

 Better Heuristic search in management of workforce in

telecommunications companies

 Applications and improvements in medical field like

Heart sound analysis, drug creation, and toxicology and

disease symptoms analysis.

 In transportation, DSP transmission in automobiles with

fuzzy logic, and autonomous vehicles.

 Automated reasoning, automated theorem proving,

automated proof checking, reasoning by analogy

induction and abduction.

 Image restorations, Mobile advertisings and many more.

In order to comprehend how chess engines generate moves

and solve the problem of chess, a few required topics are to

be learned. These algorithms also have significance in

solving many real life problems, which is the main motive

behind the research in chess computing.

A. THE PROBLEM OF CHESS

In chess, all the information (pieces, position, turn, rules and

win condition) is very clear and discrete. The main goal of

any player, white or black is to either win or force a draw.

The white has first turn to make a move in chess. As such in

the beginning it has 20 possible moves, of which, one it

selects and moves. Similarly, black also has 20 possibilities

[2]. The first move by white cannot be judged as good or bad

because there are alternate scenarios where each move can be

good or bad, but of course, we can state certain moves safer

than others based on a database of previous games. So to

make a move, we have two strategies to choose on move in

any turn [1]:

 Always choose certain move from the list of possible

legal moves, which is pure calculated strategy.

 Choose a random move from the list of possible legal

moves, which isn’t a pure strategy but doesn’t mean will

fail.

But doing any of these or having a dictionary (having a

correct move for all positions based on previous games or

created by a chessmaster) is equally impractical. Because the

total no. of positions and moves is too big to be evaluated in

a feasible time.

Figure 1. Possible Moves

20 possible white

moves

20 possible black moves for one of

white’s moves

mailto:rajeshkumarsingh381@gmail.com

 International Journal of Computer Sciences and Engineering Vol.7(3), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 210

As can be seen, the black has 20*20=400 possible moves (in

strategy) depending on whites move. And the white in next

turn has 400*20=800 number of possible legal moves and

this number keeps increasing. A typical game lasts for 40

moves until resignation, this is inferior to the aim of the

target chess engine, but even this will generate 10
120

 moves.

And evaluating which will take years even if the machine

evaluates one move per micro second [1].

B. THE EVALUATION FUNCTION

The way to deal with choosing the decency or

disagreeableness of a move can be summed up in view of

specialists’ surveys. The most widely recognized component

to choose which group is winning is the quantity of pieces in

every player still in play. The more pieces a player has,

progressively the odds of winning. In any case, not all pieces

are similarly important, so a coefficient esteem can be given

to each class of piece. For instance, ruler can be given 9,

Rook be given 6, bishop and knight 4 and pawn 1. Then for a

given position, Evaluation function E(P) can be calculated:

E(P) = 9(Q’-Q)+6(R’-R)+4(B’-B)+4(K’-K)+(P’-P)

The unprimed letters are pieces of the opponent. If the

function evaluates a positive value the team is winning, if it’s

negative the opponent is winning and if it’s 0 then leading to

a draw.

C. DESCRIPTION OF THE ALGORITHMS

These algorithms show how evaluation function is used to

predict moves and also self asses own moves and how the

searching problem can be minimized in a way.

1) Minimax

This is the most normally utilized calculation for turn based

games to choose a victor. In this calculation, the Max tries to

expand its assessment by choosing a move which favors it.

Thus, the Min additionally tries to limit the value of

evaluation function, choosing a move favoring it most. Since

the value of evaluation function is a negative ramifications to

rival.

Figure 2. Example of MAX

As can be seen in example figure, at 0, Max will try to

maximize the function value so it’ll choose -8 move. While

min will try to minimize it so it’ll choose -8 over 20. In this

way they both work up ideally to win.

2) Alpha Beta Pruning

This is like an extension to MiniMax. We have alpha and

beta, a maximum assured value for minimizer and a

minimum assured value for the maximizer. The idea is, in

case of a maximizer, to not search further children nodes if

any 1 children node gives a value which is higher than the

value of sibling of the maximizer, because the parent

minimizer will never select values from any children nodes

of the current maximizer. Conversely, in the case of a

minimizer, is to not search further children nodes if any one

children returns a value less than the value of the sibling of

the minimizer, because the maximizer will always select the

maximum one [4].

Figure 3. Alpha Beta Pruning

As can be seen in the given example, in the minimizer node

with value 4, its sibling has value 5, first exploration returns

7, which is higher than 5, but it has to minimize it, it searches

further to find 4 this is less than 7 but also less than 5, which

means going further will either return unacceptable (greater

than 4 which the minimizer will discard) or values less than 4

which the parent maximizer will discard. So it doesn’t need

to search further. Alpha beta pruning can, in this way, reduce

the branching factor and increase search depth in limited

time.

D. FACTORS IN EVALUATION

1) Distributed Computing

Generally, in a large system, the processing work is divided

and distributed among different node processors in the form

of a client-server model(very large scale projects) or in the

form of threads and processes(in the case of chess engines).

This is called distributed computing, as it saves time by

searching tree nodes in parallel.

2) Race Condition

-4

-4 -5

30

20
-4 9 -5

31 20 10 -4 9 7 -10 -

5

MAX’s

Best Move

0(M

AX)

1(

MI

N)

2(M

AX)

3(

MI

N)

5
7 4

6 5 7 8 4 9

6 3 5 7 8 8 4 5 9

6 8 9 3 4 5 7 8 9 9 5 9 4 8 M

A

X

M

I
N

M

A

X

M

I

N

7
M

A

X

 International Journal of Computer Sciences and Engineering Vol.7(3), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 211

When in context of computing, race is an anomaly that

occurs due to improper synchronization between the threads

of a process [8].

3) Non Deterministic Algorithm

 It is an algorithm that can, for same inputs, in different

iterations, execute differently or have different behavior, as

opposed to in deterministic algorithm. For example,

concurrent algorithm performs differently in different runs

because of race condition [9].

II. VARIOUS CHESS ENGINE

These are the various chess engines under consideration.

They have been selected based on their performance criteria

in tournaments and their respective unique characteristics.

A. ASMFISH (FORK OF STOCKISH)

It is a free open source UCI compatible chess engine which

keeps improving with the help of its huge community

contribution. In order to not analyze the same position

several times, a transposition table is used. This is essentially

memorization applied to the search function.

B. KOMODO

Komodo is a UCI compatible chess engine developed by

Mark Lefler and Don Dailey, improved by GM Larry

Kaufman. Komodo is a business chess engine however more

seasoned versions are free for non-profit utilization. Komodo

intensely depends on assessment instead of profoundity, and

therefore has an unmistakable positional style.

C. HOUDINI

Houdini is a UCI compatible chess engine created by Robert

Houdart. It has been inspired by open source engines like

Stockfish, and Crafty. Houdini 5 utilized aligned assessments

in which engine scores connect specifically with the win

hope in the position.

D. RYBKA

Rybka is a PC chess engine outlined by International Master

Vasik Rajlich. Rybka is a shut source program, yet at the

same time a few points of interest have been uncovered:

Rybka utilizes a bitboard portrayal and is an alpha-beta

searcher with a generally expansive desire window. It utilizes

exceptionally forceful pruning, prompting imbalanced search

trees.

E. GIRAFFE

A trial open source chess engine by Matthew Lai under the

GNU General Public License in 2015. Giraffe utilizes the

Eigen linear variable based math library, and Pradyumna

Kannan's magic move generator. Giraffe's assessment work

is a profound neural system prepared by TDLeaf.

III. COMPARISON AND ANALYSIS

A. COMPARISON TABLE OF THE OF CHESS ENGINES

The beginning, mid game and endgame of chess engines

matter less in the overall result of the match but it’s still

worth noting their respective natures for a personalized

review.

Table 1. Comparison of Chess Engines

As can be seen, there are sufficiently capable in all

beginning, middle and endgames but their nature changes a

little which may result in different choices and possible

mistakes.

B. TEST RESULTS STATISTICS FROM CCRL DATABASE

CCRL 40/40 Rating List is a Chess engine database where

users can custom select engines to test and compare between

them under following conditions:

Ponder is turned off, General book is allowed up to 12

moves, End Game Table Base for 3-4-5 pieces is allowed.

Time control: Equivalent to 40 moves in 40 minutes on

athlon 64 X2 4600+ (2.4 GHz), about 15 minutes on a

modern Intel Central Processing Unit (CPU).

Houdi

ni
Rybka Komodo Stockfish Giraffe

Positio

nal

Can

evaluat

e well

in

closed

positio

ns

Applies

tricks

and

tactics

to

avoid

quiesce

nt

positio

n

Good

calculati

ng power

makes it

good in

semi-

closed

positions

Precise

calculati

on and

understa

nding of

nuances

of

position

Has

good

understa

nding of

different

position

s

(depend

s on

training

data set)

Deep

Search

Piece

sacrific

e and

recover

y

ability

involvi

ng deep

search

Tends

to not

search

very

deep

Performs

best

when

allowed

to search

deep

Can

calculate

long and

precise

It uses

slow

neural

network

s so its

search

depth in

limited

time is

limited

further

End

Game

Very

good

defense

, tends

to draw

more in

end

game

Good

end

game

with

flexible

play

style

Relativel

y best

end

game

skills

little

tendency

to draw

positions

Plays

exceptio

nally

well in

both

endgam

es and

opening

s

 International Journal of Computer Sciences and Engineering Vol.7(3), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 212

Computed on December 30, 2017 with Bayeselo based on

774'825 games.

The engines to be compared, mentioned above were custom

selected in CCRL and the following results were obtained:

1. Results Matrix

It shows the number of wins, losses and draws of each

engine. Here for each win, 1 score is awarded to winner, 0.5

to both engines in case of draws. This table shows how many

wins each of the pair of engines have won. The score of the

engine in row is taken as +ve and the one in column is taken

as –ve.

Table 2. Result Matrix

As can be seen, asmFish won 6 matches against Houdini, lost

2 matches and 38 matches were drawn, hence its score was

38*0.5+6=25. But since a lot of the matches were draws with

a few exceptions, asmFish gained 10 points in its elo rating

after the assessment.

B. Score Matrix

This matrix shows the percentage of wins of chess engines in

row against the one in column. The number of wins and the

total number of matches are also shown.

Table 2. Score Matrix

As can be seen, asmFish has greater number of wins against

both komodo 11.2 and Houdini 6. It wins 25 out of 46

matches against Houdini and won 29 matches and 1 draw out

of 49 against komodo 11.2. asmFish wins all its matches

against Giraffe, So do Houdini and Komodo.

C. ANALYSIS

Stockfish has obviously shown that straightforward, brute-

force methodologies ought not be immediately disposed of.

Also, iterative procedures, specifically, thoughts created for

alpha-beta pursuit and iterative developing, are pertinent to

other search areas. Stockfish has clearly exhibited the

insufficiency of ordinary AI strategies for realtime

calculation. Stockfish does not utilize AI languages or

learning portrayal strategies, for these traditions are too

moderate for a continuous, high performance application.

But still stockfish needs to be improved in its endgames

phase.

Komodo is reasonably solid in all phases of the game.

Usually does not favor sacrificial lines but it is more

susceptible to sacrifice when compared to other engines,

which is a good thing in a few cases.

Houdini’s understanding of beginning is not as greater than

others in comparison. But its endgames are where it shines.

In terms of tactics, Houdini performs well, but still tends to

defend more in complicated positions. Houdini despite being

very good at strategic moves loses to stockfish due to horizon

effect.

Rybka loses the competition in the early phases, its

understanding of early game pawn structures is poor. Despite

being good in endgames, it is too slow for competition. Its

biggest advantage is that it has very good positional

understanding. It also loses to other chess engines due to

horizon effect.

Giraffe has good positional understanding which is verified

by STS tests, but it is outperformed by other chess engines

by a long shot. But its real strength lies in being able to see

the positions in a unbiased way given enough hardware

support, which is also why it cannot achieve grandmaster

level of chess game play with its current neural network.

Along with other chess engines giraffe is also subjected to

STS test under the same conditions. As giraffe learns reflects

on its score of STS test and improves and after thousands of

iteration of learning, converges to 9641 score. Here is the

score of other chess engines on same test.

Table 3. STS Score

Engines Avg. ELO

rating

STS score

asmFish 051117 3422 9420

Houdini 6 3410 9378

Komodo 11.2 3404 9350

Rybka 4 3154 8561

Giraffe 20150908[3] 2461

9641

As can be seen in the above table, giraffe also has attained

STS score rivaling the top chess engines, in a comparatively

very short amount of time.

IV. CONCLUSION

Overall, in terms of performance and win rates, asmfish

051117 is the best engine among the chosen chess engines

with a win rate of 17.89% and a draw rate of 78.94% in 95

matches. Houdini 6 has a winrate of 11.53% and a draw rate

 International Journal of Computer Sciences and Engineering Vol.7(3), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 213

of 81.7% out of 104 matches. Komodo has winrate of 1.86%

and draw rate of 78.5% out of 107 matches. Although the

number of matches aren’t nearly as enough to evaluate

engines performance independently but for comparison it

suffices. Giraffe is out of their league because of the time

constraints in each move. However except giraffe, all of

them rely on heuristics and simple search algorithm with

bruteforce to attain deeper searches in same time, so it hasn’t

actually solved the problem of chess. In terms of solving the

problem of chess, the only chess engine that has learned how

to play chess is Giraffe. It gives an example of how a

unbiased solution however slow, to a unknown problem

using machine learning, can be reached. Giraffe learned to

play chess in a relatively less time too. So further

improvements in giraffe performance can make it beat other

grandmaster level chess engines, and hence further research

on chess with machine learning approach is encouraged.

REFERENCES

 [1] C. E. Shannon, “Programming a Computer for Playing

Chess”, Computer Chess Compendium, pp.2-13, 1983.

[2] E. Okur and S. Kavuzlu, “Developing an Adaptive Chess

Program”, Boazii University, 2011.

[3] M. Lai, “Giraffe: Using Deep Reinforcement Learning to

Play Chess”, Arxiv.org, 14 Sept. 2015.

[4] G. M. Baudet, “An analysis of the full alpha-beta pruning

algorithm”, Proceedings of the 10th annual ACM symposium

on Theory of computing, 1978.

[5] P. Cunningham, M. Cord and S. J. Delany, “Supervised

Learning. Machine Learning Techniques for Multimedia

Cognitive Technologies”, Springer, pp. 21-49, 2008.

[6] E. Robert, Schapire, “Recent Advances in Reinforcement

Learning”, Springer, pp.99-121, 1996.

[7] D. Peleg, “Distributed Computing: A locally sensitive

approach”, Society for Industrial and Applied

Mathematics Philadelphia, PA, USA, 2000.

[8] R. H. Netzer, B. P. Miller, “What are race conditions?: Some

issues and formalizations”, ACM Letters on Programming

Languages and Systems,1(1), pp.74-88, 1992.

[9] R. W. Floyd, "Nondeterministic algorithms", Journal of the

ACM (JACM), Vol.14, Issue.4, pp.636-644, 1967.

[10] A. Rahul, G. Srinivasaraghavan, “Phoenix: A Self-

Optimizing Chess Engine”, International Conference on

Computational Intelligence and Communication Networks

(CICN), 2015.

[11] J. Schaeffer, H. J. V. D. Herik, “Games, computers, and

artificial intelligence”, Artificial Intelligence

Elsevier Science, Vol.134, Issue.1-2, pp.1-7, 2002.

[12] J. Esch, “A Self-Learning Evolutionary Chess

Program”, Proceedings of the IEEE, Vol.92, Issue.12,

pp.1946-1946, 2004.

[13] E. Hearst, “Man and machine: Chess achievements and

chess thinking”, Chess Skill in Man and Machine,

pp.167-200, 1983.

[14] N. Ensmenger, “Is chess the drosophila of artificial

intelligence? A social history of an algorithm”, Social

Studies of Science, Vol.42, Issue.1, pp.5-30, 2011.

[15] C. J. Tan, “Deep Blue: A computer chess and massively

parallel systems”, In Proceedings of the 9th international

conference on Supercomputing (ICS’95), Barcelona, Spain,

pp.237-239, 1995.

[16] K. Dhou, “Chess software and its impact on chess players”,

University of Northern British Columbia, 2008.

Authors Profile

Mr. Rajesh Kumar Singh pursed Bachelor of

Technology from Guru Ghasidas

Vishwavidyalaya, Bilaspur (CG), in year

2018. He has done project on Chess Engine

during Final Year of B.Tech.He is currently

working in software industry.

Mr. Satish Kumar Negi pursed Bachelor of

Engineering from Guru Ghasidas

Vishwavidyalaya, Bilaspur (CG), in year

2005 and Master of Technology from

National Institute of Technology, Hamirpur

(HP), in year 2009. He is currently working as Assistant

Professor in Department of Computer Science &

Engineering, SOS (Engg.&Tech.), Guru Ghasidas

Vishwavidyalaya, Bilaspur (CG). He has published more

than 6 research papers in reputed international journals and

international conferences. He has 8 years of teaching

experience.

Mr. Pushpendra Kumar Chandrai pursed

Bachelor of Engineering from University,

Raipur, (CG), in year 2005 and Master of

Technology from National Institute of

Technology, Rourkela (Odisa), in year 2008.

He is currently working as Assistant Professor in Department

of Computer Science & Engineering, SOS (Engg.&Tech.),

Guru Ghasidas Vishwavidyalaya, Bilaspur (CG). He has

published more than 6 research papers in reputed

international journals and international conferences. He has 8

years of teaching experience.

