

 © 2019, IJCSE All Rights Reserved 216

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Special Issue, 5, March 2019 E-ISSN: 2347-2693

Two – Dimensional Grammars Based on Patterns

Christopher Kezia Parimalam
1*

, J.D. Emerald
2

1,2

Department of Mathematics, Queen Mary’s College, Chennai, India

*Corresponding Author: keziamaths@gmail.com, Tel.: 9840538143

DOI: https://doi.org/10.26438/ijcse/v7si5.216220 | Available online at: www.ijcseonline.org

Abstract- A language generating model called Pattern languages was introduced by Dassow , motivated by Angulin’s Pattern

languages that use strings as language descriptors. Investigation of patterns has been of relevance in many areas such as

combinatorics on words, learning theory and so on. Pattern grammars provide an alternative method in defining languages in

automaton theory. Several methods to generate two-dimensional languages known as array languages or picture languages

have been defined and investigated in literature and they have been extending the techniques and results of formal string

language theory. A picture is defined as a rectangular array of terminal symbols in a rectangular plane. In this paper we extend

the Pattern languages defined for strings by Dassow, to a two-dimensional case, while the simplicity and compactness of their

descriptors as defined in one dimensional case are preserved. Hence, Two-dimensional Pattern languages are defined and

investigated for their closure properties based on array operations.

Keywords—Two-dimensional patterns, Component, Two-dimensional axioms, Catenation, Factorization of arrays .

I. INTRODUCTION

String grammars are studied widely in the field of Computer

Science, Mathematics and linguistics since they describe

various forms of language constructs. The string grammar

plays a significant and crucial role in the analysis of any

language especially in high level languages.The study of

syntactic methods of describing pictures considered as

connected, digitized finite arrays in two-dimensional plane

has been of great interest [2]. Picture languages generated by

array grammars or recognized by array automata have been

advocated since 1970 for problems arising in the frame work

of pattern recognition and image processing.

In this context, a pattern is a string over an alphabet

{ of variables. For some finite alphabet of

terminal symbols, the pattern language described by (with

respect to is the set of all words over that can be derived

from by uniformly substituting the variables in by non-

empty terminal words was introduced by Angu3333lin[1]. A

new generative device called Pattern grammars was

introduced by Dassow et.al., [4] to modify the pattern

languages defined by Angulin [1] namely, not allowing the

replacing of variables by arbitrary strings, but to adopt the

following strategy more usual in formal language theory:

start from a finite set of given strings(axioms), replace them

by variables in a given set of pattern(s), all strings generated

(identified) in this way constitute the associated languages.

Intuitively, this way of obtaining languages is related to

parallel rewriting (all occurrences of a given variable are

replaced by the same string, hence in parallel). In this paper

we generalize the concept of pattern grammars as language

descriptors to two-dimensional case, while preserving the

simplicity and compactness of the descriptors.

II. PRELIMINARIES

In this section, we briefly recall the standard definitions and

notations regarding one- and two- dimensional words and

languages as dealt in [3].

For a finite alphabet a string or word (over is a finite

sequence of symbols from , and stands for the empty

string. The notation denotes the set of all nonempty

strings over and = { For the concatenation of

two strings or . We say that a string is a

factor of a string if there are
 such that

 . . If or is empty string then is a prefix (or

a suffix respectively) of the notation | | stands for the

length of a string

A two-dimensional word (or array) over is a tuple W =

(((()

where m, n and, for every i, 1 , 1 , .

We define the number of columns (or width) and number of

rows (or height) of W by | | and | |
respectively. The empty array is denoted by , i.e., | | =

| | For the sake of convenience, we denote W by

[]
 or by a matrix of one of the following form:

https://doi.org/10.26438/ijcse/v7si5.14

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 217

[

]

If we want to refer to the j
th

symbol in row i of the array

When we use W[i,j] =

By , we denote the set of all nonempty arrays over and

 = { Every subset L is an array language.

Let W = []
 and [] be two non-empty

arrays over . The column concatenation of W and
⦶denoted by W , is undefined if and the array is

Otherwise. The row concatenation of W and denoted by

W , is undefined if and the array is

[

]

Otherwise. Intuitively speaking, the vertical lines and the

horizontal lines in the symbols ⦶ and respectively,

indicate the edge where the array are concatenated. In order

to denote that, e.g., U V is undefined, we also write U V

= undef.

Example 1

 = [

] , [

] , = [] , =

[]
Then, ,

 ⦶ ⦶ ⦶
 ⦶

Now, (⦶() = [

]

 (⦶ (⦶

The row and column catenation for array languages and

 is defined by { |
 and ={ U⦶V |U

 U ⦶ . For an array language L and K

 denotes the k-fold row concatenationof L, i.e.,

 . The k-fold column

concatenation is defined anologously denoted by L⦶k
. The

row and column concatenation closure of an array language

L is defined by ⦶ ⋃ ⦶
 and

L
*
= ⋃

k
, respectively. Obvisously, the row and column

concatenation closure of an array language correspond to thr

Kleene clouse of a string language.

Infact, it turns out that characteristic factorisation provides

most promising approach to formalise how a two-

dimensional word satisfies atwo-dimensional pattern. For a

pattern [

] if ([]⦶[] ([]⦶[] a

characteristic factorisation for atwo- dimensional word U

for is a a factorisation of the form U=([⦶]
([⦶] We say the factorisation is of column-row type

. On the otherhand if ([] [] ⦶([]] ,then

U=([] [] ⦶([] [] , the factorisation is said

to be of row-column type. A column-row factorisation

preserves horizontal neighbourship relation of variables, but

not necessarily the vertical neighbourship relation. It is vice-

versa for a row-column factorisation.If a two-dimensional

word U can be diassembled both into column-row as well as

row-column factorisation and U=([⦶] ([⦶]

and U=([] [] ⦶([] [] . We say the

factorisation is proper.

For the definition of two-dimensional patterns, we use the

same set of variables used in the definition of one-

dimensional pattern languages. An array pattern is a non-

empty two-dimensional word over and a terminal array is a

non-empty two-dimensional word over The different

kinds of pattern images can be intrepreted to represent a grid

to be placed over a terminal array. The vertical lines of the

grid denote the column concatenation and the horizontal

grids their row concatenation. Every area of the grid

represents the occurrence of a variable in the array pattern

or to be more specific the axiom substituted for the variables

 . In particular the two rectangular areas of the grid that

correspond to the occurences of the same variable must have

identical content. Thus we can say that the terminal array W

is a certain type of image of an array pattern as a tiling of W.

W is said to satisfy a given pattern array with n different

variables if and only if n tiles are alloted to represent the n

variables of , and combining the tiles as indicated by the

stucture of , yeids W.

III. TWO-DIMENSIONAL PATTERN

LANGUAGES

In this section we have extended the pattern languages

defined by Dassow et.al., [4] from the one-dimensional to

two dimensional case.

A pattern language is obtained by starting from a set of

words called axioms and substituting them in a given P

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 218

uniformly to obtain P(A). Now the set of words in P(A) is

uniformly substituted in the given pattern to obtain P(P(A)).

The process is continued and the the language defined by the

grammar is

L(G)=A (((((()

In one dimensional pattern the axiom is substituted instead of

the pattern variable.The basic operation of substitution of a

single variable in a word by another word cannot be that

easily extended to a two-dimensional case. Thus we define a

two dimensional pattern in a following manner.

A two-dimensional pattern is a mxn array, and the axionm

set is a set of mxn dimensional arrays which satisfy the

concatenation rules for arrays either by row, column, row-

column or column-row factorisation or proper.

Definition 3.1: A two-dimensional pattern grammar is a four

tuple (where

 et of terminal alphabets

 Set of pattern variables

 Set of two-dimensional axioms which satisfy the

patterns defined by their factorisation

 The two-dimensional pattern, defined by pattern

variables only.

i.e.,

[

]

 all the m x n entries are

defined by a pattern variable.

The pattern follows one of the concatenation (factorisation)

(i) row, (ii) column (iii) row-column (iv)column-row (v)

proper (where it satisfies both row-column and column-row).

For a given pattern and a language (is the set

of two-dimensional arrays obtained by replacing each

occurrence of variables in the pattern of P by the arrays in A,

the different occurrences of the same variable being replaced

by the same array.

The language generated by denoted by (is the

smallest language for which we have:

(i)

(ii) P(L)

Thus, L (G) consists of all arrays which can be obtained

starting from the axioms and using finitely many times the

patterns, in the way described in the pattern languages for

strings. L(G)=A (((((()

A language (as above is called a Pattern Language and

we denote it as

Lp,f where f denotes the array factorization type of the

pattern defined; and its family is denoted by .

Definition 3.2:Let (be a two-dimensional

Pattern grammar, P be an two-dimensional pattern.

We define the variants of two-dimensional pattern languages

as follows:

 Lp,r={W ∊ ∑++
|W is obtained by substitution of the

axioms into patterns that follow row factorization}

 Lp,c={W ∊ ∑
++

|W is obtained by substitution of the

axioms into patterns that follow column

factorization}

 Lp,rc={W ∊ ∑
++

|W is obtained by substitution of the

axioms into patterns that follow row-column

factorization}

 Lp,cr={W ∊ ∑
++

|W is obtained by substitution of the

axioms into patterns that follow column-row

factorization}

 Lp,p={W ∊ ∑
++

|W is obtained by substitution of the

axioms into patterns that follow proper

factorization}

For some fixed Pattern P, we see that is a subset of

{ .
Examples:

1. ({ { {[]}, P}, P= [

]

 (= = set of all arrays of dimension

 [] of dimension 2m x 1.

2. = ({a}, { {[] , []

 (set of all arrays of dimension

 [] of dimension 1 x 2n.

 ((

3. ({ { ,{ [a a], [

] }, P), P =

[

]

 (()

 (= = set of all arrays of dimension (
 .

 = [

]

 Where n, denotes the order of the axiom set,k

denotes the number of times a pattern is applied, s,t are

such that 0 .

4. = ({a, b}, {{ {[

] [

]}

[

]

i.e., P= (()

 (=

 set of all arrays [

]

of dimension (.

Where , denotes the order of the axiom set,k

denotes the number of times a pattern is applied, s,t are

such that 0 .

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 219

 ({ { {[] [

]

(

if

then P(A) =

P(P(A))=

P(P(P(A))) =

Figure 1: Picture generation of the Two-dimensional pattern

grammar

IV. PROPERTIES OF TWO-DIMENSIONAL

PATTERN LANGUGES

Theorem 4.1: For every Two-dimensional Pattern grammar

generating a Pattern language , there exist a two-

dimensional Pattern grammar generating []
 .

Proof: Let (be a Two-dimensional Pattern

grammar generating . We construct a Two-dimensional

Pattern grammar (
where

 {

 It can be easily verified from the definition of that

 []

 Corollary 4.1 Let (be some a

 pattern grammar.Then, (i) []

([]

 (iii) []

(iv) []

 .

The first and the second concludes from the examples 1

and 2 given in section3. To prove (iii) and (iv) we consider

pattern grammar with Pattern = [

] and the Axiom

= {[] [

]} ,

 Then P(A) = [

],

 P(P(A)) =

[

]

 .

 { (s

 Where mi x n, denotes the order of the axiom

set,k denotes the number of times a pattern is applied, s,t are

such that 0 .}

 [

] and Axiom = {{[] [, P(A) =

[

]; P(P(A)) = [

]

 {

 (s Where n x mi, denotes the order of the axiom

set,k denotes the number of times a pattern is applied, s,t are

such that 0 .}. = []

 Also, []

Proposition 4.1: Let G=(∑,∆A,P) be a two-dimensional

Pattern grammar be an alphabet, and ‘A’ given set oftwo-

dimensional axioms then neither Lp,rc nor Lp,cr are closed

under transposition.

Proof: Consider a Pattern grammar in which the Pattern P

=[

] , we see [

]; P = ; then we see

that from the above []

 = .

Proposition 4.2: For any alphabet , and a given set of

Axioms L P,p is closed under transposition.

Proof: Given a two-dimensional Pattern grammar

G=(∑,∆A,P) and a two-dimensional Pattern P, such that P

=P
T
, since P satisfies both row-column and column-row

factorisation, the substitution of the axioms into the two-

dimensional pattern yeids the same set of arrays for each

P(A), P(P(A))…Thus it can be easily verified that

[LP,p]
T
=LP

T
,p = L P,p.

Theorem 4.2 For a given set of alphabets and a set of two-

dimensional axioms A.

Lp,r is closed under row concatenation ;

Lp,c is closed under column concatenation ⦶ ;

Lp,rc is closed under concatenation ;

Lp,cr is closed under concatenation ⦶;

 International Journal of Computer Sciences and Engineering Vol. 7(5), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 220

Lp,p is closed under both row and column concatenation;

Proof: We prove this only for one case. The others follow

similarly. Consider the case of Lp,rc. Let G1 and G2be two-

dimensional Pattern grammarsin which the Patterns are

defined as the row- columnfactorisation.LetP1 and P2 be two

pattern variables with dimension m1 x n1, m2 x n2

respectively. The language generated by their grammars

L(G1) and L(G2) are words obtained by substituting each

variable in the pattern by two-dimensional words of

dimension mi x n. Hence all resulting two-dimensional words

will have equal number of columns (kn). Thus n1 = n2 = n.

Hence only concatenation of rows will be defined for the

Patterns and the resulting patterns will be of dimension mi x

n and satisfies row -column factorisation type that belong to

Lp,rc.

Corollary 4.2 For a given set of alphabet,and a set of two-

dimensional axioms A.

Lp,r is not closed under column concatenation⦶;

Lp,c is not closed under row concatenation ;

Lp,rc is not closed under column concatenation⦶;

Lp,cr is not closed under row concatenation ;

Lp,p is neither closed under row nor column concatenation;

This directly follows from the above theorem.

V. CONCLUSION

In this Paper we have defined an variant of a pattern

language, the Two-dimensional Pattern grammars generating

two-dimensional pattern languages and some of the array

language properties applicable to them. In future we would

be extending our study to compare them with the array

grammars develop algorithms to learn the Two-dimensional

Pattern languages.

REFERENCES

[1] D. Angulin, “Finding Pattern common to set of strings,” Journal of

Computer and System Sciences 21, 46-62, (1980)

[2] D. Giammarresi, A. Restivo, “Recognizable picture languages,"

International Journal of Pattern Recognition and Artificial

Intelligence. 6:31-46, 1992.

[3] H. Fernau, Markus L. Schmid, K.G. Subramanian, “Two-

Dimensional Pattern Languages”, In S.Bensch, F. Drewes, R.

Freund, and F.Otto, editors, “Fifth Workshop on Non-Classical

Models for Automata and Applications, NCMA, Volume 294 of

books@ocg.at, pp.117-132. Osterreichische Computer Gesellschaft,

2013.

[4] J. Dassow, G.Paun, A.Salomaa, “Grammars based on Patterns,”

International Journal of Foundations of Computer Science, Vol 4: 1-

14, 1993.

Authors Profile

Mrs.Christopher Kezia Parimalam received the M.Sc. Degree

in Mathematics in the year 1991, M.Phil. Degree in 1993.She

has been a teaching faculty as lecturer from 1996 to 2009 and

as an Assistant Professor from 2009 to 2014 in the

Department of Mathematics in various colleges. She is

currently pursuing her Ph.D in Queen Mary’s

College,Chennai-under University of Madras. Her research

area includes Formal Languages and automaton theory.

Dr.Mrs. Emerald Princess Sheela J.D. received the M.Sc.

Degree in Mathematics in the year 1991, M.Phil. Degree in

1993 and the Ph.D. Degree in 2001 from the University of

Madras. She has been on the teaching faculty as Assistant

Professor, Department of Mathematics, since 2001 in

various colleges and is currently working in Queen Mary’s

College, Chennai -4. She has presented her research papers

in two International Conferences in USA, one in Malaysia

and one in UK. She is the author or co-author of about 20

research papers in her field of interest which includes formal

languages and automata theory, cryptography and learning

theory. She is also guiding three research students for the

award of Ph.D. Degree in the University of Madras.

