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Abstract- A language generating model called Pattern languages was introduced by Dassow , motivated by Angulin’s Pattern 

languages that use strings as language descriptors. Investigation of patterns has been of relevance in many areas such as 

combinatorics on words, learning theory and so on. Pattern grammars provide an alternative method in defining languages in 

automaton theory. Several methods to generate two-dimensional languages known as array languages or picture languages 

have been defined and investigated in literature and they have been extending the techniques and results of formal string 

language theory. A picture is defined as a rectangular array of terminal symbols in a rectangular plane.  In this paper we extend 

the Pattern languages defined for strings by Dassow, to a two-dimensional case, while the simplicity and compactness of their 

descriptors as defined in  one dimensional case are preserved. Hence, Two-dimensional Pattern languages are defined and 

investigated for their closure properties based on array operations. 

 

Keywords—Two-dimensional patterns, Component, Two-dimensional axioms, Catenation, Factorization of arrays .

 

I. INTRODUCTION 
 

String grammars are studied widely in the field of Computer 

Science, Mathematics and linguistics since they describe 

various forms of language constructs. The string grammar 

plays a significant and crucial role in the analysis of any 

language especially in high level languages.The study of 

syntactic methods of describing pictures considered as 

connected, digitized finite arrays in two-dimensional plane 

has been of great interest [2]. Picture languages generated by 

array grammars or recognized by array automata have been 

advocated since 1970 for problems arising in the frame work 

of pattern recognition and image processing. 

 

In this context, a pattern   is a string over an alphabet 

{            of variables. For some finite alphabet   of 

terminal symbols, the pattern language described by   (with 

respect to    is the set of all words over   that can be derived 

from   by uniformly substituting the variables in   by non-

empty terminal words was introduced by Angu3333lin[1]. A 

new generative device called Pattern grammars was 

introduced by Dassow et.al., [4] to modify the pattern 

languages defined by Angulin [1] namely, not allowing the 

replacing of variables by arbitrary strings, but to adopt the 

following strategy more usual in formal language theory: 

start from a finite set of given strings(axioms), replace them 

by variables in a given set of pattern(s), all strings generated 

(identified) in this way constitute the associated languages. 

Intuitively, this way of obtaining languages is related to 

parallel rewriting (all occurrences of a given variable are 

replaced by the same string, hence in parallel). In this paper  

 

we generalize the concept of pattern grammars as language 

descriptors to two-dimensional case, while preserving the 

simplicity and compactness of the descriptors. 

 

II. PRELIMINARIES 

 

In this section, we briefly recall the standard definitions and 

notations regarding one- and two- dimensional words and 

languages as dealt in [3]. 

 

For a finite alphabet    a string or word (over    is a finite 

sequence of symbols from  , and   stands for the empty 

string. The notation    denotes the set of all nonempty 

strings over    and    =     {    For the concatenation of 

two strings      or    . We say that a string        is a 

factor of a string        if there are          
  such that 

       .  . If   or   is empty string then   is a prefix (or 

a suffix respectively) of    the notation | |  stands for the 

length of a string    
 

A two-dimensional word (or array) over   is a tuple W = 

((                  (                    (                 )  

where m, n   and, for every i, 1    , 1    ,           . 

We define the number of columns (or width) and number of 

rows (or height) of W by | |      and | |     
respectively. The empty array is denoted by , i.e., | |  = 

| |      For the sake of convenience, we denote W by 

[    ]   
 or by a matrix of one of the following form: 

https://doi.org/10.26438/ijcse/v7si5.14
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If we want to refer to the j
th

symbol in row i of the array 

When we use W[i,j] =     
 

 

By    , we denote the set of all nonempty arrays over    and 

    =     {   Every subset L     is an array language. 

Let W = [    ]   
 and    [    ]      be two non-empty 

arrays over  . The column concatenation of W and     
⦶denoted by W    , is undefined if       and the array is 

                   

                   

                      
                   

 

                    

                    

                      
                       

 

 

 

Otherwise. The row concatenation of W and     denoted by 

W    , is undefined if        and the array is 

[
 
 
 
 
 
 
 
 
 

                   

                   

                      
                   

 
                    

                    

                      
                       

 ]
 
 
 
 
 
 
 
 
 

 

 

Otherwise. Intuitively speaking, the vertical lines and the 

horizontal lines in the symbols ⦶ and    respectively, 

indicate the edge where the array are concatenated. In order 

to denote that, e.g., U  V is undefined, we also write U  V 

= undef. 

 

Example 1 

  = [
   
   

] ,      [
  
  

] ,   = [   ] ,   = 

[  ] 
Then,                             , 

              ⦶       ⦶      ⦶    
   ⦶           

Now, (       ⦶(      ) = [
              
             
             

]  

 (  ⦶      (  ⦶     

The row and column catenation for array languages    and 

    is defined by        {     |           
               and      ={ U⦶V |U            

   U ⦶          . For an array language L and K   

     denotes the k-fold row concatenationof L, i.e.,    

          .             The k-fold column 

concatenation is defined anologously denoted by L⦶k
.  The 

row and column concatenation closure of an array language 

L is defined by    ⦶   ⋃   ⦶  
   and  

L
*
= ⋃   

   
k
, respectively. Obvisously, the row and column 

concatenation closure of an array language correspond to thr 

Kleene clouse of a string language. 

Infact, it turns out that characteristic factorisation provides 

most promising approach to formalise how a two-

dimensional word satisfies atwo-dimensional pattern. For a 

pattern    [
    

    
] if   ([  ]⦶[  ]   ([  ]⦶[  ]   a 

characteristic factorisation for atwo- dimensional  word  U 

for    is a a factorisation of the form U=([  ⦶   ]  
([  ⦶   ]   We say the factorisation is of column-row type 

. On the  otherhand if  ([  ]  [  ] ⦶([  ]    ] ,then 

U=([  ]  [  ] ⦶([  ]  [  ] , the factorisation is said 

to be of row-column type. A column-row factorisation 

preserves horizontal neighbourship relation of variables, but 

not necessarily the vertical neighbourship relation. It is vice-

versa for a row-column factorisation.If a two-dimensional 

word U can be diassembled both into column-row as well as 

row-column factorisation and U=([  ⦶    ]  ([  ⦶   ]  

and U=([   ]  [  ] ⦶([    ]  [  ] . We say the 

factorisation is proper. 

 

For the definition of two-dimensional patterns, we use the 

same set of variables   used in the definition of one-

dimensional pattern languages. An array pattern is a non-

empty two-dimensional word over   and a terminal array is a 

non-empty two-dimensional word over     The different 

kinds of pattern images can be intrepreted to represent a grid 

to be placed over a terminal array. The vertical lines of the 

grid denote the column concatenation and the horizontal 

grids their row concatenation.  Every area of the grid 

represents the occurrence of a variable    in the array pattern 

or to be more specific the axiom substituted for the variables 

  
  . In particular the two rectangular areas of the grid that 

correspond to the occurences of the same variable must have 

identical content.  Thus we can say that the terminal array W 

is a certain type of image of an array pattern as a tiling of W. 

W is said to satisfy a given pattern array   with n different 

variables if and only if n tiles are alloted to represent the n 

variables of  , and combining the tiles as indicated by the 

stucture of  , yeids W.  

 

III. TWO-DIMENSIONAL PATTERN 

LANGUAGES 

In this section we have extended the pattern languages 

defined by Dassow et.al., [4] from the one-dimensional to 

two dimensional case.  

 

A pattern language is obtained by starting from a set of 

words called axioms and substituting them in a given P 
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uniformly to obtain P(A). Now the set of words in P(A) is 

uniformly substituted in the given pattern to obtain P(P(A)). 

The process is continued and the the language defined by the 

grammar is  

L(G)=A   (    ( (    ( ( (  )   

In one dimensional pattern the axiom is substituted instead of 

the pattern variable.The basic operation of substitution of a 

single variable in a word by another word cannot be that 

easily extended to a two-dimensional case. Thus we define a 

two dimensional pattern in a following manner. 

 

A two-dimensional pattern is a mxn array, and the axionm 

set is a set of mxn dimensional arrays which satisfy the 

concatenation rules for arrays either by row, column, row-

column or column-row factorisation or proper. 

 

Definition 3.1: A two-dimensional pattern grammar is a four 

tuple   (         where  

    et of terminal alphabets 

   Set of pattern variables 

    Set of two-dimensional axioms which satisfy the 

patterns defined by their factorisation 

    The two-dimensional pattern, defined by pattern 

variables only. 

i.e.,    

[
 
 
 
 
                   

                   

                      
                   

 ]
 
 
 
 

 all the m x n entries are 

defined by a pattern variable. 

The pattern follows one of the concatenation (factorisation) 

(i) row, (ii) column (iii) row-column (iv)column-row (v) 

proper (where it satisfies both row-column and column-row). 

For a given pattern   and a language         (   is the set 

of two-dimensional arrays obtained by replacing each 

occurrence of variables in the pattern of P by the arrays in A, 

the different occurrences of the same variable being replaced 

by the same array. 

The language generated by     denoted by  (    is the 

smallest language        for which we have: 

(i)     

(ii) P(L)     

Thus, L (G) consists of all arrays which can be obtained 

starting from the axioms and using finitely many times the 

patterns, in the way described in the pattern languages for 

strings. L(G)=A  (    ( (    ( ( (  )   

A language  (  as above is called a Pattern Language and 

we denote it as  

Lp,f  where f denotes the array factorization type of the 

pattern defined; and its family is denoted by      .  

Definition 3.2:Let   (        be a two-dimensional 

Pattern grammar, P        be an two-dimensional pattern. 

We define the variants of two-dimensional pattern languages 

as follows: 

 Lp,r={W ∊ ∑++
|W is obtained by substitution of the 

axioms into patterns that follow row factorization} 

 Lp,c={W ∊ ∑
++

|W is obtained by substitution of the 

axioms into patterns that follow column 

factorization} 

 Lp,rc={W ∊ ∑
++

|W is obtained by substitution of the 

axioms into patterns that follow row-column 

factorization} 

 Lp,cr={W ∊ ∑
++

|W is obtained by substitution of the 

axioms into patterns that follow column-row 

factorization} 

 Lp,p={W ∊ ∑
++

|W is obtained by substitution of the 

axioms into patterns that follow proper 

factorization} 

For some fixed Pattern P, we see that      is a subset of 

{            . 
Examples: 

1.    ({    {     {[ ]}, P}, P= [
 
 
]
 
 

 (    =     =      set of all arrays of dimension  

 [         ]  of dimension 2m x 1.  

2.    = ({a}, {    {[ ]    ,   [    ]  

 (               set of all arrays of dimension  

 [         ] of dimension 1 x 2n. 

 (     (   
  

3.    ({     {          ,{ [a a],  [
  
  

] }, P), P = 

[
        
        

]
  

 

        (               (          ) 

   (   =       =      set of all arrays of dimension (    
         . 

  = [
    

    
] 

 Where    n,  denotes the order of the axiom set,k 

denotes the number of times a pattern is applied, s,t are 

such that 0       . 

4.    = ({a, b}, {{           {[
 
 
 
]  [

  
  
  

]}          

[
        
        

]
  

 

i.e., P= (               (               ) 

 (    =       
 
    set of all arrays [

 
 
]     

of dimension       (           . 

 

Where      , denotes the order of the axiom set,k 

denotes the number of times a pattern is applied, s,t are 

such that 0       . 
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     ({   {     {[ ]        [
      
      

]
 
 

(                             

                              
 

if    

then P(A) =  

 

 

P(P(A))= 

 

 

 

 

 

P(P(P(A))) = 

 
 

 

 

Figure 1: Picture generation of the Two-dimensional pattern 

grammar 

 

IV. PROPERTIES OF TWO-DIMENSIONAL 

PATTERN LANGUGES 

Theorem 4.1: For every Two-dimensional Pattern grammar 

generating a Pattern language     , there exist a two-

dimensional Pattern grammar generating [    ]
 . 

 

Proof: Let   (            be a Two-dimensional Pattern 

grammar generating     . We construct a Two-dimensional 

Pattern grammar    (               
where  

   {

  
              

         
   

                
          

  
          

 

       It can be easily verified from the definition of     that  

      [    ]
   

 

  Corollary 4.1  Let    (         be some a 

 pattern grammar.Then, (i) [    ]
 
          

(   [    ]
 
         (iii) [     ]

 
           

(iv) [     ]
 
          . 

The first and the second concludes from the     examples 1 

and 2 given in section3. To prove (iii) and (iv) we consider 

pattern grammar with Pattern     = [
    

    
] and the Axiom 

= {[ ] [
 
 
]} ,  

               Then P(A) = [
  
  
  

],  

              P(P(A)) =

[
 
 
 
 
      
     
     

  
   
  

      
     
     

  
  
  ]

 
 
 
 

  . 

             {                                   (s   

         Where mi x n, denotes the order of the axiom 

set,k denotes the number of times a pattern is applied, s,t are 

such that 0       .} 

   
  [

    

    
] and Axiom = {{[ ] [      , P(A) = 

[
   
   

];   P(P(A)) = [

   
   

 
       
      

   
   

       
       

] 

       {                                       

 (s         Where n x mi,  denotes the order of the axiom 

set,k denotes the number of times a pattern is applied, s,t are 

such that 0       .}. = [     ]
 
  Also, [     ]

 
 

         
 

Proposition 4.1:  Let G=(∑,∆A,P) be a two-dimensional 

Pattern grammar  be an alphabet, and ‘A’ given set oftwo-

dimensional axioms then neither Lp,rc nor Lp,cr are closed 

under transposition. 

Proof: Consider a Pattern grammar in which the Pattern P 

=[
    

    
] , we see     [

    

    
]; P =   ; then  we see 

that from the above [     ]
 
         =        . 

 

Proposition 4.2: For any alphabet  , and a given set of 

Axioms L P,p is closed under transposition. 

Proof:  Given a two-dimensional Pattern grammar 

G=(∑,∆A,P) and a two-dimensional Pattern  P, such that P 

=P
T
, since P satisfies both row-column and column-row 

factorisation, the substitution of the axioms into the two-

dimensional pattern yeids the same set of arrays for each 

P(A), P(P(A))…Thus it can be easily verified that 

[LP,p]
T
=LP

T
,p =   L P,p. 

Theorem 4.2 For a given set of alphabets and a set of two-

dimensional axioms A. 

Lp,r is closed under row concatenation ; 

Lp,c is closed under column concatenation    ⦶   ; 

Lp,rc is closed under concatenation ; 

Lp,cr is closed under concatenation ⦶; 
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Lp,p is closed under both row and column concatenation; 

Proof: We prove this only for one case. The others follow 

similarly. Consider the case of Lp,rc. Let G1 and G2be two-

dimensional Pattern grammarsin which the Patterns are 

defined as the row- columnfactorisation.LetP1 and P2 be two 

pattern variables with dimension m1 x n1, m2 x n2 

respectively. The language generated by their  grammars 

L(G1) and L(G2) are words obtained  by substituting each 

variable in the pattern by two-dimensional words of 

dimension mi x n. Hence all resulting two-dimensional words 

will have equal number of columns (kn). Thus n1 = n2 = n. 

Hence only concatenation of rows will be defined for the 

Patterns and the resulting patterns will be of dimension mi x 

n and satisfies row -column factorisation type that belong to 

Lp,rc. 

 

Corollary 4.2 For a given set of alphabet,and a set of two-

dimensional axioms A. 

Lp,r is not closed under column concatenation⦶; 

Lp,c is not closed under row concatenation   ; 

Lp,rc is not closed under column  concatenation⦶; 

Lp,cr is not closed under row concatenation      ; 

Lp,p is neither closed under row nor column concatenation; 

This directly follows from the above theorem. 

 

V. CONCLUSION 

In this Paper we have defined an variant of a pattern 

language, the Two-dimensional Pattern grammars generating 

two-dimensional pattern languages and some of the array 

language properties applicable to them. In future we would 

be extending our study to compare them with the array 

grammars develop algorithms to learn the Two-dimensional 

Pattern languages. 

 

REFERENCES 

 
[1] D. Angulin, “Finding Pattern common to set of strings,” Journal of 

Computer and System Sciences 21, 46-62, (1980) 

[2] D. Giammarresi, A. Restivo, “Recognizable picture languages," 

International Journal of Pattern Recognition and Artificial 

Intelligence. 6:31-46, 1992. 

[3] H. Fernau, Markus L. Schmid, K.G. Subramanian, “Two-

Dimensional Pattern Languages”, In S.Bensch, F. Drewes, R. 

Freund, and F.Otto, editors, “Fifth Workshop on Non-Classical 

Models for Automata and Applications, NCMA, Volume 294 of 

books@ocg.at, pp.117-132. Osterreichische Computer Gesellschaft, 

2013. 

[4] J. Dassow, G.Paun, A.Salomaa, “Grammars based on Patterns,” 

International Journal of Foundations of Computer Science, Vol 4: 1-

14, 1993. 
 

 

 

 

 

 

 

Authors Profile 

Mrs.Christopher Kezia Parimalam received the M.Sc. Degree 

in Mathematics in the year 1991, M.Phil. Degree in 1993.She 

has been a teaching faculty as lecturer from 1996 to 2009 and 

as an Assistant Professor from 2009 to 2014  in the 

Department of Mathematics in various colleges. She is 

currently pursuing her Ph.D in Queen Mary’s 

College,Chennai-under University of Madras. Her research 

area includes Formal Languages and automaton theory. 

 

Dr.Mrs. Emerald Princess Sheela J.D. received the M.Sc. 

Degree in Mathematics in the year 1991, M.Phil. Degree in 

1993 and the Ph.D. Degree in 2001 from the University of 

Madras.  She has been on the teaching faculty as Assistant 

Professor, Department of Mathematics,  since 2001 in 

various colleges and is currently working in Queen Mary’s 

College, Chennai -4.  She has presented her research papers 

in two International Conferences in USA, one in Malaysia 

and one in UK.  She is the author or co-author of about 20 

research papers in her  field of interest which includes formal 

languages and automata theory, cryptography and learning 

theory.  She is also guiding three research students for the 

award of Ph.D. Degree in the University of Madras. 

 


