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Abstract—A new variant geodetic problem, circular geodetic is defined as follows: Let                          be a geodetic set of 

 . Then   is said to be a circular geodetic set of  , there exists an index  ,      , such that            contains atleast a vertex   other 

than    and     , also          . The minimum number of vertices needed to form a circular geodetic set is called circular geodetic 

number of   and it is denoted by        . 
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I.  INTRODUCTION 

We consider a finite graph without loops and multiple edges. 

Let   be a graph the vertex set      and the edge set 

    .The order of the graph G is        and size is       . 

The degree      of the vertex        is the number of the 

edges adjacent to   i.e.,                For a vertex 

         , the open neighborhood      is the set of all 

vertices adjacent to  , and            ⋃    is the closed 

neighborhood of  . Let        and         denote the 

maximum and minimum degree of the graph   respectively. 

 If   is a graph then its complement is denoted by   ̅ The 

girth of a graph   is the length of the shortest cycle. The 

Triangle free graph is an undirected graph in which no three 

vertices form a triangle of edges.In a graph G a vertex x is 

simplicial if its neighborhood      induces a complete 

subgraph of G.  If G is a connected graph, then the 

distance      ) is the length of a shortest x -y path in  . The 

diameter of a connected graph   is defined by         
                   A     path of length        is called 

a        geodesic. The closed interval        is the set of 

vertices of all     geodesic of  . For       ,      
⋃             . A set   of vertices of a graph   is a geodetic 

set if          , and the minimum cardinality of a 

geodetic set is the geodetic number       
  

Let                          be a geodetic set of  . 

Then   is said to be a circular geodetic set of  , there exists 

an index  ,      , such that            contains atleast a 

vertex   other than    and     , also          . The 

minimum number of vertices needed to form a circular 

geodetic set is called circular geodetic number of   and it is 

denoted by        .  

 

 

In this paper, the circular geodetic number of certain graphs 

and networks are presented and realizzation results are also 

given. 

 

II. PRELIMINARIES 

 

Definition 2.1  A vertex        is said to be 

geodominated by the pair       if   lies on some     

geodesic in  , for any         . The geodetic interval 

       consists of  ,   together with all vertices 

geodominated by the pair      . If   is a set of vertices of  , 

then the geodetic closure      is the union of all sets        
for      . If          , then   is said to be a geodetic 

set of  . The geodetic number      is the minimum 

cardinality of a geodetic set.  

 

Definition 2.2 Let                    

     be a geodetic set of  . Then   is said to be a circular 

geodetic set of  , there exists an index  ,      , such 

that            contains atleast a vertex   other than    and 

    , also          . The minimum number of vertices 

needed to form a circular geodetic set is called circular 

geodetic number of   and it is denoted by        .  

 

Definition 2.3  A vertex   of a graph   is called simplicial if 

its neighborhood      induces a clique  

 

Example 2.1 In Fig. 1, there are 3 simplicial vertices, 

             and these vertices forms a geodetic set as 

well as circular geodetic set. But this fails to make the linear 

geodetic set. When we add the vertex    to  , this becomes 

the linear geodetic set. This is the example for         
     . 
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Figure 1 

 

III. MAIN RESULTS 

 

Proposition 3.1 Every circular geodetic set of a graph 

contains all its extreme vertices. In particular, if the set of 

simplicial vertices   of   is a circular geodetic set of  , then 

  is the unique minimum circular geodetic set of  .  

 

Theorem 3.2 Let   be any graph, then        
          
 

Proof. It is clear that,         . By the definition 2.2, it 

is obvious that               . Therefore we get 

                .  

 

Theorem 3.3 If   is a nontrivial connected graph of order   

and diameter  , then              .  

 

Theorem 3.4 Let   be a connected graph.        iff 

         .  

 

Proof. In a connected graph   with       , we denote the 

geodetic set        . This shows that the vertices of     

lies on the geodesics between   and  . It is clear that, 

         . Now, let           and           . This 

implies that the vertices of        lies on the geodesics 

between   and  . And it is enough to show that       .  

 

Theorem 3.5For the complete bipartite graph     , 

        

           {
       
       
           

 

 

Proof. For        . Let   and   be the partition of the 

complete bipartite graph,     . 

 

Case (i): When    . 

Clearly,   is a circular geodetic set of     . Therefore 

            . 

Case (ii): When    . 

It is clear that, no two vertex subset is a circular geodetic set 

of     . Therefore             . 

 

Case (iii): When    . 

No three vertex subset will form a circular geodetic of     . 

Let                  and                  be the 

partite sets of     . Then                 is a circular 

geodetic set of     . Therefore             . 

 

Theorem 3.6For the cycle   ,  

         {
           
          

 

 

Proof. Case (i): When   is even. 

Any two antipodal vertices of    are enough to form a 

circular geodetic set. Then         . 

 

Case (ii): When   is odd. 

Let              be the set of vertices such that    and    

are antipodal to   . Therefore   is a circular geodetic and so 

           

 

Theorem 3.7For a nontrivial tree   with   end vertices,  

         . 

 

Proof. Let   be a tree with   end vertices and       . 

Clearly        and this implies          . In any 

arbitrary tree which contains   end vertices, we sequentially 

arrange the end vertices and label from 1 to  . Clearly 

         . Therefore           

Theorem 3.8For a Hexagonal Mesh Network,  

          . 

 

Proof. Let               as shown in Fig. 2. Without loss 

of generality assume that      be the geodetic set.          
is not enough to cover all the vertices of  . Therefore 

          . And   clearly geodominates all the vertices of 

 . Hence           . Therefore           . 
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Figure 2 
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Theorem 3.9For a Hexagonal Mesh Pyramid Network,  

            . 

 

Proof. Let              as shown in Fig. 3. Without loss 

of generality assume that      be the geodetic set.          
is not enough to cover all the vertices of  . Therefore 

            . And   clearly geodominates all the vertices 

of  . Hence             . Therefore             . 
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Figure 3 

 

Theorem 3.10Let      be the complete Apollonian network 

of level r. Then            is the set of all simplicial vertices. 

 

Proof. Let the simplicial vertices denote the set   . Then it is 

clear that    (    )      The complete Apollonian network 

of level   has     simplicial vertices, for    , whereas 

     and      has 3 and 4 simplicial vertices respectively. 

Since   construct the geodetic set for     . Then 

    (    )     . Therefore     (    )     . 
 

IV. REALIZATION RESULTS 

 

Theorem 4.1 If  ,   and   are integers such that      , 

         , then there exists a graph   of order  , 

diameter   and          .  

 

Proof.    Let                 be a path of length  . We first 

add     new vertices                and join each to    

producing a tree   . Then we add new vertices 

                   and join each to       and   , thereby 

producing the graph  . Then   has order   and diameter  . 

Let         and      . First,let   3. Then it is clear 

that                        , the set of end vertices of   

is not a circular geodetic set of   and so            . 

On the other hand,                        is a circular 

geodetic set of   and so by Proposition 3.1,         
 .Next,let    . Then, as above, it is easily seen that 

                               is a minimum 

circular geodetic set of   and so          .  
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Figure  5 

 

V. CONCLUSION AND FUTURE SCOPE  

 

Circular geodetic number for tree, complete graph, complete 

bipartite graph, hexagonal mesh network, hexagonal mesh 

pyramid network, apollonian network are computed. And 

realization results are obtained.  
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