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Abstract—The fuzzy minimum spanning tree (FMST) problem, where the arc costs have fuzzy values, is one of the most 

studied problems in fuzzy sets and systems area. In this paper, we concentrate on an FMST problem on aPrufer sequence in 

which instead of a real number, is assigned to each arc length. The fuzzy Prufer sequences are able to represent the uncertainty 

in the arc costs of the fuzzy minimum spanning tree. Two key matters need to be addressed in FMST problem with fuzzy 

numbers. The other is how to determine the addition of edges to find out the cost of the FMST. The definite integration 

representation of fuzzy numbers is used here to solve these problems. A famous sequence to solve the minimum spanning tree 

problem is Prufer sequences, where uncertainty is not considered, i.e., specific values of arc lengths are provided. A fuzzy 

version of classical Prufer sequences is introduced in this paper to solve the FMST problem in the fuzzy environment. We use 

the concept of definite integration representation of the fuzzy numbers in the proposed algorithm. 
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I. INTRODUCTION 

 

This paper provides a comprehensive introduction to the 

study of fuzzy minimum spanning trees. A fuzzy minimum 

spanning tree for a graph G is a subgraph of G that is a tree 

and contains all the vertices of G. There are many situations 

in which good fuzzy minimum spanning trees must be found. 

Whenever one wants to find a straightforward, inexpensive, 

yet efficient way to attach a set of terminals, be they 

computer, telephones, factories, or cities, a solution is 

normally one kind of fuzzy minimum spanning trees. Fuzzy 

minimum Spanning trees prove important for several 

reasons: 

1. They create a sparse subgraph that reflects a lot about the 

original graph. 

2. They play an important role in designing efficient routing 

algorithms. 

3. Some computationally hard problems, such as fuzzy 

minimum spanning tree problem and the traveling seller 

problem, can be solved approximately by using definite 

integration in spanning trees. 

4. They have extensive applications in numerous areas, such 

as network design, bioinformatics, etc. 

 

1.3. Problem formulation for FMST 

       1.3.1. Counting Spanning Trees 

Throughout this paper, we use n to denote the number of 

vertices of the input graph and m the number of edges of the 

input graph. Let us start with the problem of counting the 

number of fuzzy minimum spanning trees.    denote a 

complete graph with n vertices. How many fuzzy minimum 

spanning trees is there in the complete graph     Each fuzzy 

minimum spanning tree is associated with a two number 

sequence, called a Prufer sequence, which will be explained 

later. Back in 1889, Cayley devised the well-known formula 

      for the number of fuzzy minimum spanning trees in the 

complete graph  . There are numerous proofs of this elegant 

formula. The first explicit combinatorial proof of Cayley's 

formula is due to Prufer. The idea of Prufer's proof is to find 

a one-to-one correspondence (bisection) between the set of 

spanning treesof  , and the set of Prufer sequences of length 

n-2, which is defined in Definition 1.1. 

 

DEFINITION 1.1 

A Prufer sequence of length n - 2, for n   2, is any sequence 

of integers between 1 and n, with repetitions allowed. 

 

LEMMA 1.1 

There are      Prufer sequences of length n- 2. 

PROOF By definition, there are n ways to choose each 

element of a Prufer sequence of length n-2. Since there are n-

2 elements to be determined, in total, we have      ways to 

choose the whole sequence. 

 

Given a labelled tree with vertices labelled by 1; 2; 3…… n, 

the Prufer Encoding algorithm outputs a unique Prufer 

sequence of length n - 2. It initializes with an empty 

sequence. If the tree has more than two vertices, the 

algorithm finds the tree with the lowest tree and appends to 

the Prufer sequence the sticky label of the neighbor of that 
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piece of tree. Then the tree with the lowest sticky label is 

deleted from the tree. This operation is repeated n - 2 times 

in anticipation of only two vertices stay behind in the tree. 

The algorithm trimmings up delete n - 2 vertices.  

Therefore, the consequential progression is of length n - 2. 

 

1.3.2. Algorithm: Prufer Encoding 

Input: A labelled tree with vertices labelled by 1; 2; 3 ……n. 

Output: A Prufer sequence. 

Repeat n - 2 times 

 

THEOREM 1.2 

The number of spanning trees in   is     .  

Proof. It should be noted that      is the number of distinct 

spanning trees of  , but not the number of non-isomorphic 

spanning trees of  . For example, there are     = 1296 

distinct spanning trees of   , yet there are only six non-

isomorphic spanning trees of  .  

 

We give a recursive procedure for the quantity of spanning 

trees in a wide-ranging diagram. Let S-e denote the graph 

obtained by removing edge e from S. Let S/e denote the 

resulting graph after contracting e in S. In other words, S/e is 

the graph obtained by deleting e and merging its ends. 

 Let  (S) denote the number of spanning trees of S.  

 

THEOREM 1.3 

  (G) =   (S - e) +   (S/e) 

PROOF The number of spanning trees of S that do not 

contain e is   (S-e) since each of them is also a spanning tree 

of S-e, and vice versa. On the other hand, the number of 

spanning trees of S that contain e is  (S/e) because each of 

them corresponds to a spanning tree of S/e. Therefore, 

  (S) =   (S - e) +  (S/e). ……… (1.1) 

 

1.4.BIBO Stability and the Small Gain Theorem 

Definition 1.1. 

A (linear or nonlinear) control system is said to be bounded-

input bounded-output (BIBO) stable if a bounded control 

input to the system always produces a bounded output 

through the system. 

 Here, the boundedness is defined in the norm 

(       etc.) of the function space which we consider in the 

design.  

 Let S denote a (linear or nonlinear) system. S may 

be considered as a mapping which maps a control input, 

  (t), to the corresponding system output   (t), as shown in 

Figure 1.1, where 

 (G) :  (t)    (t) or   (t)=G{  (t)}. ……… (1.2) 

Recall the standard signal of    

1    ;    { ( ) ∫ | ( )| 
 

 
    }  

q = :     { ( )        | ( )|

     
    }……… (1.3) 

 

Figure 1. A NONLINEAR FEEDBACK SYSTEM 

 

Where “erg” means “energy,” namely, the supreme holds 

except over a set of measure zero. For piecewise continuous 

signals, essential supreme and supreme are the same, so 

“erg” can be dropped from the above. 

 

Consider a nonlinear (including linear) feedback system 

shown in Figure 1, where for simplicity it is assumed that all 

signals n, e,   ,   ,      

 

It is clear that  

{
        (  )
        (  )

 ………………………..(1.4) 

Or equivalently  

{
        (  )
       (  )

………………………..(1.5) 

This is called nonlinear standard form of Euclidean length  

 

Theorem 1.4.  Consider the nonlinear feedback system is 

shown in Figure 1.1, which is described by the relationship 

(1.4)-(1.5). Suppose that there exist constants  ,   ,   ,   , 

with    < 1, such that 

 

{
‖  (  )‖       ‖  ‖

‖  (  )‖       ‖  ‖
………………………..(1.6) 

 

Then we have  

{
‖  ‖  (      )

  (‖  ‖    ‖  ‖       )

‖  ‖  (      )
  (‖  ‖    ‖  ‖       

 

………………………..(1.7) 

Proofs 

It follows from  

        (  ) 

That  

‖  ‖  ‖  ‖  ‖  (  )‖ 

    ‖  ‖  ‖  ‖     
  ‖(  )‖ 

Similarly  

‖  ‖  ‖  ‖       ‖(  )‖ 

Combining these two inequalities, we obtain  

‖  ‖      ‖  ‖  ‖  ‖    ‖  ‖          

Or using the fact           

‖  ‖  (      )
  (‖  ‖    ‖  ‖         ) 



   International Journal of Computer Sciences and Engineering                                   Vol.7(2), Jan 2019, E-ISSN: 2347-2693 

     © 2019, IJCSE All Rights Reserved                                                                                                                                 109 

Figure 2 A FEEDBACK CONTROL SYSTEMS 

 

The rest of the theorem follows immediately. 

It is clear that the Small Gain Theorem is applicable to both 

continuous times and discrete-time systems, and to both 

SISO and MIMO systems. Hence, although its statement and 

proof are quite simple, it is very useful. 

 

We next point out an interesting relation between the BIBO 

stability and the Lyapunov asymptotic stability. It is clear 

that the asymptotic stability generally implies the BIBO 

stability, but the reverse can also be true under some 

conditions. 

 

Consider a nonlinear system described by the following first-

order vector valued ordinary differential equation: 

{
 ( )    ( )   ( ( )  ) 

 ( )    
…………….. (1.8) 

 

With an equilibrium solution x(t) = 0, where A is an n n 

constant matrix whose Eigenvalues are assumed to have 

negative real parts, and f:         is a real vector-

valued integrable nonlinear function of t  [0,  ). By 

adding and then subtracting the term Ax (t), a general 

nonlinear system can always be written in this form. Let 

{
 ( )   ( )  ∫  (   ) ( )  

 

 

 ( )   ( ( )  )
……………………… (1.9) 

 

With n(t) =      . Then we can implement systems (1.9) by 

a feedback configuration as depicted in Figure2, where the 

error signal e (t) = x(t), the plant P( )(t) = f( ,t), and the 

compensator C( )(t) = ∫  (   ) ( )  
 

 
 

 

Theorem 1.5.Consider the nonlinear system (1.9) and its 

associate feedback configuration shown in figure 2. Suppose 

that     =   (   )    , where 1      Then, if the 

feedback system shown in figure (1.9) is BIBO stable, then it 

is also asymptotically stable. 

Proof  

Since all eigenvalues of the constant matrix A have negative 

real parts, we have  

|     |        

For some constants 1       for all t     ), so that 

|  ( )|  |     |            Hence, in view of the first 

equation defined above i.e. x(t)=  ( )  ∫  (   )  ( )  
 

 
  if 

we can prove that 

 

  ( )     
   

∫  (   )  ( )  
 

 

   

Then it will follow that  

| ( )|  |  ( )    ( )|    

To do so write  

  ( )         ∫  (   )  ( )  
 

 ⁄

 
 ∫  (   )  ( )  

 
 

 ⁄
] 

 =       ∫  ( )  (   )  
 
 

 ⁄
 ∫  (   )  ( )  

 
 

 ⁄
] 

Then, by the Holder inequality we have 

  ( )     
   

 |∫  ( )  (   )  
 

 
 ⁄

|  |∫  (   )  ( )  
 

 
 ⁄

|  

  

     
   

[∫ | ( ) |
  

 
 ⁄

  ]

 

 
[∫ | (   )|   

 
 

 ⁄
]

 

 

                                             

+[∫ | (   ) |
 
  

 
 

 ⁄
]

 

 
[∫ | ( )|   

 
 

 ⁄
]

 

 
 

    [∫ | ( ) |
  

 
 ⁄

  ]

 

 
[∫ | (  

 
 

 ⁄

 )|   ]

 

 
                                             

+[∫ | (   ) |
 
  

 
 

 ⁄
]

 

 
[∫ | ( )|   

 
 

 ⁄
]

 

 
 

 

Since all eigenvalues of A have negative real parts and since 

the feedback system is BIBO stable from   ( )to  ( ), so 

that  ( )       (   )    , we have 

   
   

[∫ | ( ) |
 

 

 
 ⁄

  ]

 

   

And  

   
   

∫ | ( )|   
 

 
 ⁄

   

Therefore, it follows that|  ( )|           . 

 

II. CONCLUSION AND FUTURE SCOPE  

 

In this paper, we introduce the fuzzy version of classical 

Prufer sequences to solve the fuzzy minimum spanning tree 

problem. In a fuzzy minimum spanning tree problem, the 

fuzzy minimum spanning tree and its corresponding cost is 

the main information for the decision makers. Our modified 

Prufer sequences find the fuzzy minimum spanning tree and 

its corresponding cost. We use the graded mean integration 

representation of fuzzy numbers in our fuzzy Prufer 

sequences to solve the fuzzy minimum spanning tree 

problem.The goal of this study is to build an uncertainty 

modelling architecture of the FMST problem. It handles the 

uncertainty in arc costs of the fuzzy arc to capture the most 

available information. In future, we will try to apply our 

proposed algorithm to the real world problem like 

transportation systems, logistics management, and many 
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other network optimization problems that can be formulated 

as FMST problem and we will also try to improve the 

complexity of the proposed algorithm using definite integral 

heap and adjacency list. 
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