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Abstract—Liar's dominating set is one that identifies an intruder's location even if one device in the neighborhood of the 

intruder vertex becomes faulty, that is, any one device in the neighborhood of the intruder vertex can misidentify any vertex in 

its closed neighborhood as the location of the intruder. The liar’s domination number is the minimum cardinality of a liar’s 

dominating set. In this paper, we determine the liar’s domination number for sun graphs, sun let graphs, line graphs of sun let 

graphs and wheel graphs. 
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I. INTRODUCTION 

 

The theory of domination occurs in number of problems and 

has been the nucleus of research activity in graph theory. The 

communication network problem is a motivation for all other 

problems in domination. Each node in that communication 

network needs to communicate with all the nodes in order to 

be efficient. The other applications of domination includes 

facility location problem, land surveying problem and many 

more. 

 

Liar’s Domination was introduced by Slater [18] in the year 

2009. Liar’s domination arises in modelling protection 

devices where one device may be faulty. A graph G is 

modelled in a way that every vertex is the possible location 

for the intruder to enter. By placing protection devices at a 

vertex say v, the intruder can be detected at any vertex in its 

closed neighbourhood N[v]. Also the location of the intruder 

in N[v] can be identified. In this scenario, there is a 

possibility of misidentifying the vertex as the intruder or may 

not report the intruder in its closed neighbourhood N[v]. 

Liar’s dominating set can identify the location of the intruder 

exactly even when one device becomes faulty. 

 

Given a graph G(V, E), for any vertex v ∈ V , we denote the 

open neighbourhoods of v in G by N(v) = {x ∈ V (G)/(x,v) ∈ 

E(G)} and the closed neighbourhoods as N[v] = N(v) ∪ v. A 

set S of vertices of a graph G = (V, E) is a dominating set of 

G if every vertex in V(G)−S is adjacent to some vertex of S. 

The domination number γ(G) is the minimum cardinality of a 

dominating set of G. For an integer k ≥ 1, a dominating set D 

⊆ V is a k-tuple dominating set if |N[v]∩D|≥ k for all v ∈ V. 

The minimum cardinality of a k-tuple dominating set is 

called the k-tuple domination number of G and is denoted by 

γk(G) [5]. 

 

As defined by Slater [17], a dominating set S ⊂ V (G) is a 

liar’s dominating set if for any vertex v ∈ V (G) if all or all 

but one of the vertices in N[v] ∩ S report v as the intruder 

location, and at most one vertex w in N[v] ∩ S either reports a 

vertex x ∈ N[w] or fails to report any vertex, then the vertex v 

can be correctly identified as the intruder vertex. In other 

words, if an intruder is at any vertex v, then the protection 

devices outside of N[v] are assumed to not report any 

intruder, one vertex w ∈ N[v] ∩ S can report nothing or any 

vertex in N[w] as the intruder vertex, every other element of 

N[v] ∩ S will correctly report vertex v as the intruder 

location, and v will be correctly identified as the intruder 

vertex. 

 

A vertex set L ⊆ V (G) is a Liar’s Dominating Set (LDS) if 

and only if (1) L double dominates every v ∈ V (G) and (2) 

for every pair u, v of distinct vertices we have 

|(N[u]∪N[v])∩L|≥3. The minimum cardinality of a liar’s 

dominating set for graph G is called the liar’s domination 

number and is denoted γL(G). In order to detect an intruder in 

any graph, a dominating set is needed. But since any one 

device can fail to detect the intruder, a double dominating set 

is required. Since every triple dominating set is a liar’s 

dominating set, liar’s dominating sets lie between double 

dominating sets and triple dominating sets [17]. 

 

Slater [18] has showed that for general graphs the liar’s 

dominating set problem is NP-hard and has given a lower 

bound for trees. Roden and Slater [17] proved that even for 

bipartite graphs the problem is NP-hard. Panda and Paul [10, 

13] have proved that the problem is NP-hard for split graphs 

and chordal graphs and later they proposed a linear time 

algorithm for proper interval graphs. Liar dominating set for 

circulant networks was given by Paul Manuel [9]. B. S. 

Panda et al. [14] studied the problem for bounded degree 
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graphs and p-claw free graphs. Alimadadi et al. [1] provided 

the characterization of graphs and trees for which liar’s 

domination number is | V | and | V | − 1 respectively. In this 

paper, we determine the minimum liar’s domination number 

for sun graphs, sun let graphs, line graphs of sun let graphs 

and wheel graphs. 

 

II. LIAR’S DOMINATING SET FOR WHEEL 

GRAPHS 

 

 
For any integer n ≥ 4, the wheel graph Wn is the (n+1)-vertex 

graph obtained by joining a vertex v to each of the n vertices 

{w1, w2,...,wn} of the cycle graph Cn [20]. In Wn, d(v) = n and 

d(wi) = 3, 1 ≤ i ≤ n. 

 

Wheel graphs are planar graphs and so they have a unique 

planar embedding. There are n
2
−3n+3 cycles in Wn and it is 

always Hamiltonian. The wheel Wn supplied a counter 

example to a conjecture of Paul Erdos on Ramsey theory [4]. 

Theorem 2.1. [18] For a cycle Cn we have   (  )  ⌈
  

 
⌉. 

Theorem 2.2. Let Wn be a wheel graph with n ≥ 4 

then   (  )  [
 

 
]   . 

Proof. Let L include wi’s, i odd, 1 ≤ i ≤ n−1; so that 

|N[wi]∩L| = 2, i even and |N [v]∩L| ≥ 2. But in order to make 

|N [wi] ∩ L| ≥ 2, i odd, v should be included in L and it is 

sufficient since each wi’s, i odd are double dominated and 

each wi’s, i even are triple dominated. Therefore L becomes a 

liar’s dominating set. Also since    (  )  ⌈
  

 
⌉  

 

 
, 

  (  )  [
 

 
]   .  

 

III. LIAR’S DOMINATING SET FOR SUN GRAPHS 

 

A sun is a chordal graph G on 2n vertices for some n ≥ 3 

whose vertex set can be partitioned into two sets W = 

{w1,...,wn}, U = {u1,...,un}, such that W is independent and for 

each i and j, wj is adjacent to ui if and only if i = j or i ≡ j 

+1(mod n). A complete sun is a sun G in which G(U) is a 

complete graph [2]. Let us call this complete sun graph as 1-

CSn. In general an N−complete sun graph is obtained by 

replacing each of the outer edge of (N −1)-CSn by K3 which 

introduce a vertex for each outer edge. See Figure 4. 

 
 

Theorem 3.1. Let 1-CSn be a complete sun graph with n ≥ 3 

then γL(1-CSn) = n. 

Proof. Since d(wi) = 2 and N(wi)’s are ui’s, in order to satisfy 

|(N[wi]∩L| ≥ 2, L should have N(wi) or one vertex from N(wi) 

and wi. Let L = {ui|1 ≤ i ≤ n}. It is clear that |N[u] ∩ L| ≥ 2 for 

all u. Also, since all ui’s are in L and ui’s form a complete 

graph, |(N[ui] ∪ N[uj]) ∩ L| ≥ 3 and |(N[ui] ∪ N[wj]) ∩ L| ≥ 3. 

Moreover since |N(wi) ∩ N(wj)| ≤ 1, |(N[wi] ∪ N[wj]) ∩ L| ≥ 

3. Hence L is a liar’s dominating set. Therefore, γL(1 − CSn) = 

n.  

 
Starting at any vertex, the inner vertices of 2-CSn are labeled 

as u1, u2,... in clockwise direction. The new vertices 

introduced by the outer edge of 1-CSn to form 2-CSn are 

labelled as vj’s such that vj is adjacent to ui if and only if i = j 

or i ≡ j + 1(mod n). 

 

Theorem 3.2. Let 2-CSn be a complete 2-sun graph with n ≥ 

3 then γL(2-CSn) = 2n. 

Proof. Let L = {ui,|1 ≤ i ≤ 2n} be a liar’s dominating set. It is 

obvious that |(N[u] ∩ L| ≥ 2 for all u. Also since each ui is 

adjacent with ui−1 and ui+1, |(N[ui] ∪ N[uj]) ∩ L| ≥ 3 and 

|(N[ui] ∪ N[wj]) ∩ L| ≥ 3. Moreover, |N(wi) ∩ N(wj)| ≤ 1, 

|(N[wi] ∪ N[wj]) ∩ L| ≥ 3. Therefore L is a liar’s dominating 

set. Hence, γL(2-CSn) = 2n.  

In view of theorem 3.1 and 3.2, we have the following result. 

 

Theorem 3.3. Let N-CSn be a complete N-sun graph with n ≥ 

3 then   (     )  
 

 
(  )   
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IV. LIAR’S DOMINATING SET FOR SUN LET 

GRAPHS 

 
 

The n-sun let graph on 2n vertices is obtained by attaching n 

pendant edges to the cycle Cn and is denoted by Sn [20]. 

Starting at any vertex in the cycle Cn, label the vertices as u1, 

u2,..., un in the clockwise direction. The corresponding 

pendant vertex are labelled as vi for each ui. The line graph of 

a graph G, denoted by L(G), is a graph whose vertices are the 

edges of G, and if u, v ∈ E(G) then uv ∈ E(L(G)) if u and v 

share a vertex in G. Here we denote the line graph of sun let 

graphs by L(Sn) [20]. The graph of L(Sn) and the middle 

graph of a cycle graph M(Cn) look similar. 

Theorem 4.1. Let Sn be a sun let graph with n ≥ 3, then γL(Sn) 

= 2n. 

Proof. Since vi’s are pendant vertices, both vi and ui should be 

in L. Hence, γL(Sn) = 2n.  

Theorem 4.2. [3] Let M(Cn) be the middle graph of a cycle 

graph, where Cn is the cycle graph of order n. Then 

γLR(M(Cn)) ≤ n. 

Theorem 4.3. Let L(Sn) be a line graph of a sun let graph 

with n ≥ 3, then γL(L(Sn)) = n. 

Proof. Since each vi is adjacent to ui and ui+1, it is clear that 

either (ui, vi) or (ui, ui+1) or (vi, ui+1) should be in L. Without 

loss of generality let L = {ui|1 ≤ i ≤ n} such that γL(L(Sn)) = n. 

 
 

V. CONCLUSION 

 

Liar’s domination can be used to determine the information 

about the location of an intruder provided that one detector 

becomes faulty. In this paper we provided the liar’s 

dominating number for sun graphs, sun let graphs and wheel 

graphs. We extend this result for more classes of graphs in 

our future work. 
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