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Abstract— A graph G(p, q) is said to be odd harmonious if there exists an injection f: V(G) → {0, 1, 2, …, 2q-1} such that the 

induced function f*:E(G)→{1,3,...,2q−1} defined by f * (uv) = f(u) + f(v) is a bijection. In this paper we prove that the 

subdivided shell graph, disjoint union of two subdivided shell graph, subdivided shell flower graph and subdivided uniform 

shell bow graph are odd harmonious. 
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I.  INTRODUCTION  

Throughout this paper, by a graph we mean a finite, simple 

and undirected one. For standard terminology and notation 

we follow Harary [5]. Graham and Sloane [4] introduced 

harmonious labeling during their study of modular versions 

of additive bases problems stemming from error correcting 

codes. A graph G is said to be harmonious if there exist an 

injection  f : V (G) → Zq such that the induced function f∗ : 

E(G) → Zq defined by f∗(uv) = (f(u) + f(v))(mod q) is a 

bijection and f is called harmonious labeling of G. The 

concept of odd harmonious labeling was due to Liang and 

Bai [6]. A graph G is said to be odd harmonious if there 

exists an injection f: V(G) → {0, 1, 2, …, 2q-1} such that the 

induced function f * : E(G) → {1, 3, . . . , 2q − 1} defined by 

f * (uv) = f(u) + f(v) is a bijection. If f( V(G))= {0, 1, 2,…, q}, 

then f is called as strongly odd harmonious labeling and G is 

called as strongly odd harmonious graph. More results about 

odd harmonious labeling can be found in [6] - [13]. Deb and 

Limaye [1] have defined a shell graph as a cycle nC with (n-

3) chords sharing a common end point called the apex. Shell 

graphs are denoted as  )3,( nnC . A subdivided shell 

graph is a shell graph in which the edges in the path of the 

shell are subdivided.        Jeba Jesintha et al. [3] defined  

disjoint union of two subdivided shell graphs. The same 

authors defined [2], a bow graph as a double shell in which 

each shell has any order. In the shell graph, when each edge 

in the path alone is subdivided, then it is a subdivided shell 

graph. A subdivided shell flower graph is one vertex union of 

three subdivided shells and each subdivided shell in this 

graph called as a petal..  

II. MAIN RESULTS  

 

In this section, we prove that the subdivided shell graph, 

disjoint union of two subdivided shell graph, subdivided shell 

flower graph and subdivided uniform shell bow graph are odd 

harmonious.  

Theorem 2.1: The subdivided shell graph is odd 

harmonious. 

Proof. Let G be a subdivided shell graph of any order. The 

apex vertex of G is denoted as 0u and the remaining vertices 

in G from bottom to top are denoted as .,...,, 21 muuu Let 

2

121 ,...,, meee be the edges 
muuuuuuuu 0503010 ,...,,,

respectively. Let 

2

13

2

5

2

3 ,...,,  mmm eee be the edges 

mm uuuuuu 13221 ,...,, 
respectively. 

 

Then G has m+1 vertices and 
2

13 m edges. 

We define labeling 
















 
 1

2

13
2,,.........2,1,0)(:

m
GVf

 as follows: 

.0)( 0 uf  

.1,)( oddisiandmiiuf i 
 

.12,133)( evenisiandmiimuf i 

 The induced edge labels are 

.1,)( 0 oddisiandmiiuuf i   

.21,,223)( 1 oddisiandmiimuuf ii 



.3,423)( 1 oddisiandmiimuuf ii 


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That is, the induced edge labels are {1,3,5,…,m}{3m-

4,3m-8,…,m+6,m+2}{3m-2,3m-6,…,m+8,m+4}= 

{1,3,..,m,m+2, m+4,…,3m-8, 3m-6, 3m-4, 3m-2} 

                     ={1,3,…,2q-1} 

and the edge labels are also distinct. Therefore the 

subdivided shell graph is odd harmonious. 

 

An odd harmonious labeling of a subdivided shell graph with 

m=11 is shown in Figure 1. 

 

Figure 1: An odd harmonious labeling of a subdivided shell graph 

with m=11 

Theorem 2.2: The disjoint union of two subdivided shell 

graphs is odd harmonious. 

Proof. Let 
1G and 

2G be two subdivided shell graphs of any 

order. Let G be the disjoint union of 
1G and 

2G . The apex 

of 
1G is denoted as 0u and the remaining vertices in 

1G  

from bottom to top are denoted as 
muuu ,...,, 21

. The apex 

of 
2G  is denoted as 0v and the other vertices from bottom to 

top are denoted as 
lvvv ,...,, 21
. Let 

2

121 ,...,, meee  be the 

edges 
muuuuuuuu 0503010 ,...,,,

 
, 

2

13

2

5

2

3 ,...,,  mmm eee

be the edges 
mm uuuuuu 13221 ,...,, 

  ,

2

3

2

33

2

13 ,...,, lmmm eee 
be the edges 

lvvvvvvvv 0503010 ,...,,,
and 

2

233

2

43

2

23 ,...,,  mlmlml eee be the edges 

ll vvvvvv 13221 ,...,, 
respectively. 

Then G has 2 lmp vertices and 
2

233 


lm
q

edges. 

We define labeling 
















 
 1

2

233
2,,.........2,1,0)(:

lm
GVf  as 

follows: 

.0)( 0 uf
 .1,)( oddisiandmiiuf i   

.12,133)( evenisiandmiimuf i 

 .2)( 0 vf

 .1,)1(3)( oddisiandliimvf i   

.12,333)( evenisiandliilvf i 
 

The induced edge labels are 

.1,)( 0 oddisiandmiiuuf i 

 .21,223)( 1 oddisiandmiimuuf ii 



 

.3,423)( 1 oddisiandmiimuuf ii 



 

.1,13)( 0 oddisiandliimvvf i 

 
.21,3233)( 1 oddisiandliilmvvf ii 



 

.3,3233)( 1 oddisiandliilmvvf ii 



 

That  is, the induced edge labels are {1,3,…,m} {3m-4,3m-

8,…,m+6,m+2} {3m-2,3m-6,…,m+8,m+4}  {3m, 

3m+2,…,3m+l-3,3m+l-1}  {3m+3l-5, 3m+3l-9,…, 

3m+l+5,3m+l+1} {3m+3l-3,3m+3l-7,…, 3m+l+7, 

3m+l+3}  

= {1,3,…,m,m+2,m+4,…,3m-6,3m-4,3m-2, 3m, 3m+2, …, 

3m+l-1, 3m+l+1, 3m+l+3,…,3m+3l-7, 3m+3l-5, 3m+3l-3} 

={1,3,…,2q-1}and hence the edge labels are distinct. 

Therefore, the disjoint union of two subdivided shell graphs 

is odd harmonious. 

An odd harmonious labeling of the disjoint union of two 

subdivided shell graphs with m=11 and l=7  are shown in 

Figure 2. 

 

Figure 2: An odd harmonious labeling of disjoint union of two 

subdivided shell graphs with m=11 and l=7 

Theorem 2.3: The subdivided uniform shell bow graph is 

odd harmonious. 

Proof. Let G be a subdivided uniform shell bow graph with p 

vertices and q edges. Denote the apex of G as 0v . Let m be 

the number of vertices in each path. Denote the vertices in 

the path of the right shell of G from bottom to top as 
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mvvv ,...,, 21
. The vertices in the path of the left shell are 

denoted from top to bottom as 
mmmm vvvv 21221 ,,...,, 

. 

Then G has 12  mp vertices and 13  mq edges. 

We define labeling 

 1)13(2,,.........2,1,0)(:  mGVf  as follows: 

.0)( 0 vf  

.1,)( oddisiandmiivf i   
.21,1)( evenisiandmimivf i 

 .12,36)( evenisiandmiimvf i 

 .122,136)( oddisiandmimimvf i 

The induced edge labels are 

.1,)( 0 oddisiandmiivvf i 

 
.21,1)( 0 evenisiandmimivvf i 

.21,,326)( 1 oddisiandmiimvvf ii 



.3,326)( 1 oddisiandmiimvvf ii 



.221,,126)( 1 evenisiandmimimvvf ii 



.23,526)( 1 evenisiandmimimvvf ii 

  

That is, the induced edge labels are {1,3,…,m-2,m} { m+2, 

m+4,…,2m-1,2m+1}  {6m-5, 6m-9,…,4m+5, 4m+1} 

{6m-3,6m-7,…,4m+7,4m+3}{4m-3,4m-7,…, 

2m+7,2m+3}{4m-1,4m-5,…,2m+9,2m+5} 

={1,3,…,m,m+2,…,2m+1, 2m+3,…,4m-3, 4m-1, 4m+1, 

4m+3,…,6m-5, 6m-3} 

={1,3,…,2q-1} and also the edge labels are distinct. 

Therefore,  the subdivided uniform shell bow graph  is odd 

harmonious. 

An odd harmonious labeling of subdivided uniform shell bow 

graph with m=9 is shown in Figure 3. 

 
Figure 3: An odd harmonious labeling of subdivided uniform 

shell bow graph with m=9 

 

Theorem 2.4: All  subdivided shell flower graphs are odd 

harmonious. 

Proof. Let G be a subdivided shell flower graph with three 

petals. We describe G as follows: G is one vertex union of 

three subdivided shells of same order. The  apex is denoted 

as 0v . Denote the vertices in the first petal of G as 

.,...,, 21 mvvv  The vertices in the second petal of G are 

denoted as .,...,, 221 mmm vvv 
 The vertices in the third 

petal of G are denoted as .,...,, 32212 mmm vvv 
 Let 

2

121 ,...,, meee
 be the edges 

mvvvvvvvv 0503010 ,...,,, ,  

1

2

5

2

3 ,...,,  mmm eee be the edges 
mmm vvvvvv 203010 ,...,,  , 

2

3332 ,...,,  mmm eee be the edges 

mmmm vvvvvvvv 30520320120 ,...,,, 
,  

2

15

2

73

2

53 ,...,,  mmm eee be the edges 
mm vvvvvv 13221 ,...,, 

 , 

2

17

2

55

2

35 ,...,,  mmm eee be the edges 

mmmmmm vvvvvv 2123221 ,...,, 
and 

2

39

2

37

2

17 ,...,,  mmm eee be the edges 

mmmmmm vvvvvv 31332222212 ,...,, 
respectively. 

Then G has 13  mp vertices and 
2

39 


m
q

edges. 

We define labeling 
















 
 1

2

39
2,,.........2,1,0)(:

m
GVf  as follows: 

.0)( 0 vf  

.1,)( oddisiandmiivf i   
.21,1)( evenisiandmimivf i 
 
.312,2)( oddisiandmimivf i 

 .12,139)( evenisiandmiimvf i 

 .122,39)( oddisiandmimimvf i 
 

.1322,139)( evenisiandmimimvf i   
The induced edge labels are 

.1,)( 0 oddisiandmiivvf i 

 
.21,1)( 0 evenisiandmimivvf i 

.312,2)( 0 oddisiandmimivvf i   

.21,,429)( 1 oddisiandmiimvvf ii 



.3,229)( 1 oddisiandmiimvvf ii 



.221,,229)( 1 evenisiandmimimvvf ii 



.23,429)( 1 evenisiandmimimvvf ii 



.2312,,29)( 1 oddisiandmimimvvf ii 



oddisiandmimimvvf ii 332,629)( 1 

  

That is, the induced edge labels are {1,3,…,m} 

{m+2,m+4,…,2m+1} {2m+3,…,3m,3m+2}  {9m-6, 9m-

10,…,7m+4,7m} { 9m-4,…,7m+2}  {7m-4,7m-

8,…,5m+2}  {7m-2,…, 5m+4} { 5m-2,5m-6,…, 3m+4} 

 {5m, 5m-4,…,3m+6} 

={1,3,…,m,m+2,…,2m+1,2m+3,…,3m+2,3m+4,…, 

5m-4,5m-2,5m,5m+2,…, 7m-4, 7m-2, 7m, 7m+2,…,9m-6, 

9m-4} ={1,3,…,9m-4} 

= {1,3,…,2q-1}and also the edge labels are distinct. 
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Therefore, the  subdivided shell flower graphs are odd 

harmonious. 

An odd harmonious labeling of the subdivided shell flower 

graph with m=7
 
is shown in Figure 4. 

 
Figure 4: An odd harmonious labeling of subdivided shell flower 

graph with m=7 
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