

 © 2013, IJCSE All Rights Reserved 32

 International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering Open Access
 Review Paper Volume-1, Issue-3 E-ISSN: 2347-2693

A Study of Factors Affecting Websites Page Loading Speed for
Efficient Web Performance

Jatinder Manhas*

Department of Computer Science and IT, Bhaderwah Campus, University of Jammu (India)
manhas.jatinder@gmail.com

www.ijcaonline.org
Received: 07 Nov 2013 Revised: 13 Nov 2013 Accepted: 24 Nov 2013 Published: 30 Nov 2013

Abstract — This paper analyses trends in page loading time which is an important part of any website’s user experience.
And many times we’ll let it slide to accommodate better aesthetic design, new nifty functionality or to add more content to
web pages. Unfortunately, website visitors tend to care more about speed than all the bells and whistles we want to add to
our websites. Additionally, page loading time is becoming a more important factor when it comes to search engine
rankings.
Keywords— Container object (CO), External objects (EOs), Websites, html

I. INTRODUCTION

Web performance from the client point of view is
measured as the page load time. This is the lapsed time
between the moment a user requests a new page and the
moment the page is fully rendered by the browser. Fast
web pages render progressively. That is, they display
their content incrementally, as it is loaded by the browser.
A web page that renders progressively gives the user
visual feedback that the page is loading, and gives the
user the information they requested as soon as it is
available. Google® and Yahoo® both suggest best
practices to make web pages render progressively, such
as putting style sheets in the document head.

There are several additional best practices that you can
apply to optimize progressive rendering for most pages.
First, a fast page should render the content that is visible
to the user first, and render the off-screen content (that is,
the content outside of the current scroll region) later.
Second, a fast page might also load and render the
lightweight resources such as text before loading and
rendering heavyweight resources like images and video.
On the other hand, some techniques are known to inhibit
progressive rendering. The use of large tables, even for
layout, disables progressive rendering in some browsers.
Applying style sheets late in the document, even if those
style sheets aren't needed for the initial page load, can
also prevent progressive rendering.

Everybody just hates those loading time when opening a
website. And with Google® using the loading speed of a
website as a factor to decide the rank of a website, it is
high time for webmasters to get serious about optimizing
their websites for speedy access.

Google® recently announced that they consider website
speed when determining search engine rankings.

The purpose of the study was to test each web page in a
given website so to minimize loading time for that particular
website. This paper measures and analyses the WebPages
based on their anatomy.

A web page is made up of a container object (CO) and
external objects (EOs). The CO is usually an XHTML file
that references EOs such as images, audio, video, and
external CSS and JavaScript files. Most non-textual EOs are
usually pre-compressed, so you'll only see the benefits
of HTTP compression on XHTML and on some CSS and
JavaScript files. For more than 60% of web pages, the CO
occupies less than 50% of total page size. The average CO
takes up about 44% of total page size (Yuan, Li, & Chi 2005
©).

Therefore, no matter how efficient our XHTML
optimization and HTTP compression, the greatest
improvement in web page performance that we can expect
from XHTML optimization will be less than 50%. For a
300K home page, on average, we'll still need to download
at least 150K of EOs, even after optimizing and
compressing our textual data. We can see why it is
important to optimize our entire web page, including
multimedia, in order to make significant performance
gains.

High performance web sites lead to higher visitor
engagement, retention and conversions

Web application performance is affected by many factors,
including things like the size of request and response data,
the speed of database queries, how many requests the server
can queue and how quickly it can service them, and even the
efficiency of any client-script libraries we might be using. If
performance is critical in an application, or if testing or
experience shows that application performance isn't
satisfactory, we should follow normal protocol for
performance tuning. Measure to determine where

Corresponding Author: Jatinder Manhas*

 International Journal of Computer Sciences and Engineering Vol.-1(3), pp (32-35) Nov 2013

 © 2013, IJCSE All Rights Reserved 33

performance bottlenecks are occurring, and then address the
areas that will have the greatest impact on overall
application performance.

II. WEB METRICS: SIZE AND NUMBER OF RESOURCES

Reference:
https://developers.google.com/speed/articles/web-metrics

Here are some statistics about the size, number of
resources and other such metrics of pages on the World
Wide Web. These are collected from a sample of several
billions of pages that are processed as part of Google's crawl
and indexing pipeline. In processing these pages, we not
only take into account the main HTML of the page, but also

discover and process all embedded resources such as images,
scripts and style sheets.

Highlights:

� The average web page takes up 320 KB on the wire.
� Only two-thirds of the compressible material on a

page is actually compressed.
� In 80% of pages, 10 or more resources are loaded

from a single host.
� The most popular sites could eliminate more than 8

HTTP requests per page if they combined all
scripts on the same host into one and all style sheets
on the same host into one.

Table I: Statistics about the size and number of resources of WebPages on the World Wide Web.

Metric

Top sites

All sites

 Description

Pages 380
million

4.2 billion Number of sample pages analysed.

Resources 42.14 43.91 Average number of resources per page.
GETs 42.63 44.56 Average number of GETs per page. Similar to number of

resources, but also includes redirects.
Hosts 8.39 7.01 Average number of unique hostnames encountered per page.
Resources
Per Host

5.02 6.26 Average number of resources per host (derived from the
'Resources' and 'Hosts' values).

Network
Size/KB

312.04 320.24 Average size transferred over the network per page, including
HTTP headers. If resources were compressed, this would use
the compressed size.

Document
Size/KB

477.26 376.67 Average uncompressed size of a page and its resources,
excluding HTTP headers.

Zip able
Size/KB

287.51 170.16 Average uncompressed size of the compressible resources on
a page, i.e.,those with a Content-Type of 'text/*' or equivalent.

Unzipped
Size/KB

32.67 57.07 Average size of the compressible resources that were not sent
compressed, i.e., the Content-Type was 'text/*', but Content-
Encoding did not include 'gzip' or 'deflate'.

Zipped Ratio

89% 66% Average percentage of compressible bytes that were actually
compressed (derived from the 'Zippable' and 'Unzipped'
values).

Images 27.58 29.39 Average number of unique images per page.

Image
Size/KB

184.73 205.99 Average network size of the images per page.

Scripts 6.75 7.09 Average number of external scripts per page.
Script
Size/KB

66.48 57.98 Average network size of the external scripts per page.

Combinable
Scripts

4.75 3.75 Average number of requests that could be saved per page if
external scripts on the same host were combined.

Stylesheets 4.07 3.22 Average number of external stylesheets per page.
Stylesheet
Size/KB

27.17 18.72 Average network size of the external stylesheets per page.

Combinable
Stylesheets

3.54 2.02 Average number of requests that could be saved per page if
external stylesheets on the same host were combined.

SSL Pages 650 17 million Number of sample SSL (HTTPS) pages analysed.

 International Journal of Computer Sciences and Engineering Vol.-1(3), pp (32-35) Nov 2013

 © 2013, IJCSE All Rights Reserved 34

thousand
SSL Hosts 6.39 3.23 Average number of unique hostnames encountered per SSL

page.

SSL
Zippable/KB

263.58 160.47 Average size of the compressible resources per SSL page.

SSL
Unzipped/KB

133.74 89.36 Average size of the compressible resources that were not sent
Compressed, per SSL page.

SSL Zipped
Ratio

49% 44% Average percentage of compressible bytes that were actually
compressed, per SSL page (derived from the 'SSL Zippable'
and 'SSL Unzipped' values).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0 License.

III SOLUTIONS TO IMPROVE WEBSITE
PERFORMANCE

The web site performance depends on a variety of factors
such as content on your pages, browser, geographic
location of access, bandwidth, etc. It is often possible to
make the contents of a web page take fewer bytes without
changing the appearance or function of the page.
Reducing the number of bytes a client has to download
makes the page load faster. There are many ways to make
websites run faster

A. Reducing the file size of html documents

A clear way to improve the load time of your site is to
decrease the file size of your HTML documents. There are
several ways to do this, from rigid compression to
acupuncture-like ID and class name changes.

HTML – as opposed to XHTML, even when delivered with
the MIME type text/html – allows authors to omit certain
tags. According to the HTML 4 DTD, you can omit the
following.

</area> </base><body> </body> </br></col>
</colgroup></dd></dt><head></head></hr>

<html></html></input></link></meta></opti
on> </p></param> <tbody> </tbody></td> </tfoot>

</th></thead></tr>

For example, if you have a list of items marked up as
 List item , you could instead just write
List item. Or
instead of a paragraph that you’d usually close with </p>,
you could just use <p> My paragraph. This even works
with html, head, and body, which are not required in
HTML. Omitting optional tags keeps your HTML
formally valid, while decreasing your file size and
making your code look much leaner. In a typical
document, this can mean 5-20 % savings.

B. Properly including stylesheets and scripts

Typical web pages spend 80-90% of their load time waiting
for the network. A powerful technique to reduce the amount

time spent blocked on the network is to get rid of patterns
that cause some browsers to serialize resource downloads.

1. Combine external JavaScript files
Downloading an external script file is somewhat unique
because it causes popular browsers to block subsequent
downloads until the script has completed. This is in stark
contrast to downloading images which may occur in
parallel (up to a limit).

2. Include external CSS files before external JavaScript files
While script files block subsequent downloads, those
already in progress will remain downloading. So, if you
have an external script and CSS file, always include the
CSS file before the script so that they will download in
parallel.

3. Do not include inline JavaScript between external CSS and
other resources

Inline script tags, even though they don't download
anything, will prevent subsequent resources from
downloading in parallel with a CSS file. So, if you have an
external CSS file be sure not to insert inline script tags
between your CSS file and the next downloadable resource.

III. COMPRESS IMAGES
Image files are often created with extra information
embedded in the file. For example, JPEG files written by
many image programs include the name of the program that
wrote them. PNG images can often be made smaller by
changing the way the image is encoded. These
transformations are lossless. That is, the compressed image
looks identical to the uncompressed image, but uses fewer
bytes.

IV. MINIFY JAVASCRIPT
Removing comments and white space from large JavaScript
files can make them substantially smaller, without changing
their functionality.

V. REMOVE UNUSED CSS
CSS files contain rules that apply style attributes to
elements in a web page. If a rule does not apply to any
element in a page, removing it will result in fewer bytes
being sent to the client, with no change in the appearance of
the web page. However, because external style sheets may

 International Journal of Computer Sciences and Engineering Vol.-1(3), pp (32-35) Nov 2013

 © 2013, IJCSE All Rights Reserved 35

be included by more than one page, you must be careful to
only remove rules that no page uses.

VI. HTTP CACHING

When you set the correct HTTP caching headers, you get a
double win because revisits to your web pages load faster
and there is less load on your web server.

The cache, which is local copies of resources, works
because many resources change infrequently. When a
browser can reuse a local copy, it saves the time to set up a
connection as well as the time to download. The key to
making the cache work effectively is HTTP caching
headers, which are sent by the web server to specify how
long a resource is valid and when it last changed.

The HTTP protocol gives two ways to define how long a
resource is valid: the Expires header and the Cache-Control:
max-age header. The Expires header specifies a date after
which a resource is invalid. At that point, the browser will
ask for the resource again. max-age works much the same
way but it specifies how long a resource is after it is
downloaded instead of giving a specific date. That is nice
because you can configure your web server with a constant
value.

VII. MINIMIZING BROWSER REFLOW

Reflow is the name of the web browser process for re-
calculating the positions and geometries of elements in
the document, for the purpose of re-rendering part or all
of the document. Because reflow is a user-blocking
operation in the browser, it is useful for developers to
understand how to improve reflow time and also to
understand the effects of various document properties
(DOM depth, CSS rule efficiency, different types of style
changes) on reflow time. Sometimes reflowing a single
element in the document may require reflowing its parent
elements and also any elements which follow it.

The best practices cover many of the steps involved in
page load time, including resolving DNS names, setting
up TCP connections, transmitting HTTP requests,
downloading resources, fetching resources from cache,
parsing and executing scripts, and rendering objects on
the page. Essentially Page Speed evaluates how well your
pages either eliminate these steps altogether, parallelize
them, and shorten the time they take to complete. The
best practices are grouped into six categories that cover
different aspects of page load optimization:

i. Optimizing caching — keeping your application's
data and logic off the network altogether

ii. Minimizing round-trip times — reducing the
number of serial request-response cycles

iii. Minimizing request overhead — reducing upload
size

iv. Minimizing payload size — reducing the size of
responses, downloads, and cached pages

v. Optimizing browser rendering — improving the
browser's layout of a page

vi. Optimizing for mobile — tuning a site for the
characteristics of mobile networks and mobile
devices

VIII. CONCLUSION

Within the last five years, the size of the average web
page has more than tripled, and the number of external
objects has nearly doubled. While broadband users have
experienced faster load times, narrowband users have
been left behind. With the average web page sporting
more than 50 external objects, object overhead now
dominates most web page delays. Minimizing HTTP
requests by using CSS sprites, combining JavaScript or
CSS files, reducing the number of EOs, and converting
graphic effects to CSS while still retaining attractiveness,
has become the most important skill set for web
performance optimizers. The data appears to suggest that
the more popular a web page, the smaller the total file
size.

REFERENCES

[1] Stave Souders, High performance Websites:Essential

Knowledge for Front-End Engineers, O’Reilly Media.
September 2007.

[2] Bob Wescott, The Every Computer Performance
Book.

[3] Microsoft Corproation, Perfirmance Testing Guidance
for Web Application.

[4] Andrew B. King, Jakob Nielsen, Speedup Your Site:
Website Optimization.

[5] Scoot Ware, Michael Tracy, Louis Slothouber, Robert
Barker, Professional Website optimization, 1998.

[6] Patrick Killelea, Web Performance Tunning, 1998.
[7] Daniel A. Menasce, Virgilio A. F. Almeida,

Performance: Metrics,Models and Methods.
[8] Brennan Stehling, Pro ASP.NET for SQL Server:

High Performance data Access for Web developers.
[9] (2012) Google developer Website. [Online].

Available:
 https://developers.google.com/speed/articles

[10] (2012) Website Optimization Website. [Online].
Available: http://www.websiteoptimization.com/

[11] (1998) Wrox Press Website.[Online]. Available:
http://msdn.microsoft.com/en-
us/library/ms953263.aspx

