
 © 2016, IJCSE All Rights Reserved 81

 International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
 Review Paper Volume4, Issue-8 E-ISSN: 2347-2693

Various methods for Measuring Similarity and code clone detection

 Gagandeep Kaur1* and Bikrampal Kaur

1,2 Chandigarh Engineering College, India

Available online at: www.ijcseonline.org

Received: 24/Jun/2016 Revised: 10/Jul/2016 Accepted: 16/Aug/2016 Published: 31/Aug/2016

Abstract - Code clones means duplicate fragments of source code, have been identified as “a major source of faults, which

means that duplicating can be a considerable problem during development and maintenance”. As a consequence, a large body

of planned has been industrialized on how to prevent, or spot and remove code clones. The problem with code clones is that

they are related only by their resemblance, i.e., implicitly rather than explicitly which makes it difficult to notice them.

Therefore, changes like promotions or patches that are often meant to affect all clones in a similar way are frequently not

applied to all of them uniformly. Code clone helps the developers from probable mistakes, to save time and exertion in

planning the logic, to help in decoupling of classes or components and more important it reduces development cost. But

identical code is generally considered as unwanted for number of reasons. Introduction of bad design and lack of good legacy

structure or concept may be caused due to code clones. Probably the biggest problem in model clone detection is defining

exactly what a model clone is just as for code clones a small part of a domain model of the “Library Management System”.

Keywords: Code Clone, source code, duplicate fragments, problems and domain model.

I. INTRODUCTION

A code clone is a code helping in basis files that is identical

or similar to another [1]. Duplication of code occurs often

during the growth of large software systems. Code cloning is

a form of software reuse, and exists in nearly every software

scheme.[2] This ad-hoc form of reuse consists in copying,

and eventually modifying, a block of current code that tool a

piece of required functionality. Duplicated blocks are called

clones and the act of repetition, including slight alterations,

is said cloning. The results of several studies indicate that a

substantial fraction (5-10%) [3]of the basis code in large

software systems is duplicate code. Software clone is usually

made by programmer's copy and paste doings. Programmers

often copy and paste an existing similar code and further

modify it according to their need. Code cloning or the act of

copying code wreckages and making minor, non —

functional changes, is a well-known problem for emerging

software systems leading to repeated code fragments or code

clones. The normal operative of the system is not pretentious

but further development may become prohibitively

expensive [4].

In this section, we survey the code clone detection means

code clones are fragments of code that are very similar text,

syntax and String. There is common phenomenon in a [5]

request that has been under development for some time.

Clone makes it hard to change your request since you have

to find and change more than one fragment. Why code

duplication and various types of techniques to identify the

code clone detection.[6]

II. WHY CODE DUPLICATION?

There are a number of reasons why designers clone source

code. Cloning mostly occurs because computer operator

fined that it is cheaper and faster to use the copy and paste

feature than writing the code from scratch. Sometimes

programmers intent on implementing new functionality find

some employed code that does a calculation nearly identical

to the one wanted copy it entirely and then adapt in place

[7]. While this is really good reuse repetition, it complicates

the upkeep process. Code cloning is careful a serious

problem in manufacturing software. [8]Repeated code

proves easy and inexpensive during the software expansion

phase, but it makes software upkeep much firmer. Software

clone has a number of undesirable effects on the excellence

of the software. Besides snowballing the amount of the code,

which needs to be upheld, it also upsurges the bug

probability[9]. So there is a need to detect the clones to

figure out the malfunctions and to help healthier software

understandability and maintenance. Concerning the

detection of duplicated code, numerous techniques have

been positively applied on industrial schemes. These

techniques can be roughly classified into following

categories [10]:

• String-based, i.e. the program is alienated into a

number of strings (typically lines) and these strings

are compared in contradiction of each other to find

orders of duplicated strings.

 International Journal of Computer Sciences and Engineering Vol.-4(8), PP (81-84) Aug 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 82

• Token-based, i.e. a lacer tool divides the program

into a watercourse of tokens and then searches for

series of alike tokens.

• Syntactic-based approaches use a parser to convert

source[6] program into parse trees or abstract

syntax tree matching or metrics to find clones.

• Parse-tree based, i.e. after building a whole parse-

tree one achieves pattern matching on the tree to

search for similar sub—trees.

• Metric-based, i.e. metrics are calculated from

program and these are used to find duplicated code.

• Hybrid-based, i.e. detection techniques that use a

combination of other clone detection techniques.

• PDG based, i.e. after obtaining program

dependency graph similar graphs are search.

III. TYPES OF CLONE

Code clone could be of any sort that all rely on upon the

developer's technique and aptitude of utilizing the code

which differs from replicating as it is to duplicate the code

though with some change which would be complete at

diverse level in the technique. In software system code

pieces predominantly demonstrates two sorts of similarities.

They are said to be comparable if their code content matches

or they can be relative on their functionalities bases if the

conduct among them coordinate. Primarily clones are of four

kinds out of which first three sorts are under textual

similarity and the last sort is under functional similarity. One

clone type of similarity considers textual similarity), and

other second considers the semantic level that the clone code

essential to have the identical behaviors, means the

functional similarity.

A. Textual Similarity: Two code wreckages can be similar

based on the resemblance of their program text we

differentiate the subsequent sorts of clones. The

subsequent types of clones are deliberated in order to

find textual similarity [7].

Type I

 In Type I clone, a copied code fragment is the same as the

original. However, there might be some variations in

whitespace (blanks, new line(s), tabs etc.), remarks

and/or designs. Type I is widely known as exact clones

Type II

 A Type II clone is a code piece that is the same as the

unique except for some possible variations about the

corresponding names of user-defined identifiers (name of

variables. coefficients, class. methods and so on) layout,

identifiers, remarks, literals, and sorts. The specific

reserved words and the sentence structures are essentially

the same as the original one.

Type III

Type DI is copy with further modifications. E.g. a new

statement can be added, or some statements can be

detached along with various dissimilarities in layout,

identifiers, remarks, literals, and sorts. The structure of

code piece may be changed and they may smooth look or

behave slight differently. This kind of clone is hard to be

discovered, for the reason that the wholly framework

understanding is needed.

Type IV

Type IV clones are the results of semantic similarity

between two or additional code fragments which could

accomplish the same computation however actualized

through diverse syntactic variations. In this category of

specific clones, the cloned part is not necessarily copied

from the first one. Two code fragments may possibly be

established by two different programmers too.

IV. RELATED WORKS

HaraldStörrle et.al, 2015 [1] this paper described as, Code

Duplicates are a main source of software faults. Thus, it is

probable that model duplicates have a significant adverse

impact on model excellence, and thus, on any software

shaped based on those models, notwithstanding of whether

the software is made fully automatically or hand crafted

following the drawing defined by the model.

Inappropriately, however, model clones are much less well

deliberate than code clones. In this paper, presented a clone

detection process for UML domain models. A method

covers a much better variety of model types than present

approaches while providing high clone detection rates at

high speed. Jian Chen et.al ,2015 [2] In this paper, examine

the use of a clone sensor to classify known Android

malware. They assemble a set of Android submissions

known to comprise malware and a set of kind applications.

They extract the Java source code from the double code of

the submissions and use NiCad, a near miss clone detector,

to invention the classes of clones in a small separation of the

malicious presentations. Then use these clone programs as a

signature to find related source files in the rest of the hateful

applications. The benign gathering is used as a control

group. Mr. Ritesh V. Patil et.al,2014[3]examined existing

code in software development life cycle. Although code

cloning is a suitable way for designers to reuse current code

it could possibly lead to negative influences, such as code

size needlessly increased and may lead to unused, dead code.

There are numerous clone detection techniques based on

dissimilar comparison parameters. Discovered clone

 International Journal of Computer Sciences and Engineering Vol.-4(8), PP (81-84) Aug 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 83

detection tools and methods do not sufficiently satisfy with

regards to rapidity and correctness. Ritu Garg et.al,2014[4]

This paper offers a brief impression to the detection of these

risk and contradictions in either of the two stages of software

development system i.e. Design phase or the operation phase

along with their experts and frauds. Ritesh V. Patil et.al,2014

[5] described as, the clone discovery consequences for a

single source code variety gives a developer with particulars

about a discrete state in the development of the software

system. However, tracing clones through numerous source

code versions enables a clone investigation to take into

replication a temporal dimension. This nice of an

investigation of clone evolution may be utilized to find out

the outlines as well as features displayed by clones as they

evolve within a system. Developers may apply the

consequences of this analysis to recognize the clones more

methodically, which may guide them to handle the clones

more automatically. Later, studies of clone development

provide significant role in observing as well as handling

disquiets of cloning in software.

IV. TECHNIQUES OF CODE

CLONE DETECTION

Token based clone detection approach takes source code and

converts them in lexemes/tokens. From order of tokens,

token watercourse is formed. The heart of token based

matching approach is how to use syntax tree and grammar

array. Some famous out of these tackles are dup[6,7] that

uses token sequence and used them as syntax tree,

CCFinder[6,8] uses suffix tree matching technique

Tree-based techniques find clones by finding similar sub

trees. Variable names, verbatim values and other leaves

(tokens) in the foundation may be abstracted in the tree

representation, allowing for more sophisticated detection of

clones. A compiler generator is used to generate a

constructor for annotated parse trees. Sub leaves are then

hashed into loads. Only within the same bucket, sub trees are

compared to each other by a tolerant tree corresponding. The

hashing is elective but reduces the amount of necessary tree

comparisons drastically.

Metrics-based methods gather a number of metrics for code

wreckages and then compare metrics vectors rather than

code or ASTs directly. One general technique includes

fingerprinting functions, metrics calculated for syntactic

units such as a class, function, way and statement that

harvest values that can be compared to find clones of these

units. In most cases, the basis code is first analyzed to an

AST or control flow graph (CFG) on which the metrics are

then calculated. Use numerous metrics to identify purposes

with similar metrics [9] values as code clones. Metrics are

calculated from names, layout, languages, and (simple)

control flow of purposes. A function clone is identified as a

pair of whole function bodies with similar metrics values

V. IMPORTANCE OF CODE CLONE

Code clones decreases program comprehensibility, and

maintainability. Overall, it is beneficial to discover code

clones to improve quality of the software systems. In huge

software system, generally 10-15% of source codes are

cloned [10]. To save programming efforts as well as time,

the copy pasting is used. Code clone detection is essential in

order to utilize storage resources, maintain software and

improve code productivity. Programming size increases for

no reason. Code replication increases the overhead software

maintenance, since bug introduction in the source may be

replicated accidently or unknowingly.

VI. CONCLUSION

Cloning of code has become one of the easiest ways to

complete a project, who does not want to invest their time on

doing programming their project. It’s a loss for those who

really work hard for the project coding. The date no such

method has present who can evaluate the cloning for several

languages with one piece of code. The purpose research

work has overcome the drawbacks of the previous attempts

by removing the bar of the language which follows the

architecture of C++.

REFERENCES

[1] Störrle, Harald. "Effective and Efficient Model Clone

Detection." Software, Services, and Systems. Springer

International Publishing, 2015. 440-457.

[2] Chen, Jian, et al. "Detecting Android Malware Using

Clone Detection."Journal of Computer Science and

Technology 30.5 (2015): 942-956.

[3] Wyss-Coray, Anton, et al. "Biomarkers of aging for

detection and treatment of disorders." U.S. Patent

Application No. 13/575,437.

[4] Ritu garg, et al. "Code Clone v/s Model Clones: Pros

and Cons." International Journal of Computer

Applications (0975 – 8887) Volume 89 – No 15,

March 2014.

[5] Patil, Ritesh V., et al. "Software code cloning

detection and future scope development-Latest short

review." Recent Advances and Innovations in

Engineering (ICRAIE), 2014. IEEE, 2014.

[6] B. Baker. “Finding Clones with Dup: Analysis of an

Experiment." IEEE Transactions on Software

Engineering. vol. 33. no. 9. pp. 608-621. 2007.

[7] B. Baker. "On Finding Duplication and Near-

Duplication in Large Software Systems", in

Proceedings of the Second U’orking Conference on

 International Journal of Computer Sciences and Engineering Vol.-4(8), PP (81-84) Aug 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 84

Reverse Engineering (WCRE 195). pp. 86-95.

Toronto. Ontario. Canada. July 1995.

[8] C .K. Roy. J.R. Cordy and R. Koschke, “Comparison

and Evaluation of Code Clone Detection Techniques

and Tools: A Qualitative Approach." Science of

Computer Programming, vol.74. no. 7. pp. 470-495.

May 2009.

[9] Chao Liu. Chen ChenJiawei Han and Philip S.

Yu.,"GPLAG: Detection of Software Plagiarism by

Program Dependence Graph Analysis", In the

Proceedings of the 13”’ ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining. pp. 872-881. Philadelphia. USA. August

2006.

[10] EttoreMerlol. "Detection of Plagiarism in University

Projects Using Metrics- based Spectral Similarity." In

the Dagsmhl Seminar: Duplication, Redundancy, and

Similaritv in Software. 2007.

