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Abstract: This paper presents an Advanced Fireworks Algorithm (AFA) for solving optimal reactive power dispatch problem. 

Fireworks algorithm (FWA) is inspired by the fireworks explosion in the sky at night. When a firework bursts, a shower of 

sparks appears around it. In this way, the neighboring area of the firework is explored. By directing the amplitude of the 

explosion, the capability of confined exploration for Advanced Fireworks Algorithm (AFA) is guaranteed. The way of 

fireworks algorithm probing the neighboring area can be further enriched by differential mutation operator. In order to assess 

the efficiency of proposed algorithm, it has been tested on IEEE 30 system and compared to other standard algorithms. The 

simulation results demonstrate worthy performance of the Advanced Fireworks Algorithm (AFA) in solving optimal reactive 

power dispatch problem. 
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1. Introduction 

 

In recent years the optimal reactive power dispatch (ORPD) 

problem has received great attention as a result of the 

improvement on economy and security of power system 

operation. Gradient method [1, 2] Newton method [3] and 

linear programming [4-6] like various mathematical 

techniques have been adopted to solve the optimal reactive 

power dispatch problem. But they have difficulty in handling 

inequality constraints. Many Evolutionary algorithms such 

as have been proposed to solve the reactive power dispatch 

problem [7-10]. This paper presents an Advanced Fireworks 

Algorithm (AFA) for solving optimal reactive power 

dispatch problem.  Fireworks algorithm (FWA) is explored 

by Tan and Zhu in 2010 [11]. As a firework bursts, a shower 

of sparks appears around the firework while the 

neighbouring area is illuminated. The explosion operator in 

FWA is to find global minimum values by penetrating the 

encircled area of an individual. Janacek et al. smeared FWA 

to non-negative matrix factorization [12-14]. Gao et al. used 

FWA to design digital filters [15]. He W. et al. applied FWA 

to the fields of spam detection [16].Differential evolution 

(DE) algorithm was projected by Storn and Price [17]. Brest 

et al. studied the self-adaptive limitations in DE algorithm 

on numeric benchmark problems [18]. Das and Suganthan 

presented the information of DE and investigated the major 

variations, application and theory [19]. Millipede et al. 

smeared ensemble of parameters and mutation approaches to 

DE algorithm [20]. Still, there are many researches 

concentrating on DE algorithm [21-25]. In this paper, DE 

mutation operator is integrated to fireworks algorithm 

(FWA) so as to form a new Advanced Fireworks Algorithm 

(AFA). In order to assess the efficiency of proposed 

algorithm, it has been tested on IEEE 30 system and 

compared to other standard algorithms. The simulation 

results demonstrate worthy performance of the Advanced 

Fireworks Algorithm (AFA) in solving optimal reactive 

power dispatch problem. 

 

2. Voltage Stability Evaluation 

 

2.1.Modal analysis for voltage stability evaluation 

Power flow equations of the steady state system is given by, 

[
  
  

]  [
             

                
]   [

  
  

]                        (1) 

Where 

ΔP = bus real power change incrementally. 

ΔQ = bus reactive Power injection change incrementally. 

Δ  = bus voltage angle change  incrementally. 

ΔV = bus voltage Magnitude change  incrementally. 

Jp  , JPV , JQ  , JQV  are sub-matrixes    of   the System  

voltage  stability  in jacobian matrix  and  both P and Q get 

affected by this.  

Presume ΔP = 0, then equation (1) can be written as, 

   [               ]                (2) 
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                                                     (3) 

Where 

   (               )                            (4) 

    denote the reduced Jacobian matrix of the system. 

2.2. Modes of Voltage instability: 

Voltage Stability characteristics of the system have been 

identified through computation of the Eigen values and 

Eigen vectors. 

                                                                   (5) 

Where, 

   denote the  right eigenvector matrix of JR,    denote the  

left eigenvector matrix of JR, ∧ denote the  diagonal 

eigenvalue matrix of JR.  

                                                                 (6)                                  

From the equations (5) and (6), 

                                                              (7)                                  

                 or 

   ∑
    

  
                                                       (8) 

 i   denote the ith  column right eigenvector &    is the ith 

row left  eigenvector of JR.  

  i   indicate  the ith Eigen value of JR. 

reactive power variation of the  ith  modal is given by, 

                                               (9) 

  where, 

   ∑  
                                       (10) 

Where  ji is the jth element of  i 

ith modal voltage variation is mathematically given by, 

     [   ⁄ ]                                         (11) 

When the value of   |     i    |    =0   then the ith modal 

voltage will get collapsed. 

In equation (8), when ΔQ = ek  is assumed ,  then ek has all 

its elements zero except the kth one being 1. Then    can be 

formulated as follows, 

     ∑
          

  
                                             (12) 

 
       

is k th element of  
      

 

At bus k V –Q sensitivity is given by, 

   

   
 ∑

          

  
   ∑

   

  
                                  (13) 

 

3. Problem Formulation 

 

To minimize the real power loss and also to maximize the 

static voltage stability margin (SVSM) is the key objectives 

of the reactive power dispatch problem. 

3.1. Minimization of Real Power Loss 

Real power loss (Ploss) minimization in transmission lines is 

mathematically given as, 

      ∑      
    

               
 

 
   

       

                 (14)            

Where n is the number of transmission lines, gk is the 

conductance of branch k, Vi and Vj are voltage magnitude at 

bus i and bus j, and  ij is the voltage angle difference 

between bus i and bus j. 

3.2. Minimization of Voltage Deviation 

At load buses minimization of the voltage deviation 

magnitudes (VD) is stated as follows, 

Minimize VD = ∑ |      |  
                        (15) 

Where nl is the number of load busses and Vk is the voltage 

magnitude at bus k. 

3.3. System Constraints 

These are the following constraints subjected to objective 

function as given below, 

Load flow equality constraints: 

    –      
 ∑   

  
   

[
         
          

]                                    

(16) 

                                                                        

           
 ∑   

  
   

[
         
          

]                                

(17)                                 

                   

where, nb is the number of buses, PG and QG are the real and 

reactive power of the generator, PD and QD are the real and 

reactive load of the generator, and Gij and Bij are the mutual 

conductance and susceptance between bus i and bus j. 

 

Generator bus voltage (VGi) inequality constraint: 
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                                         (18) 

Load bus voltage (VLi) inequality constraint: 

    
            

                                       (19) 

Switchable reactive power compensations (QCi) inequality 

constraint: 

    
            

                                      (20) 

Reactive power generation (QGi) inequality constraint: 

    
            

                                      (21) 

Transformers tap setting (Ti) inequality constraint: 

   
          

                                          (22) 

Transmission line flow (SLi) inequality constraint: 

    
       

                                                    (23) 

Where, nc, ng and nt are numbers of the switchable reactive 

power sources, generators and transformers. 

4. Differential Evolution 

 

Differential evolution (DE)  algorithm is simple and easy to 

implement. The primary operator in DE is mutation 

operator. This operator balances the difference of two 

individuals in the similar population, creating a mutant by 

adding the scaled difference to a third individual. The 

created mutant is then smeared to its parent individual and a 

trial vector is created. Last, the trial vector is compared with 

the parent individual and the better one is kept for 

subsequent generation. The process of DE is similar to other 

evolutionary algorithms, including population initialization, 

fitness function evaluation and population iteration. 

Algorithm 1 displays DE with DE/rand/1/bin strategy. InThe 

procedure of DE/rand/1/bin algorithm, the basic of the 

strategy lies in line 9, while lines 14 to 19 shows the 

selection process. Parameter NP stands for the number of 

individuals in a population and parameter D is the dimension 

of the problem. Other parameters are CR and F, which 

represent crossover possibility and scale factor, respectively. 

rand(0; 1) produces random numbers from the region (0; 1) 

with uniform distribution.  

a) Mutation Operator: As the main operator of DE 

algorithm, differential evolution operator plays a 

significant role in DE algorithm. DE/rand/1 is one of 

the differential evolution operators. In fact, there are 

more mutation operators in DE algorithm. The 

operators are stated in a form of DE/a/b, where DE 

represents the DE algorithm, „a‟ stands for the way to 

select basic vectors and „b‟ designates the number of 

vectors that involved in the mutation operation. 

b) Crossover Operator: There are two methods of 

crossover operator in DE algorithm, including binomial 

crossover operator and exponential crossover operator. 

The crossover operator creates the trial vector Ui by 

dealing with the mutant vector Vi and the parent vector 

Xi. The crossover operation can be stated as follows. 

 

      {
                                  

                
                           

(24) 

 

In Eq. 24, rand(0; 1) produces random numbers between 0 

and 1 with uniform distribution. Parameter CR is the 

crossover possibility and parameter jrand is a randomly 

selected dimension number, which varies from 1 to D. 

c) Selection Operator: After creating a children population 

with a differential mutate operator and a crossover 

operator, the individuals in the children population are 

compared with their corresponding parent individuals 

by selection operation. The ones with superior fitness 

values are then selected for next generation. The 

selection operation can be described as follows. 

 

   {
        (           )

              
                            (25) 

 

In Eq. 25, f(Xi) stands for the fitness value of an individual  

Xi. It can be seen from Eq. 12 that the superior one is always 

kept for next generation.  

Theprocedure of DE/rand/1/bin algorithm 

 

Arbitrarily produce the initial population with NP 

individuals 

Calculate the fitness values for all individuals 

While terminal condition not met do 

For i= 1  NP do 

Arbitrarily selects r1  r2  r3 i 

Arbitrarily selects jrand from [1, D] =  D stands for 

dimension   

For j = 1  D do 

If rand (0; 1)   CR or j == jrand then 

Ui(j) = Xr1(j) + F  (Xr2(j) -Xr3(j)) 

Else 

Ui(j) = Xi(j) 

End if 

End for 

End for 

For j = 1 D do 

Calculate the fitness values for Ui 
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 If Ui is superior than Xi then; Xi = Ui 

End if 

End for 

End while 

 

5. Fireworks Algorithm 

 

The knowledge of Fire works algorithm (FWA) was 

enthused by the fireworks explosion in the night sky. When 

a firework burst out, a shower of sparks appears around it. In 

this way, the neighbouring area of the spark is illuminated. 

The procedure of fireworks explosion can be treated as a 

worthy way to exploration the area around a specific point. 

Hence, when FWA explores the area, there are two 

parameters that have to be determined. The first parameter is 

the number of explosion sparks and the second parameter is 

the amplitude of the explosion. Si denotes the number of 

sparks for a firework Xi. 

 

     
            

∑ (          )   
   

                                  (26) 

 

In Eq. 26,  ̂ is a constant that stands for the total number of 

sparks. Parameter Ymax means the fitness value of the worst 

individual in the population. f(xi) is the fitness value for an 

individual xi, while the last parameter   is used to avoid the 

denominator from becoming zero.Ai denotes the amplitude 

for the ith individual. 

 

    ̂   
            

∑                
   

                                (27) 

In Eq. 27,  ̂ is a constant representing the sum of all the 

amplitudes. Parameter Ymin means the fitness value of the 

best individual in the population. The meaning of f(xi) and 

parameter   are the same as a  forementioned. As pointed in 

[26], when an amplitude is too small, it leads to inadequate 

explosion since the new created sparks are close and similar. 

Therefore, a new parameter is projected to avert the 

amplitudes from being too small. Amin denotes the minimum 

of the amplitude. There are two ways to set the parameter 

Amin, as linear and non-linear decreasing method, 

respectively. The value of Amin decreasing while the number 

of iteration increasing. 

 

                   (            )               

√                
 ⏞              

             

                      (            )

                    (28) 

                    

6. Advanced Fireworks Algorithm 

 

At first, NP individuals are initialized arbitrarily with 

uniform distribution. This population with NP individuals is 

marked as POP1. Furthermore, a spark is produced around 

each individual within a certain amplitude. The amplitude is 

determined by FWA and greater than Amin at the same time. 

The explosion sparks form a population POP2. Thirdly, the 

individuals in POP1 are compared with the corresponding 

individuals in POP2 in pairs. The ones with superior fitness 

values are kept and used to form a new population marked as 

POP3. Fourthly, the mutation and crossover operators in DE 

algorithm are smeared to POP3 and a new population is 

generated as POP4. Finally, the selection operator is applied 

to POP4 and the designated individuals are used to form a 

new population POP1. The iteration continues until the 

maximum times of function calculations are achieved. In this 

way, DE mutation operator is smeared to FWA.  

 

Advanced Fireworks Algorithm for solving optimal 

Reactive Power dispatch Problem  

arbitrarily create the initial population with NP individuals 

as POP1 

calculate the fitness values for all individuals 

while terminal condition not met do 

for i = 1   NP do 

smear FWA to POP1 and procedures POP2 

select the superior ones from POP1 and POP2 and forms 

POP3 

arbitrarily select r1   r2   r3   i 

arbitrarily select jrand from [1, D] 

for j = 1   D do 

if rand(0; 1)   CR or j == jrand then 

Ui(j) = Xr1(j) + F   (Xr2(j) - Xr3(j)) 

else 

Ui(j) = Xi(j) =  Ui forms POP4    

end if 

end for 

end for 

for j = 1   D do 

calculate the fitness values for Ui 

if Ui is superior than Xi then 

Xi = Ui =   Xi return to POP1    

 end if 

end for 

end while 
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7. Simulation Results 

 

The efficiency of the proposed Advanced Fireworks 

Algorithm (AFA) is demonstrated by testing it on standard 

IEEE-30 bus system. 6 generator buses, 24 load buses and 

41 transmission lines of which four branches are (6-9), (6-

10) , (4-12) and (28-27) - are with the tap setting 

transformers in standard IEEE-30 bus system. Lower voltage 

magnitude limits at all buses are 0.95 p.u. and the upper 

limits are 1.1 for all the PV buses, for PQ buses & reference 

bus it is 1.05 p.u..  Comparisons of results are shown in 

Table 5. In Table 1 optimal values of the control variables 

are given.  

 

Table 1.Results of AFA – ORPD optimal control variables 

 

Control 

variables 
Values 

of 
Variable 

setting 

V1 

 

V2 

 

V5 

 

V8 

 

V11 

 

V13 

 

T11 

 

T12 

 

T15 

 

T36 

 

Qc10 

 

Qc12 

 

Qc15 

 

Qc17 

 

Qc20 

 

Qc23 

 

Qc24 

 

Qc29 

1.0404 

 

1.0416 

 

1.0425 

 

1.0300 

 

1.0028 

 

1.0300 

 

1.000 

 

1.000 

 

1.010 

 

1.010 

 

2 

 

3 

 

2 

 

0 

 

2 

 

2 

 

3 

 

2 

 

Real 

power 

loss 

 

SVSM 

 

4.2108 

 

             

0.2480 

 

Table 2 indicates the optimal values of the control variables 

&  there is no limit violations in state variables.  Mainly 

static voltage stability margin (SVSM) has increased from 

0.2480 to 0.2492. contingency analysis was conducted using 

the control variable setting obtained in case 1 and case 2 to 

determine the voltage security of the system. In Table 3 the 

Eigen values equivalents to the four critical contingencies 

are given. Result reveal about the Eigen value has been 

improved considerably for all contingencies in the second 

case.  

 

Table 2.Results of   AFA -Voltage Stability Control 

Reactive Power Dispatch Optimal Control Variables 

 

Control 

Variables 
Values of 
Variable 

Setting 

V1 

 

V2 

 

V5 

 

V8 

 

V11 

 

V13 

 

T11 

 

T12 

 

T15 

 

T36 

 

Qc10 

 

Qc12 

 

Qc15 

 

Qc17 

 

Qc20 

 

Qc23 

1.0454 

 

1.0472 

 

1.0481 

 

1.0301 

 

1.0036 

 

1.0325 

 

0.090 

 

0.090 

 

0.090 

 

0.090 

 

3 

 

2 

 

2 

 

3 

 

0 

 

2 



   International Journal of Computer Sciences and Engineering                                      Vol.6(6), Jun 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                       630 

 

Qc24 

 

Qc29 

 

Real 

power 

loss 

 

SVSM 

 

2 

 

3 

 

4.9884 

 

 

 

0.2492 

 

 

Table 3. Voltage Stability under Contingency State 

 

Sl.No Contingency Optimal 

Reactive 

Power  

Dispatch 

Setting 

Voltage 

Stability 

Control 

Reactive 

Power 

Dispatch  

Setting 
1 28-27 0.1419 0.1424 

2 4-12 0.1642 0.1651 

3 1-3 0.1761 0.1764 

4 2-4 0.2022 0.2052 

 

Table 4. Limit Violation Checking Of State Variables 

 

State 

variables 

limits Optimal 

Reactive 

Power  

Dispatch 

Setting 

Voltage 

Stability 

Control 

Reactive 

Power 

Dispatch  

Setting 

Lower  upper 

Q1 -20 152 1.3422 -1.3269 

Q2 -20 61 8.9900 9.8232 

Q5 -15 49.92 25.920 26.001 

Q8 -10 63.52 38.8200 40.802 

Q11 -15 42 2.9300 5.002 

Q13 -15 48 8.1025 6.033 

V3 0.95 1.05 1.0372 1.0392 

V4 0.95 1.05 1.0307 1.0328 

V6 0.95 1.05 1.0282 1.0298 

V7 0.95 1.05 1.0101 1.0152 

V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 

V12 0.95 1.05 1.0400 1.0466 

V14 0.95 1.05 1.0474 1.0443 

V15 0.95 1.05 1.0457 1.0413 

V16 0.95 1.05 1.0426 1.0405 

V17 0.95 1.05 1.0382 1.0396 

V18 0.95 1.05 1.0392 1.0400 

V19 0.95 1.05 1.0381 1.0394 

V20 0.95 1.05 1.0112 1.0194 

V21 0.95 1.05 1.0435 1.0243 

V22 0.95 1.05 1.0448 1.0396 

V23 0.95 1.05 1.0472 1.0372 

V24 0.95 1.05 1.0484 1.0372 

V25 0.95 1.05 1.0142 1.0192 

V26 0.95 1.05 1.0494 1.0422 

V27 0.95 1.05 1.0472 1.0452 

V28 0.95 1.05 1.0243 1.0283 

V29 0.95 1.05 1.0439 1.0419 

V30 0.95 1.05 1.0418 1.0397 

 

Table 5. Comparison of Real Power Loss 

 

Method Minimum loss 

Evolutionary programming [27] 5.0159 

Genetic algorithm [28] 4.665 

Real coded GA with Lindex as SVSM[29] 
4.568 

 

Real coded genetic algorithm [30] 4.5015 

Proposed AFA  method 
4.2108 

 

  
8. Conclusion 

 

In this paper a novel approach Advanced Fireworks 

Algorithm (AFA) succesfully solved the optimal reactive 

power dispatch problem. Fireworks algorithm (FWA) is 

inspired by the fireworks explosion in the sky at night. When 

a firework bursts, a shower of sparks appears around it. In 

this way, the neighboring area of the firework is explored. 

By directing the amplitude of the explosion, the capability of 

confined exploration for Advanced Fireworks Algorithm 

(AFA) is guaranteed. The way of fireworks algorithm 

probing the neighboring area can be further enriched by 

differential mutation operator. In order to assess the 

efficiency of proposed algorithm, it has been tested on IEEE 

30 system and compared to other standard algorithms. The 

simulation results demonstrate worthy performance of the 

Advanced Fireworks Algorithm (AFA) in solving optimal 

reactive power dispatch problem. 
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