
 © 2019, IJCSE All Rights Reserved 592

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

An overview of SDN Controllers

C. Kalaivani

Department of Computer Applications, Chevalier T.Thomas Elizabeth College for Women, Chennai, India

*Corresponding Author: sreekalai0903@gmail.com

Available online at: www.ijcseonline.org

 Accepted: 15/Jan/2019, Published: 31/Jan/2019

Abstract - Software Defined Network is based on separation of network intelligence from packet switching devices and

merging network intelligence in a centralized controller. With SDN, Enterprises can manage the entire network from a single

SDN controller, irrespective of different vendors of network elements [11].This controller acts as the main brain and act as a

strategic control point to decide about routing using OpenFlow protocols. SDN controller is a kind of operating system for

network where applications and devices can have communication only through it. In this paper, many SDN controllers are

discussed.

Keywords : SDN controller, performance, applications, API.

I. INTRODUCTION

In a traditional network architecture each device has a

separate control plane, whereas in SDN architecture it is

separated and centralized on an isolated process (called

controller) running at control layer. This isolated process

(controller) provides universal view of the network. The

controller resides between network devices and application

layer to translate the requirements from the application layer

and manage flow control to the network devices (via

southbound APIs). It also provides the SDN application with

an abstraction view of network and business logic (via

northbound APIs). This technology is being considered one

of the favorable technologies for isolation of control plane &

data plane and logical placement of centralized control with

the SDN controller. The following figure (Figure 1) shows

the architecture of SDN:

Figure 1 : SDN architecture

The paper focuses on the working principle, features, and

types of SDN controllers in the following sections.

II. SDN CONTROLLER ARCHITECTURE

In the SDN architecture, the controller separates the data

plane and the control plane where all the computations are

done and necessary applications and features can be added

whenever needed [1]. Basic modules[2] concerned with a

SDN controller are link discovery module, topology module,

storage module, strategy making module, flow table module

and control data module. The Link Discovery module is

responsible for discovering and maintaining the status of

physical links in the network which will be triggered only

when any unknown traffic enters the domain. The

information collected by this module will build a neighbor

database in the controller which will contain all the

OpenFlow neighbors. This database will be used by the

topology manager to build and maintain the topology

information in the controller thereby calculates the routes in

the network. The Topology Manager builds the global

Topology Database at the controller, which contains both the

shortest and alternate path information to any OpenFlow

node or host. The modules in an SDN controller are shown

in the following figure:

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 593

Figure 2 : Architecture of a SDN controller

III. FEATURES OF SDN

1. Programming Language

A controller’s performance and development speed will be

affected by certain factors of a programming language like

platform independence, multithreading, being easy to learn,

allowing fast memory access and good memory

management. Python, C++, and Java are the most used

languages for SDN controllers programming. [1]

2. OpenFlow Support

One of the key factors in SDN is OpenFlow protocol. The

forwarding plane of OpenFlow switches will be directly

manipulated by this protocol[3]. Before choosing an

OpenFlow controller, the OpenFlow functionality that the

controller supports as well as the flexibility to implement

newer versions of OpenFlow should be understood.

3. Network programmability

An important benefit of SDN is network programmability

where the complexity with increased number of connected

devices and deployment of new services are managed

perfectly by introducing automation and dynamicity in the

management process. Automated scripts can be run through

CLIs and applications can be deployed on top of the

controller platform to perform predefined tasks and

management functions. The controller support of network

programmability relies essentially on its degree of

integration of a wide number of northbound interfaces, a

good graphical user interface and a command-line interface

(CLI) [4].

4. Efficiency

The efficiency of a controller is measured using different

parameters like performance, scalability, reliability and

security. Performance is defined by various metrics like

number of interfaces a controller can handle, latency,

throughput, etc. Even though scalability, reliability and

security are defined by some other metrics SDN controllers

are compared with one another based on performance.

5. Southbound Interfaces
These APIs will have an efficient control over the network

as they are used by the controller to make dynamic changes

for the forwarding rules installed in the data plane devices

consisting of: switches, routers, etc. Some of the southbound

APIs are OpenFlow, NETCONF(standardized by IETF),

OF-Config (supported by the Open Network Foundation

(ONF)), Opflex (supported by Cisco).

6. Northbound Interfaces

The application layer communicates with the controller with

the help of the northbound APIs. They seem to be more

critical as they have to support different innovative

applications. In addition, These APIs allow also the

connection with automated stacks such as OpenStack or

CloudStack used for Cloud management. Currently, the

Representational State Transfer (REST) protocol seems to be

the most popular northbound interface.

IV. LIST OF SDN CONTROLLERS

Some of the SDN controllers with the above mentioned

features are explained below:

1. NOX:

It was the first SDN controller developed by Nicira networks

in the year 2009 that supported Openflow protocol. The

NOX controller is made up of APIs which are built using

C++ and Python languages and operate on Linux, Ubuntu

and Debian systems. NOX mainly provides support modules

specific to OpenFlow. The NOX core provides helper

methods and APIs for interacting with OpenFlow switches,

including a connection handler and an event engine.

Additional components are available including host tracking,

routing, topology (LLDP), and a Python interface

implemented as a wrapper for the component API.

Programmatic interfaces also exist for control over the

network and high level services.[5]

2. Beacon:

Beacon is an OpenFlow controller developed in Java and

released in 2010. It is a multi-threaded controller and

considered more suitable for enterprise class networks and

data centers. It runs on many platforms, such as Linux

servers and Android phones. Beacon’s API is designed to be

simple and to impose no restrictions as far as available Java

constructs, such as threads, timers, sockets, etc. are

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 594

concerned. The API for interacting with OpenFlow switches

is event based.

Beacon supports both event-based and threaded operation. It

uses a static approach in which a fixed number of switches

are assigned to a worker thread. Worker threads use static

packet batching to serve the requests from the connected

switches. Once the packets are processed and ready to be

sent, Beacon in its default mode uses write coalescing and

allows only one write per I/O select loop to reduce the

overhead of socket system calls for each individual

OpenFlow message. Alternatively, an immediate mode can

be enabled in which the controller attempts a socket write

for every outgoing OpenFlow message waiting to be written

to the switch to reduce per packet latency. Static partitioning

and input batching improve its throughput in the default

mode. [5]

3. Maestro:

Maestro is an OpenFlow controller introduced in 2010 as an

operating system for some SDN applications. It is developed

in Java, which makes it highly portable to various operating

systems and architectures. Maestro provides interfaces for

implementing modular network control applications to

access and modify the state of the network, and coordinate

their interactions. Each network control component is

represented as one application in Maestro, which is a Java

class that contains the code for the control function. A

simple and straightforward API is used by all the

applications to extend the base abstract class application, and

interact with Maestro.

Maestro is a controller, which uses task batching so that

worker threads pull a batch of tasks, so as to process

multiple flow-requests in a single execution.[5] The output

batching technique is used to send packets out in which

packets belonging to the same destination are grouped

together and sent using a single socket system call [9].

Maestro handles most of the tedious and complicated job of

managing work load distribution and worker threads

scheduling.

4. Trema

Trema is a programming framework for developing

OpenFlow controllers where the modules are created either

in C or Ruby. It provides a network emulator and libraries

that can create simple and efficient OpenFlow based

networks on a system. The main API that the Trema core

modules provide to an application is a simple, non-

abstracted OpenFlow driver. The base controller design is

event-driven and is often compared to the explicit handler

dispatch paradigm of other open source products. In

addition, the core modules provide a message bus that

allows the application modules to communicate with each

other and core modules.

The libraries in Trema can be categorized under multiple

headings as listed below: protocol (i.e. OpenFlow),

interfaces (i.e. OpenFlow application, switch, management),

commonly used data structures (i.e. Linked list, doubly-

linked list, hash table, timers), utilities (i.e. log, stats,

wrapper), network protocols (i.e. CP, IP, UDP, ether and

etherIP, ICMP and IGMP).[5]

5. Ryu [5]

Ryu is a component-based, open source framework

implemented entirely in Python. It integrates with

OpenStack and supports OpenFlow. It provides a logically

centralized controller and a well-defined API that make it

easy for operators to create new network management and

control applications. Components include event

management, messaging, in-memory state management,

application management, infrastructure services and a series

of reusable libraries.

Ryu has an impressive collection of libraries, ranging from

support for multiple southbound protocols to various

network packet processing operations. With respect to

southbound protocols, Ryu supports OF-Config, Open

vSwitch Database Management Protocol (OVSDB),

NetConf, SFlow (Netflow and Sflow) and other third-party

protocols.

6. OpenDaylight:

OpenDaylight, the largest open source SDN controller, is

designed for customizing and automating networks of any

size and scale with a clear focus on network

programmability. The ODL platform is designed to cover a

lot of use cases such as [6] Network Resources Optimization

(NRO), Automated Service Delivery, Cloud, NFV and

others. Using ODL services such as dynamic network

optimization, on-demand services (i.e. bandwidth, dynamic

VPN services etc.), agile service delivery on cloud

infrastructure are provided. ODL may be also used to

achieve centralized administration of the network.

The idea of Modular application development in sense that a

set of loosely coupled modules can be integrated into large

application cause Open Services Gateway Initiative (OSGI)

[7], a dynamic module system for Java, defines one such

architecture for modular application development which is

used in Opendaylight controller.

On the northbound side, the interaction between the

controller and the applications is done via Web Services for

the request-response type of interaction. The controller

exposes open Northbound APIs which are used by

applications. The ODL platform supports OpenFlow and

OpenFlow extensions such as Table Type Patterns (TTP), as

well as traditional protocols including NETCONF,

BGP/PCEP and CAPWAP. Additionally, ODL interfaces

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 595

with OpenStack and Open vSwitch through the OVSDB

Integration Project.

7. ONOS:

ONOS has been designed aiming to fulfill the following

goals: Code modularity, separation of concern,

configurability, and protocol agnosticism [10]. The ONOS

kernel and core services, are written in Java as bundles that

are loaded into the Karaf OSGi container. Since ONOS runs

in the JVM, it is platform independent. The ONOS platform

is designed to support various application categories such as

control, configuration and management applications.

Open Network Operation System is a distributed platform

controller that is specialized for scalability and high

availability. ONOS support multiple protocol at the

southbound interface that provide communication with

various devices and exploit right API in northbound in order

to hold the needs of service provider use cases and

application developers. Synchronization between multiple

instances of the controller is implemented using an anti-

entropy protocol in ONOX.[8]

8. Floodlight :

Floodlight is a Java multi-threaded OpenFlow controller,

initially based on the Beacon implementation. Its last version

was released on March 2016. It is intended to be a platform

for a wide variety of network applications. The Floodlight

core architecture is modular, with components including

topology management, device management, path

computation, infrastructure for web access, counter store and

a generalized storage abstraction for state storage.

The Floodlight OpenFlow controller can interoperate with

any element agent that supports OpenFlow, but Big Switch

also provides an open source agent that has been

incorporated into commercial products. Floodlight can be

run as a network plugin for OpenStack using Neutron. The

Neutron plugin exposes a Networking-as-a-Service (NaaS)

model via a REST API that is implemented by Floodlight.

Once a Floodlight controller is integrated into OpenStack,

network engineers can dynamically provision network

resources alongside other virtual and physical computer

resources. This improves overall flexibility and

performance.

V. CONCLUSION

SDN controllers have several different properties which

affect the efficiency of the network. From the various kinds

of controllers discussed above one can be selected using its

multiple properties to find out its impact in the efficiency

and effectiveness in network is implemented. A SDN

controller can be selected using any of the two techniques

namely, Multi-Criteria Decision Making (MCDM) and

Analytic Hierarchy Process (AHP).

REFERENCES

[1] Ola Salman, Imad H. Elhajj, Ali Chehab SDN controllers: A

comparative study

https://www.researchgate.net/publication/304457462

[2] F. Alencar, M. Santos, M. Santana and S. Fernandes, '"How

Software Aging affects SDN: A view on the controllers,"Global

Information Infrastructure and Networking Symposium (GIIS),

2014, pp. 1-6.

[3] Feng Wang, Heyu Wang, Baohua Lei and Wenting Ma,"A Research

on High-Performance SDN Controller," Cloud Computing and Big

Data (CCBD), 2014 International Conference on, pp. 168-174.

[4] O.N. Fundation, '"Software-defined networking: The new norm for

networks," ONF White Paper.

[5] Dimitra Sakellaropoulou, “A Qualitative Study of SDN

Controllers”, M.Sc., Thesis, Athens, September, 2017

[6] https://www.opendaylight.org

[7] OSGi Core Release 5, OSGi Alliance, San Ramon, CA, USA, Mar.

2012.

[8] Saleh Asadollahi, Dr. Bhargavi Goswami, Dr. Atul M Gonsai,

Software Defined Network, Controller Comparison, International

Journal of Innovative Research in Computer and Communication

Engineering, April 2017 Special Issue

[9] Abhishek Rastogi, Abdul Bais, “Comparative Analysis of Software

Defined Networking (SDN) Controllers – In Terms of Traffic

Handling Capabilities”, Multi-Topic Conference (INMIC), 2016

19th International

[10] https://wiki.onosproject.org

[11]Mandar B. Shinde, Sunil G. Tamhankar, “Review: Software

Defined Networking and OpenFlow”, International Journal of

Scientific Research in Network Security and Communication

Author’s Profile

Mrs.C.Kalaivani pursued her Bachelor of

Science from Periyar University, Salem in

2001, Master of Science from

Bharathidasan University, Tiruchirapalli in

2003 and M.Phil(CS) from Periyar

University, Salem in 2008. She is currently

working as an Assistant Professor in Department of

Computer Applications, Chevalier T.Thomas Elizabeth

College for Women, Chennai, India since 2009. She has

published more than 3 research papers in international

journals/Conferences. Her area of interests is Software

Defined Networking, Mobile Networks. She has 11 years of

teaching experience.

https://www.opendaylight.org/
https://wiki.onosproject.org/

