

 © 2018, IJCSE All Rights Reserved 545

 International Journal of Computer Sciences and Engineering Open Access
 Survey Paper Volume-6, Issue-9 Sep 2018 E-ISSN: 2347-2693

An Extensive Survey on Various Set Containment Joins Techniques

G. Sakthivel
1*

, P.Madhubala
2

1
Dept. of Computer Science, Periyar University, Salem, India

2
Dept. of Computer Science, Arignar Anna College (Arts & Science), Krishnagiri, India

2
Dept. of Computer Science, Don Bosco College, Dharmapuri, India

*Corresponding Author: sakthishc@gmail.com

Available online at: www.ijcseonline.org

Accepted: 22/Sept./2018, Revised:25/Sept./2018

Abstract—A set containment join is a join between set-valued attributes of two relations, whose join condition is specified

using the subset (⊆) operator. Set containment joins are deployed in many database applications, even those that do not support

set-valued attributes. In this paper, we study the problem of set containment join. Given two collections R and S of records, the

set containment join R ⊆S retrieves all record pairs {(r,s)} ∈ R × S such that r ⊆ s . This problem has been extensively studied

in the literature and has many important applications in commercial and scientific fields. Recent research focuses on the in set

containment join algorithms, In this paper, we propose three novel partitioning algorithms, called the Adaptive Pick-and-

Sweep Join (APSJ), the Adaptive Divide-and-Conquer Join (ADCJ), and Divide-and-Conquer Join (DCJ) which allow

computing set containment joins efficiently. We present a detailed analysis of the algorithms and study their performance on

real and synthetic data using an implemented of this algorithm.

Keywords -Algorithms, Experimentation, Performance and Implementations

I. INTRODUCTION

Set containment queries are utilized in many database

applications, especially when the underlying database

systems support set-valued attributes. Set containment joins

are used in a variety of other scenarios. If, for instance, our

first relation contained sets of parts used in construction

projects, and the second one contained sets of parts offered

by each equipment vendor, we could determine which

construction projects can be supplied by a single vendor

using a set containment join. Or, consider a database

application that recommends to students a list of courses that

they are eligible to take. The two best known algorithms for

computing set containment joins efficiently are the

Partitioning Set Join (PSJ) proposed in Ramasamy et al.

2000 [2] and the Divide and- Conquer Join (DCJ) that we

suggested in Melnik and Garcia-Molina 2002 [5]. PSJ and

DCJ introduce crucial performance gains compared with

straightforward approaches. A major limitation of PSJ is that

it quickly becomes ineffective as set cardinalities grow. In

contrast, DCJ depends only on the ratio of set cardinalities in

both relations, and, therefore, wins over PSJ when the sets

are large. Often, the sets involved in the join computation are

indeed quite large. For instance, Biochemical databases

contain sets with many thousands elements each. In fact, the

fruit fly (drosophila) has around 14000 genes, 70-80% of

which are active at any time. A snapshot of active genes can

thus be represented as a set of around 10000 elements. PSJ is

ineffective for such data sets. The contribution of this paper

are two novel algorithms called the Adaptive Pick and-

Sweep Join (APSJ) and the Adaptive Divide-and-Conquer

Join (ADCJ), which extend and improve on the best known

algorithms PSJ and DCJ. We show that ADCJ always

outperforms DCJ, especially when the relations to be joined

have different sizes. APSJ overcomes the main limitation of

PSJ, namely, it’s in ability to deal with large sets effectively.

The set containment join is the component of a database

management system to optimize the joins. It is used to select

an efficient execution strategy for processing a joins. Set

containment joins is a function of many relational database

management systems in which multiple joins plans for

satisfying the joins are examined and a good join plan is

identified to minimize the use of certain resources like I/O by

selecting the best join access plan. In present scenario data

warehouses & mining turned out to be the common basis for

the integration and analysis of data in modern enterprises.

The goal of a data warehouse is to provide analysts and

managers with strategic information about the key figures of

the underlying business. Since micro data are of no interest at

this level, almost all joins on data warehouses involve

aggregates. In large data warehouse systems, it is critical to

set containment join workloads to maximize system

utilization and minimize processing times. The database

administrator and the Data Base Management System joins

became free to choose among many different storage formats

and execution plans to answer a declarative joins. The

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 546

challenge, since then, has been how to deliver on these

promises regardless of where or how the data is laid out, how

complex the join is, and how unpredictable the operating

environment is. This survey is organized as follows, Section

I contains the introduction of set containment join and its

importance, Section II Set Containment Related works

Section III Various Approaches and Section IV concludes the

paper with future directions.

II. Set Containment Related works

The set containment join and other join operators for sets

enjoyed significant attention in the area of data modelling.

However, relatively little work deals with efficient

implementations of these operators. Helmer and Moerkotte

1997 [1] were the first to directly address the implementation

of set containment joins. They investigated several main

memory algorithms including different flavours of nested-

loop joins, and suggested the Signature-Hash Join (SHJ) as a

best alternative. Later,

Ramasamy et al. 2000 [2] developed the Partitioning Set Join

(PSJ), which does not require all data to fit into main

memory. They showed that PSJ performs significantly better

than the SQL-based approaches for computing the

containment joins using unnested representation. Prior to

Helmer and Moerkotte 1997 [1] and Ramasamy et al. 2000

[2], the related work focused on signature files, which had

been suggested for efficient text retrieval two decades ago. A

detailed study of signature files is provided by Faloutsos and

Christodoulakis 1984 [3]. Ishikawa et al. 1993 [4] applied the

signature file technique for finding subsets or supersets that

match a fixed given query set in object-oriented databases.

In Melnik and Garcia-Molina 2002 [5], we presented the

Divide-and-Conquer Set Join (DCJ) and the Lattice Set Join

(LSJ) algorithms. LSJ is a partitioning algorithm which

extends the main-memory algorithm SHJ Helmer and

Moerkotte 1997 [1]. We demonstrated that DCJ always

outperforms LSJ in terms of the replication factor. In Melnik

and Garcia-Molina 2002 [5] we developed a comprehensive

model for analyzing different partitioning algorithms that

takes into account different set cardinalities and relation

sizes, and measures the efficiency of the algorithms using the

comparison and replication factors. In this paper, we used

this analytical model for studying our novel algorithms APSJ

and ADCJ. The adaptive algorithms presented in this paper

introduce significant improvement over PSJ and DCJ. In

particular, ADCJ always outperforms DCJ due to smaller

replication factor, just like DCJ outperforms LSJ. In Melnik

and Garcia- Molina 2002 [5] we suggested for DCJ a fixed

pattern for applying operators α and β, which works

reasonably well when the input relations R and S have

approximately equal sizes and the set cardinalities are

approximately the same (i.e., ρ ≈ 1, λ ≈ 1). In this paper, we

compute the α, β-pattern adaptively based on the

characteristics of the input relations to minimize replication.

For brevity we do not discuss several aspects relevant for

computing set containment joins. Examples are trading CPU

time for I/O time by selecting the algorithm and partition

number appropriately, choosing the signature size optimally,

or using multi-stage partitioning (some of these aspects are

examined in Ramasamy et al.2000 [1]. For generating

synthetic databases used in our experiments, we deployed the

methods described in Gray et al. 1994 [6]. The inherent

theoretical complexity of computing set containment joins

was addressed in Cai et al. 2001 [7] and Heller stein et al.

1997 [8]. Partitioning has been utilized for computing joins

over other types of non-atomic data, e.g., for spatial joins

Patel and DeWitt 1996 [9]. A possible alternative to

partitioning joins are index joins. Index-based approaches for

accessing multi-dimensional data were studied e.g. in B¨ohm

and Krieger 2000 [10].

III. Various Approaches

A. Partitioning Set Join (PSJ)

Partitioning has been suggested to further improve

performance by decomposing the join task R S into k

smaller subtasks R1 S1, . . .,Rk Sk such that R S =

 k
 i=1 Ri Sj. The so called partitioning function 

assigns each tuple of R to one r multiple partitions R1, . . . ,

Rk, and each tuple of S to one or multiple partitions S1, . . . ,

Sk. Consider our sample relations R and S from Two

Relation with Set – Valued attributes. Let  (a) = (b) =

 (A) =  (B) = {1},  (c) = (C) = {2}, and  (D) =

{1, 2}. That is, R is partitioned into R1 = {a, b}, R2 = {c},

and S is partitioned into S1 = {A, B, D}, S2 = {C,D}. Note

that we have constructed π so that tuples in R1 can only join

S1 tuples, and R2-tuples can only join S2-tuples. Thus,

finding R  S amounts to computing (R1  S1)  (R2

  S2). Notice that computing R1  S1 = {a, b} 

{A,B,D} and R2 R1  S2 = {c} R1  {C,D} requires

only 2 · 3 + 1 · 2 = 8 signature comparisons. Hence, by using

partitioning we reduced the total number of signature

comparisons from 12 to 8. We refer to the fraction 8 12 as a

comparison factor. The comparison factor ranges between 0

and 1. Besides reducing the number of required signature

comparisons, partitioning helps to deal with large relations R

and S that do not fit into main memory by storing the

partitions R1, . . . , Rk and S1, . . . , Sk on disk. To minimize

the I/O costs of writing out the partitions to disk and reading

them back into memory, the partitions typically contain only

the set signatures and the corresponding tuple identifiers. In

our example, |{a, b}|+|{c}| = 3 signatures from R1,2 and

|{A,B,D}|+|{C,D}| = 5 signatures from S1,2 are stored on disk

temporarily. We refer to the ratio between the total number

of signatures that are written out to disk and the total number

of tuples in R and S as the replication factor. In our example,

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 547

the replication factor is 3+5/3+4 = 8/7. Assuming that no

partition is permanently kept in main memory, he optimal

replication factor that can be achieved in a partition-based

join is 1. A major challenge of effective partitioning is to

construct a partitioning function that minimizes the

comparison and replication factors. Obviously,  needs to

be correct, i.e., it has to ensure that all joining tuples are

found.

Partitioning Set Join is algorithm reduce join execution time

by partitioning the problem into smaller sub problems. A

partitioning function is used to partition the problem. An

ideal partitioning function requires Tuple r of R falls in one

of the partitions Ri Tuple S of S falls in one of Si Join is

accomplished by joining only Ri with Si Imagine that we

want to partition R and S from Two Relation with Set –

Valued attributes into k = 8 partitions. The partition number

of each set of R is determined using a single, randomly

selected element of the set. Consider the set a = {2, 9}  R.

Let 9 be a randomly chosen element of a. We assign a to one

of the partitions 0, 1, . . . , 7 by taking the element value

modulo k = 8. Thus, a is assigned to partition with index (9

mod 8) = 1, i.e., to partition R1. Element 18 chosen from b =

{8, 18} yields partition number 2 = (18 mod 8). Finally, set c

falls into partition R3 based on randomly chosen element 3

 c. Now we repeat the same procedure for S, but consider

all elements of each set for determining the partition

numbers. Taking all elements into account ensures that all

joining tuples will be found. Thus, A = {2, 4, 9} is assigned

to partitions S2, S4, and S1, B = {3, 8, 18} goes into partitions

S3, S0, and S2, etc. The partition number of each set of R is

determined using a single, randomly selected element of the

set. We assign a to one of the partitions 0, 1, . . . , 7 by taking

the element value modulo k = 8.

R1 = a{2, 9} 9 mod 8 = 1

R2 = b{8, 18} 18 mod 8 = 2

R2 = b{1, 3} 3 mod 8 = 3

The same procedure for R, But all elements into account

ensures that all elements into account ensures that all joining

tuples will be found.

 A {2, 4, 9} 2 mod 8 = 2 4 mod 8 = 4 9 mod 8 = 1

 B {3, 8, 18} 3 mod 8 = 3 8 mod 8 = 0 8 mod 8 = 2

 C {1, 3, 4} 1 mod 8 = 13 mod 8 = 3 4 mod 8 = 4

 D {3, 4, 7} 3 mod 8 = 3 4 mod 8 = 4 7 mod 8 = 7

The complete partition assignment for R and S. PSJ requires

that no R set be empty (a set with no elements cannot be

assigned to any of the partitions without losing joining

tuples). Once both relations are partitioned, i.e., the set

signatures and tuple identifiers have been written out to

Figure 1. Partitioning with PSJ: 7 Comparison, 15

Replicated

disk, each pair of partitions is read from disk and joined

independently. For example, when R3 and S3 are joined, the

signature of set c is read from R3, and is compared with the

signatures of sets B, C, and D stored in S3. Hence, computing

R3  S3 results in 1 · 3 = 3 signature comparisons. The

total number of signature comparisons required in our

example amounts to 0+2+2+3+0+0+0+0 = 7, whereas a total

of 15 signatures need to be written out to disk. Thus, in this

R1 = 2

R1 = a

R1 = 2

S2 = A

S2 = A

S2 = A

S2 = B

S2 = B

S2 = B

S2 = C

S2 = C

S2 = C

S2 = D

S2 = D

S2 = D

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 548

example, we obtain the comparison factor 7/12 ≈ 0.58, and

Replication factor 15/3+4 ≈ 2.14

B. Adaptive Pick and Sweep Join (APSJ)

The Adaptive Pick-and-Sweep Join (APSJ) generalizes and

extends the PSJ algorithm. We illustrate APSJ using our

running example of Two Relation with Set – Valued

attributes of Table I and k = 8 partitions. Assume that there

exist k − 1 = 7 Boolean hash functions h1, . . . , h7 that take a

set of integers as input and return 0 or 1 as output. For

example, consider the functions defined as

hi (x) = 1   e  x : (e mod 9) = i for i = 1, . . . , 7.

R-Relation of (a) sets

a{2, 9} 2 mod 9 = 2 9 mod 9 = 0

R-Relation of (b) sets

b{8, 18} 8 mod 9 = 8 9 mod 9 = 0

R-Relation of (c) sets

 c{1, 3} 1 mod 9 = 1 3 mod 9 = 3

S-Relation of (A) sets

 A {2, 4, 9} 2 mod 9 = 2 4 mod 9 = 4 9 mod 9 = 9

S-Relation of (B) sets

 B{3, 8, 18} 3 mod 9 = 3 8 mod 9 = 8 18 mod 9 = 0

S-Relation of (C) sets

 C{1, 3, 4} 1 mod 9 = 1 3 mod 9 = 3 4 mod 9 = 4

S-Relation of (D) sets

 D{ 3, 4, 7} 3 mod 9 = 3 4 mod 9 = 4 7 mod 9 = 7

Using these k − 1 = 7 functions, we partition our sample

relations into k = 8 partitions as follows. For each set r  R,

we consider the indexes of the hash functions that fired, i.e.,

{j | hj(r) = 1}. We randomly pick an index i from this set, and

assign r to partition Ri. If the set is empty, we assign r to the

‘default’ partition R0. For example, for set c we can choose

between index 1 and 3, so say we select 1 and place c in R1.

(The selected indexes are underlined in Table III.) Set b is

placed in R0. Every set s  S is inserted into all partitions Sj

with hj(s) = 1, i.e., we sweep the indexes of all firing

functions. Additionally, each s is assigned to the ‘default’

partition S0. Thus, for example, set A is assigned to partitions

S2, S4, and, additionally, to partition S0.

Table 1. Boolean Hash Functions used in APSJ

The complete partition assignment produced by APSJ for our

sample relations IS depicted in figure 2. we use Notice that

because we use the default partitions R0 and S0, k−1 hash

functions produce k partitions. The default partitions allow us

h1 h2 h3 h4 h5 h6 h7

0 0 0 0 0 0 0

h1 h2 h3 h4 h5 h6 h7

1 0 1 0 0 0 0

h1 h2 h3 h4 h5 h6 h7

0 1 0 1 0 0 0

h1 h2 h3 h4 h5 h6 h7

0 1 0 0 0 0 0

h1 h2 h3 h4 h5 h6 h7

0 0 1 1 0 0 1

h1 h2 h3 h4 h5 h6 h7

0 1 0 1 0 0 0

h1 h2 h3 h4 h5 h6 h7

1 0 1 1 0 0 0

x 

R

h1 h2 h3 h4 h5

h6 h7

y 

R

h1 h2 h3 h4 h5

h6 h7

a 0 1 0 0 0 0

0

A 0 1 0 1 0 0

0

b 0 0 0 0 0 0

0

B 0 0 1 0 0 0

0

c 1 0 1 0 0 0

0

C 1 0 1 1 0 0

0

D 0 0 1 1 0 0

1

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 549

to partition the relations correctly even if R contains empty

sets, or, in general, set for which none of hi fires (recall that

PSJ cannot deal with empty sets). In our example, the joining

tuples b and B are found when the partitions R0 and S0 are

read from disk. Overall, 4+1+1+0+0+0+0+0 = 6 signature

comparisons are needed, while the total of 16 signatures need

to be stored on disk. Hence, we obtain the comparison factor

6/12 = 0.5 and replication factor 16/3+4 ≈ 2.14. In our tiny

running example, APSJ wins over PSJ since it is lucky: had c

been randomly assigned to bucket 4, APSJ would use more

signature comparisons than PSJ. However, in real data, when

the set cardinalities are large, PSJ tends to assign n almost all

sets of S to each of the Si partitions, yielding many signature

comparisons

Figure 2 Partitioning with APSJ: 6 comparison, 16

Replicated

and high replication. APSJ offers an extra ‘tuning knob’ that

is not available in PSJ, namely the boolean hash functions.

Because of this flexibility, APSJ can often be tuned to

achieve better performance than PSJ. Notice that if all hash

functions fire with very high probabilities, then each Si will

include most of S, So joins will be expensive. In contrast, if

the functions fire with very low probabilities, then R0 will

contain most of R, and we will have to join R0 S0 = R S.

Clearly, to minimize the work, we need to select a firing

probability somewhere in the middle. In Section 3.1 we show

how to construct the APSJ hash functions adaptively

depending on the characteristics of the input relations. Both

algorithms PSJ and APSJ can be tuned by varying the

number of partitions. The more partitions we use, the fewer

comparisons are necessary. However, a larger number of

partitions also causes more replication.

Adaptive Divide-and-Conquer Set Join (ADCJ)

The Adaptive Divide-and-Conquer Set Join (ADCJ) is based

on the DCJ algorithm that we present in [Melnik and Garcia-

Molina 2002]. Again, we illustrate the ADCJ algorithm using

our running example of Table I and k = 8 partitions. We

explain the algorithm using a series of partitioning steps

depicted in Figure 3. In every step, one monotone Boolean

hash function is used to transform an existing partition

assignment into a new assignment with twice as many

partitions. This transformation, or repartitioning, is done by

applying either operator α or operator β to each pair of

partitions Ri Si, as indicated by the labels ‘α’ and ‘β’

placed on the forks in Figure 3. Although we illustrate ADCJ

conceptually as a branching tree, the final partition

assignment is computed without using any intermediate

partitions (see Appendix G). First, we explain the main idea

of DCJ and then present the contribution of ADCJ, the

adaptive design of the α, β-pattern. The monotone boolean

hash functions that we use in Figure 3 are defined as

hi (x) = 1   e  x : (e mod 4) = i for i = 1, 2, 3.

R-Relation of (a) sets

 a{2, 9} 2 mod 4 = 2 9 mod 4 = 1

 h1 h2 h3

R-Relation of (b) sets

b{8, 18} 8 mod 4 = 0 18 mod 4 = 2

 h1 h2 h3

R-Relation of (c) sets

c{1, 3} 1 mod 4 = 1 3 mod 4 = 3

 h1 h2 h3

S-Relation of (A) sets

A {2, 4, 9} 2 mod 4 = 2 4 mod 4 = 4 9 mod 4 = 1

 h1 h2 h3

S-Relation of (B) sets

 B{3, 8, 18} mod 4 = 3 8 mod 4 = 0 18 mod 4 = 2

 h1 h2 h3

S-Relation of (C) sets

 C{1, 3, 4} 1 mod 4 = 1 3 mod 4 = 3 4 mod 4 = 4

 h1 h2 h3

1

1 0

0

1 0

1

1 0 1

0 1

1

1 0 1

1 0

0

1 0 1

1 1

1

1 0 1

0 1

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 550

S-Relation of (D) sets

 D{ 3, 4, 7} 3 mod 4 = 3 4 mod 4 = 0 7 mod 4 = 3

 h1 h2 h3

Table 2. Boolean Hash Functions used in ADCJ

x  R h1 h2 h3 y  R h1 h2 h3

A 1 1 0 A 1 1 0

B 0 1 0 B 0 1 1

C 1 0 1 C 1 0 1

D 0 0 1

Relations R = {a, b, c} and S = {A, B, C, D} form the initial

partition assignment R S = R0
 1

 S0
1
, where the

superscript 0 indicates the step number. In Step 1, we derive

a new partition assignment (R1
1
 S1

1
)  (R1

2
 S1

2
)

from R S using operator β and hash function h1. Sets B

and D with h1(B) = h1(D) = 0 are assigned to partition S1
1
 ,

while the remaining sets A and C with h1(A) = h1(C) = 1 are

inserted into S2
1
 . We abbreviate this procedure concisely as

S1
1
 := S/¬h1, S2

1
 := S/h1. Since h1 is monotone, each subset x

of B or D must satisfy h1(x) = 0. Therefore, partition S1
1
 = {B,

D} needs to be joined only with those sets in R = {a, b, c}

that satisfy h1(x) = 0, i.e. just with set b. In contrast, each set

of R may possibly be a subset of A or C. Thus, we obtain R1
1

:= R/¬h1 and R1
2
 := R (the values 0 and ‘any’ taken by h1 are

depicted above R1
1
 and R1

 2
). Notice that instead of 4·3 = 12

signature comparisons required for R S, only 1·2+3·2 = 8

signature comparisons would be needed for joining the

partitions of assignment 1. Given a pair of partitions Ri Si,

operator β splits partition Si and replicates partition Ri. In

contrast, operator α splits Ri and replicates Si. Figure 3 shows

how operator α is used to repartition R1
2
 S1

2
 = {a, b, c}

{A,C}. First, R1
2
 is split into R2

3
 = R1

2
/h2 = {a, b} and R2

4
 =

R1
2
/¬h

2
 = {c}. Since each superset x of a or b must satisfy

h2(x) = 1, R2
3
 needs to be joined only with those sets of S1

2
 =

{A,C} that satisfy h2(x) = 1, i.e., just with the set A. Hence,

S2
3
 is obtained as S2

3
 = S1

2
/h2, whereas S2

4
 must contain all of

S1
2
 = {A,C}. The definitions of operators α and β are

presented in Table V.

Table 3. Repartitioning of R S using operators α and β,

and a monotone Boolean hash function h

operator Ideally,

When

Resulting assignment

Α(R S, h) |R| ≥ |S| (R/h S/h)  (R/¬h S)

Β(R S, h) |R| ≥ |S| (R/¬h S/¬h)  (R

S/h)

Figure 3: Partitioning with ADCJ: 4 comparisons, 11

replicated

Adaptive design of α, β-pattern. The operators α and β both

perform correct repartitioning and thus can be applied

interchangeably at each fork in the branching tree of Figure

3. Different patterns of applying α and β yield distinct

partition sizes in the final assignment, so we can improve

performance by selecting the operators judiciously. Optimal

performance is achieved when the comparison and

replication factors are minimal. As shown in Appendix C, the

comparison factor is determined entirely by the firing

probabilities of the hash functions, and is independent of the

α,β-labelling of the tree. However, the choice of α, β-pattern

is crucial for minimizing replication. The smallest replication

factor is obtained if at each fork we always split the larger

partition and replicate the smaller one. Otherwise, if a

suboptimal choice is made, the replication factor of the sub

tree originating at that fork increases and makes the overall

replication factor grow. Hence, if |Ri| ≥ |Si|, we should apply

operator α, otherwise we should use β. For example, in Step

1, we have |R| = 3 < 4 = |S|. Therefore, operator β is best.

0

1 0 1

0 1

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 551

If we computed the intermediate partitions, we would know

their sizes and could apply the above rule. However, we do

not generate the intermediate partitions, since storing them

temporarily on disk is prohibitively expensive.

Suppose for now that we know the optimal α,β-pattern, i.e.,

the one that minimizes replication. Then, we can compute the

partition assignment of each set of R or S by ‘tracing’ its way

through the tree, with no need for intermediate, materialized

partitions. In our example, set A belongs initially to S0
1
 = S.

Given that the β is applied at the first fork, we compute h(A)

to decide whether A is sent to S11 (‘up’) or S1
2
 (‘down’).

Since h1(A) = 1, A is sent ‘down’. At the next fork we send A

both ‘up’ (S2
2
) and ‘down’ (S2

4
), based on h2(A) = 1 and the

use of operator α. Now the path of A splits, and we have to

track both paths. After the final step, A is assigned to S3
6
 and

S3
7
. In Appendix G we present a formal specification of the

ADCJ algorithm that computes the partition assignment for

each set based on the above technique.

Thus, our final challenge is to determine a ‘good’ α,β-pattern

for the partitioning technique of the previous paragraph. We

design the pattern adaptively based on the characteristics of

the input relations. The key idea is to estimate the sizes of the

intermediate partitions using the firing probabilities of the

hash functions. Suppose that in our example we know that

functions h1, h2, h3 fire with probability of 0.5 for sets in R,

and with probability 0.6 for sets in S. Consider partitions R1
2

 S1
2
 obtained in Step 1 using function h1. The expected size

of partition S1
2
 = S/h1 can be estimated as |S1

2
 | = 0.6 · |S| =

0.6 · 4 = 2.4. Given that |R1
2
| = |R| = 3 > 2.4 = |S1

2
 |, we

select operator α for repartitioning R1
2
 S1

2
 . Assuming

that R1
2
 S1

2
 are repartitioned using α, we can estimate the

sizes of partitions R2
3
 and S2

3
. Since R2

3
 = R1

2
/h2 = R/h2, we

get |R2
3
| = 0.5·|R| = 0.5·3 =1.5, while the expected size of S2

3

is 0.6·|S1
2
| = 0.62 ·|S| = 1.44. Because |R2

3
| = 1.5 > 1.44 =

|S1
2
|, we choose operator α again to repartition R3

3
 S2

3
 . Of

course, the actual partition sizes may deviate from the

expected values, so we can choose a suboptimal operator.

For example, the estimated size of partition R2
1
 is |R2

1
|

=|(R/¬h1)/¬h2| = (1−0.5)
2
 ·|R| = 0.75, whereas |S2

1
 | = (1 −

0.6)
2
 · |S| = 0.64. Thus, we choose to apply operator α.

However, as shown in Figure 3, in our example the actual

sizes of R2
1
 and S2

1
turn ut to be 0 and 1, i.e., β would have

been a better choice. In fact, choosing β would require one

less signature to be stored to disk.

To summarize, our algorithm computes the partition

assignment in three stages.

(1). First, we construct the hash functions that minimize the

comparison factor (just ike in DCJ).

(2). Second, we determine the α,β-tree that reduces

replication using the firing probabilities of the hash

functions.

(3). Finally, we compute the partition assignment by tracing

each set of R and S through the α,β-tree.

In the final assignment produced in our example

(Assignment 3), the total of 0 + 0 + 0 + 1 + 0 + 2 + 0 + 1 = 4

signature comparisons are required, whereas 11 signatures

need to be written out to disk (one more than absolutely

necessary if we had used β for R2
1
 S2

1
). Thus, we obtain

comparison factor 4/12 ≈ 0.33 and replication factor 11/3+4

≈ 1.57, close to the best possible replication factor of 10/3+4

≈ 1.42.

IV. CONCLUSION AND FUTURE SCOPE

We presented three novel partitioning algorithms, the

Adaptive Pick-and-Sweep Join (APSJ), the Adaptive Divide-

and-Conquer Join (ADCJ), Divide-and-Conquer Set Join

DCJ which allow computing many set containment joins

several times more efficiently than the previously known

approaches. We provided a detailed analysis of the

algorithms and studied their performance using an

implemented. We found that APSJ, ADCJ, DCJ and the

existing algorithm PSJ need to be used complementary for

maximal performance. PSJ is the algorithm of choice when

the set cardinalities are very small, e.g., below ten elements.

For larger cardinalities, APSJ tends to outperform all other

algorithms. In some settings, especially in those where the

superset relation is much larger than the subset relation, or

the element domain is small, ADCJ wins over APSJ and PSJ.

It would be interesting to see whether the hash functions used

in APSJ and ADCJ can be constructed optimally for small or

non-uniform domains, or whether the algorithms presented in

this paper reduce the theoretical complexity of containment

joins below O(|R|・|S|). In this paper we suggested a novel

algorithm called all three Set Join for computing, another

challenging and mostly unexplored research direction.

Table 4. Summary of strong points of proposed

techniques

No.
Techniques

Proposed

Strong Point

1

Dynamically

optimizing

high-

dimensional

index

structures.

 We have proposed a dynamic

optimization technique for

multidimensional index structures.

In contrast to conventional page-

size optimization where the

administrator determines the

optimal page-size parameter before

installing the database, our index is

automatically adapted according to

the data distribution of the objects

currently stored in the database

2

On the

complexity of

join predicates

While the development of join

algorithms is perhaps one of the

best studied problems in database

systems research, to date there has

been very little published about the

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 552

intrinsic difficulty of join

problems. This may be because

joins are too “easy.” Any join can

be computed in polynomial time

— just compute the cross product

and iterate through the result

applying the join predicate to each

tuple in the cross product. While

this is true, this coarse-grained

analysis belies the experience of

researchers who have tried to find

truly “good” algorithms for these

join problems.

3

Quickly-

generating

billion-record

synthetic

databases

Convert a simple sequential load

into a parallel load –turning a two -

day task into a one-hour task. It

then explored the ways to generate

synthetic data. At first it focused

on generating the primary keys of

records and values uncorrelated to

these keys: dense-unique-pseudo-

random sequences. Then, attention

turned to building indices on these

synthetic tables –either by sorting,

or by using discrete logarithms. By

careful selection of generators, the

discrete log problem is tractable

and indices can be quickly

generated within the 1-hour limit

we set for the billion-record load.

The paper then looked at skewed

distributions. It presented the

standard ways to generate uniform,

exponential, normal, and Poisson

distributions. It went into more

detail on the new topic of self -

similar and Zairian distributions.

Using these techniques, one can

generate billion-record databases

in an hour, and a two terabyte

databases per day

4

On the

analysis of

indexing

schemes

This chapter examined techniques

for implementing index structures

for two-dimensional range queries.

The focus was on the EPS-tree, a

new access method for three-sided

queries, with asymptotically

optimal worst-case performance.

The detail of the presentation was

high, in order to demonstrate the

practical decisions involved in

designing such data structures. We

now review some of the main

conclusions from the material

presented

5

evaluation of

main Memory

joins

algorithms for

joins with set

comparison

join predicates

For the first time, this paper

investigates join algorithms for

join predicates based on set

comparisons. More specifically,

this paper treats subset predicates.

It has been shown that remarkably

more efficient algorithms exist

than a naive nested-loop join. Even

the signature nested-loop join

results in an order of magnitude

improvement over the naive

nested-loop join.

The hash join surpasses the

signature nested-loop join only by

a factor of 5-10 depending on

various parameters. Although this

is a result’ that is not to be

neglected, the question arises

whether even better alternatives

exist. This is one issue for future

research. Other problems need to

be solved as well. First, join

algorithms whose join predicate is

based on non-empty intersection

have to be developed Second, all

the algorithms presented are main

memory algorithms. Hence,

variants for secondary storage have

to be developed. Also the different

tuning parameters will have to be

adjusted for 393 secondary storage

variants.

6
A repository of

web pages

Our work raises a number of areas

for further work:

(i) How can we annotate and

organize the communities

discovered by the trawling process

of Section 2.2?

(ii) Bipartite cores are not

necessarily the only sub graph

enumeration problems that are

interesting in the setting of the

Web graph. The sub graphs

corresponding to Web rings (which

look like bidirectional stars, in

which there is a central page with

links to and from a number of

\spoke" pages), cliques, and

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 553

directed trees are other interesting

structures for enumeration. How

does one devise general paradigms

for such enumeration problems?

(iii) What are the properties and

evolution of random graphs

generated by specific versions of

our models in Section 4? This

would be the analog of the study of

traditional random graph models

such as Gn;p .

(iv) How do we devise and

analyze algorithms that are e -

client on such graphs? Again, this

study has an analog with

traditional random graph models.

(v) What can we infer about the

distributed sociological process of

creating content on the Web?

(vi) What are structure can we

determine for the map of the Web

graph (Figure 4) in terms of

domain distributions, pages that

tend to be indexed in search

engines, and so on?

7

Evaluation of

signature files

as set access

facilities in

oodbs

We have in this report described

how signatures can be stored in the

the OIDX. As the OD is accessed

on every object access in any case,

there is no extra signature retrieval

cost. In non-versioned OODBs,

maintaining signatures means that

the OIDX needs to be updated

every time an object is updated,

but as the analysis shows, it will in

most cases pay back, as less

objects need to be retrieved.

Storing signatures in the OIDX is

even more attractive in TOODBs.

In TOODBs, the OIDX will have

to be updated on every object

update anyway, so that in this case,

the extra cost associated with

signature maintenance is very low.

As showed in the analysis,

substantial gain can be achieved by

storing the signature in the OIDX.

We have done the analysis with

different system parameters, access

patterns, and query patterns, and in

most cases, storing the object

signatures in the OIDX is

beneficial. The typical gain is from

20 to 40%. Interesting to note is

that the optimal signature size can

be quite small. In this paper we

suggested a novel algorithm called

the Divide-and-Conquer Set Join

for computing the set containment

joins. We compared the

performance of DCJ with that of

PSJ and LSJ. We developed a

detailed analytical model that

allowed us to study the join

algorithms qualitatively, and to

tune them for different input

relations. Furthermore, we

explored the behaviour of the

algorithms experimentally using an

implemented. We found that DCJ

always outperforms LSJ in terms

of the replication factor. In

contrast, PSJ and DCJ provide

complementary approaches for

computing set containment joins.

Specifically, when the set

cardinalities are large, DCJ

introduces a significant

performance improvement as

compared to PSJ. On the other

hand, PSJ wins over DCJ when

small sets are used.

9

Partition based

spatial-merge

join

 In web-based environments,

access to remote servers is

restricted, progressive or

inaccurate results can be tolerated,

and existence of full spatial

capabilities (e.g., spatial index

structures and operations) cannot

be assumed. Therefore, support for

spatial joins in these environments

becomes challenging. We proposed

a three step simulation of spatial

join on web-based environments.

We put together an experimental

setup with real database servers to

evaluate our different plans. We

demonstrated that Dynamic-MBR,

which dynamically a proxy mates

and merges polygons at the local

site is the superior approach for the

first step. We also proposed two

alternative heuristics for Dynamic-

MBR and we showed that the

Minimum-Centroid Distance

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 554

heuristic results in more merges

while the Minimum-Wasted Area

heuristic results in less number of

false hits. Hence, in an

environment with fast network and

powerful local server that can deal

efficiently with false hits,

Minimum-Centroid Distance is the

superior heuristic since it

minimizes the remote query

processing time

10

Set

containment

joins: The

good, the bad

and the ugly

This paper investigates algorithms

for computing a set containment

join. These algorithms cover two

possible attributes: the un nested

external representation and the

nested internal representation. The

un nested external representation is

used by commercial O/R DBMSs

for implementing set-valued

attributes. In this case, set

containment join is implemented

using a standard SQL2 query. For

the nested internal representation,

this paper considers two

algorithms. The rst is a variation of

nested loops (Sig-NL) that uses

signatures to speed up the

evaluation of the join predicate.

The second algorithm is PSJ, a

new partition based algorithm that

is proposed in this paper. This

algorithm is based on a two level

partitioning scheme by using set

elements to partition relation R and

replicate relation S. Within each

partition, it uses an in-memory

algorithm based on partitioning of

signatures.

REFERENCES

[1] HELMER, S. AND MOERKOTTE, G. 1997. Evaluation of main

memory joins algorithms for joins with set comparison join

predicates. In VLDB’97, Proceedings of 23rd International

Conference on Very Large Data Bases, August 25-29, 1997,

Athens, Greece, M. Jarke, M. J. Carey, K. R. Dittrich, F. H.

Lochovsky, P. Loucopoulos, and M. A. Jeusfeld, Eds. Morgan

Kaufmann, 386–395.

[2] Ramasamy, K., Patel, J. M., Naughton, J. F., and Kaushik, R.

2000. Set containment joins: The good, the bad and the ugly. In

VLDB 2000, Proceedings of 26th International Conference on

Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, A.

E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G.

Schlageter, and K.-Y. Whang, Eds. Morgan Kaufmann, 351–362.

[3] C. Faloutsos and S. Christodoulakis. Signature _les: An access

method for documents and its analytical performance evaluation.

ACM Trans. On office Information Systems (TOIS), 2(4):267-288,

1984.

[4] ISHIKAWA, Y., KITAGAWA, H., AND OHBO, N. 1993.

Evaluation of signature files as set access facilities in oodbs. In

Proceedings of the 1993 ACM SIGMOD International Conference

on Management of Data, Washington, D.C., May 26-28, 1993, P.

Buneman and S. Jajodia, Eds. ACM Press, 247–256.

[5] MELNIK, S. AND GARCIA-MOLINA, H. 2002. Divide-and-

conquer algorithm for computing set containment joins. In

Proceedings of Advances in Database Technology - EDBT 2002,

8
th
 International Conference on Extending Database Technology,

Prague, Czech Republic, March 25-27, C. S. Jensen, K. G. Jeffery,

J. Pokorn´y, S. Saltenis, E. Bertino, K. Bohm, and M. Jarke,Eds.

Lecture Notes in Computer Science, vol. 2287. Springer.

[6] GRAY, J., SUNDARESAN, P., ENGLERT, S., BACLAWSKI,

K., AND WEINBERGER, P. J. 1994. Quickly generating billion-

record synthetic databases. In Proceedings of the 1994 ACM

SIGMOD International Conference on Management of Data,

Minneapolis, Minnesota, May 24-27, 1994,R. T. Snodgrass and M.

Winslett, Eds. ACM Press, 243–252.

[7] CAI, J.-Y., CHAKARAVARTHY, V. T., KAUSHIK, R., AND

NAUGHTON, J. 2001. On the complexity of join predicates. In

PODS’01, Proceedings of the 20th ACM SIGACT-SIGMOD-

SIGARTSymposium on Principles of Database Systems, May 21-

23, 2001, Santa Barbara, California. ACM Press.Faloutsos, C. and

Christodoulakis, S. 1984. Signature files: An access method for

documents and its analytical performance evaluation.

[8] HELLERSTEIN, J. M., KOUTSOUPIAS, E., AND

PAPADIMITRIOU, C. H. 1997. On the analysis of indexing

schemes. In PODS’97, Proceedings of the 16th ACM SIGACT-

SIGMOD-SIGARTSymposium on Principles of Database

Systems, May 12-14, 1997, Tucson, Arizona. ACMPress, 249–

256.

[9] Patel, J. M. and DeWitt, D. J. 1996. Partition based spatial-merge

join. In Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec,Canada,

June 4-6, 1996, H. V. Jagadish and I. S. Mumick, Eds. ACM

Press, 259–270.

[10] BOHM, C. AND KRIEGEL, H.-P. 2000. Dynamically optimizing

high-dimensional index structures. In Proceedings of Advances in

Database Technology - EDBT 2000, 7th International

Conferenceon Extending Database Technology, Konstanz,

Germany, March 27-31, 2000, C. Zaniolo, P. C.Lockemann, M. H.

Scholl, and T. Grust, Eds. Lecture Notes in Computer Science, vol.

1777.Springer

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 555

Authors Profile
Dr. P. Madhubala pursued Ph.D. in Computer

Science from Mother Teresa Women’s

University, kodaikanal in the year 2017. She is

currently working as Head & Assistant

Professor in PG & Research Department of

Computer Science, Don Bosco College,
Periyar University, Salem since 2007. She has published

more than 13 research papers in reputed international

journals and participated in conferences including IEEE and

it’s also available online. Her main research work focuses on

Cloud Security and Privacy, Cryptography Algorithms,

Network Security, and Big Data Analytics. She has 17 years

of teaching experience and 5 years of Research Experience.

G.Sakthivel pursued Bachelor of Science

from Sacred Heart College, Madras

University, Master of Computer Science

from Thiruvalluvar University and M.phil of

computer science in the year 2009. He is

currently pursuing Ph.D. and working as

Assistant Professor in PG Department of

Computer Science, Arignar Anna College (Arts & Science)

since 2010. He has published more than 3 research papers in

reputed international journals and presented papers in

National and International conferences. His main research

work focuses on Set containment Joins, Cryptography

Algorithms, Big Data Analytics and Data Mining. He has 10

years of teaching experience & 2 years of Research

Experience.

