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Abstract—A set containment join is a join between set-valued attributes of two relations, whose join condition is specified 

using the subset (⊆) operator. Set containment joins are deployed in many database applications, even those that do not support 

set-valued attributes. In this paper, we study the problem of set containment join. Given two collections R and S of records, the 

set containment join R ⊆S retrieves all record pairs {(r,s)} ∈ R × S such that r ⊆ s . This problem has been extensively studied 

in the literature and has many important applications in commercial and scientific fields. Recent research focuses on the in set 

containment join algorithms,  In this paper, we propose three novel partitioning algorithms, called the Adaptive Pick-and-

Sweep Join (APSJ), the Adaptive Divide-and-Conquer Join (ADCJ), and Divide-and-Conquer Join (DCJ) which allow 

computing set containment joins efficiently. We present a detailed analysis of the algorithms and study their performance on 

real and synthetic data using an implemented of this algorithm. 

 

Keywords -Algorithms, Experimentation, Performance and Implementations  

 

I. INTRODUCTION 

Set containment queries are utilized in many database 

applications, especially when the underlying database 

systems support set-valued attributes. Set containment joins 

are used in a variety of other scenarios. If, for instance, our 

first relation contained sets of parts used in construction 

projects, and the second one contained sets of parts offered 

by each equipment vendor, we could determine which 

construction projects can be supplied by a single vendor 

using a set containment join. Or, consider a database 

application that recommends to students a list of courses that 

they are eligible to take. The two best known algorithms for 

computing set containment joins efficiently are the 

Partitioning Set Join (PSJ) proposed in Ramasamy et al. 

2000 [2] and the Divide and- Conquer Join (DCJ) that we 

suggested in Melnik and Garcia-Molina 2002 [5]. PSJ and 

DCJ introduce crucial performance gains compared with 

straightforward approaches. A major limitation of PSJ is that 

it quickly becomes ineffective as set cardinalities grow. In 

contrast, DCJ depends only on the ratio of set cardinalities in 

both relations, and, therefore, wins over PSJ when the sets 

are large. Often, the sets involved in the join computation are 

indeed quite large. For instance, Biochemical databases 

contain sets with many thousands elements each. In fact, the 

fruit fly (drosophila) has around 14000 genes, 70-80% of 

which are active at any time. A snapshot of active genes can 

thus be represented as a set of around 10000 elements. PSJ is 

ineffective for such data sets. The contribution of this paper 

are two novel algorithms called the Adaptive Pick and-

Sweep Join (APSJ) and the Adaptive Divide-and-Conquer 

Join (ADCJ), which extend and improve on the best known 

algorithms PSJ and DCJ. We show that ADCJ always 

outperforms DCJ, especially when the relations to be joined 

have different sizes. APSJ overcomes the main limitation of 

PSJ, namely, it’s in ability to deal with large sets effectively. 

The set containment join is the component of a database 

management system to optimize the joins. It is used to select 

an efficient execution strategy for processing a joins. Set 

containment joins is a function of many relational database 

management systems in which multiple joins plans for 

satisfying the joins are examined and a good join plan is 

identified to minimize the use of certain resources like I/O by 

selecting the best join access plan. In present scenario data 

warehouses & mining turned out to be the common basis for 

the integration and analysis of data in modern enterprises. 

The goal of a data warehouse is to provide analysts and 

managers with strategic information about the key figures of 

the underlying business. Since micro data are of no interest at 

this level, almost all joins on data warehouses involve 

aggregates. In large data warehouse systems, it is critical to 

set containment join workloads to maximize system 

utilization and minimize processing times. The database 

administrator and the Data Base Management System joins 

became free to choose among many different storage formats 

and execution plans to answer a declarative joins. The 
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challenge, since then, has been how to deliver on these 

promises regardless of where or how the data is laid out, how 

complex the join is, and how unpredictable the operating 

environment is. This survey is organized as follows, Section 

I contains the introduction of set containment join and its 

importance, Section II Set Containment Related works 

Section III Various Approaches and Section IV concludes the 

paper with future directions. 

II. Set Containment Related works 

The set containment join and other join operators for sets 

enjoyed significant attention in the area of data modelling. 

However, relatively little work deals with efficient 

implementations of these operators. Helmer and Moerkotte 

1997 [1] were the first to directly address the implementation 

of set containment joins. They investigated several main 

memory algorithms including different flavours of nested-

loop joins, and suggested the Signature-Hash Join (SHJ) as a 

best alternative. Later, 

Ramasamy et al. 2000 [2] developed the Partitioning Set Join 

(PSJ), which does not require all data to fit into main 

memory. They showed that PSJ performs significantly better 

than the SQL-based approaches for computing the 

containment joins using unnested representation. Prior to 

Helmer and Moerkotte 1997 [1] and Ramasamy et al. 2000 

[2], the related work focused on signature files, which had 

been suggested for efficient text retrieval two decades ago. A 

detailed study of signature files is provided by Faloutsos and 

Christodoulakis 1984 [3]. Ishikawa et al. 1993 [4] applied the 

signature file technique for finding subsets or supersets that 

match a fixed given query set in object-oriented databases.  

In Melnik and Garcia-Molina 2002 [5], we presented the 

Divide-and-Conquer Set Join (DCJ) and the Lattice Set Join 

(LSJ) algorithms. LSJ is a partitioning algorithm which 

extends the main-memory algorithm SHJ Helmer and 

Moerkotte 1997 [1]. We demonstrated that DCJ always 

outperforms LSJ in terms of the replication factor. In Melnik 

and Garcia-Molina 2002 [5] we developed a comprehensive 

model for analyzing different partitioning algorithms that 

takes into account different set cardinalities and relation 

sizes, and measures the efficiency of the algorithms using the 

comparison and replication factors. In this paper, we used 

this analytical model for studying our novel algorithms APSJ 

and ADCJ. The adaptive algorithms presented in this paper 

introduce significant improvement over PSJ and DCJ. In 

particular, ADCJ always outperforms DCJ due to smaller 

replication factor, just like DCJ outperforms LSJ. In Melnik 

and Garcia- Molina 2002 [5] we suggested for DCJ a fixed 

pattern for applying operators α and β, which works 

reasonably well when the input relations R and S have 

approximately equal sizes and the set cardinalities are 

approximately the same (i.e.,  ρ ≈ 1, λ ≈ 1). In this paper, we 

compute the α, β-pattern adaptively based on the 

characteristics of the input relations to minimize replication. 

For brevity we do not discuss several aspects relevant for 

computing set containment joins. Examples are trading CPU 

time for I/O time by selecting the algorithm and partition 

number appropriately, choosing the signature size optimally, 

or using multi-stage partitioning (some of these aspects are 

examined in Ramasamy et al.2000 [1]. For generating 

synthetic databases used in our experiments, we deployed the 

methods described in Gray et al. 1994 [6]. The inherent 

theoretical complexity of computing set containment joins 

was addressed in Cai et al. 2001 [7] and Heller stein et al. 

1997 [8]. Partitioning has been utilized for computing joins 

over other types of non-atomic data, e.g., for spatial joins 

Patel and DeWitt 1996 [9]. A possible alternative to 

partitioning joins are index joins. Index-based approaches for 

accessing multi-dimensional data were studied e.g. in B¨ohm 

and Krieger 2000 [10]. 

III. Various Approaches  

A. Partitioning Set Join (PSJ) 

Partitioning has been suggested to further improve 

performance by decomposing the join task R   S into k 

smaller subtasks R1   S1, . . .,Rk    Sk such that R   S =  

 k
 i=1 Ri   Sj. The so called partitioning function   

assigns each tuple of R to one r multiple partitions R1, . . . , 

Rk, and each tuple of S to one or multiple partitions S1,  . . . , 

Sk. Consider our sample relations R and S from Two 

Relation with Set – Valued attributes. Let  (a) = (b) = 

 (A) =   (B) = {1},   (c) = (C) = {2}, and   (D) = 

{1, 2}. That is, R is partitioned into R1 = {a, b}, R2 = {c}, 

and S is partitioned into S1 = {A, B, D}, S2 =  {C,D}. Note 

that we have constructed π so that tuples in R1 can only join 

S1 tuples, and R2-tuples can only join S2-tuples. Thus, 

finding R   S amounts to computing (R1   S1)   (R2 

   S2). Notice that computing R1    S1 = {a, b}   

{A,B,D} and R2 R1   S2 = {c} R1    {C,D} requires 

only 2 · 3 + 1 · 2 = 8 signature comparisons. Hence, by using 

partitioning we reduced the total number of signature 

comparisons from 12 to 8. We refer to the fraction 8 12 as a 

comparison factor. The comparison factor ranges between 0 

and 1. Besides reducing the number of required signature 

comparisons, partitioning helps to deal with large relations R 

and S that do not fit into main memory by storing the 

partitions R1, . . . , Rk and S1, . . . , Sk on disk. To minimize 

the I/O costs of writing out the partitions to disk and reading 

them back into memory, the partitions typically contain only 

the set signatures and the corresponding tuple identifiers. In 

our  example, |{a, b}|+|{c}| = 3 signatures from R1,2 and 

|{A,B,D}|+|{C,D}| = 5 signatures from S1,2 are stored on disk 

temporarily. We refer to the ratio between the total number 

of signatures that are written out to disk and the total number 

of tuples in R and S as the replication factor. In our example, 
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the replication factor is 3+5/3+4 = 8/7. Assuming that no 

partition is permanently kept in main memory, he optimal 

replication factor that can be achieved in a partition-based 

join is 1. A major challenge of effective partitioning is to 

construct a partitioning function that minimizes the 

comparison and replication factors. Obviously,   needs to 

be correct, i.e., it has to ensure that all joining tuples are 

found. 

Partitioning Set Join is algorithm reduce join execution time 

by partitioning the problem into smaller sub problems. A 

partitioning function is used to partition the problem. An 

ideal partitioning function requires Tuple r of R falls in one 

of the  partitions Ri Tuple S of S falls in one of Si Join is 

accomplished by joining only Ri with Si  Imagine that we 

want to partition R and S from Two Relation with Set – 

Valued attributes into k = 8 partitions. The partition number 

of each set of R is determined using a single, randomly 

selected element of the set. Consider the set a = {2, 9}    R. 

Let 9 be a randomly chosen element of a. We assign a to one 

of the partitions 0, 1, . . . , 7 by taking the element value 

modulo k = 8. Thus, a is assigned to partition with index (9 

mod 8) = 1, i.e., to partition R1. Element 18 chosen from b = 

{8, 18} yields partition number 2 = (18 mod 8). Finally, set c 

falls into partition R3 based on randomly chosen element 3 

  c. Now we repeat the same procedure for S, but consider 

all elements of each set for determining the partition 

numbers. Taking all elements into account ensures that all 

joining tuples will be found. Thus, A = {2, 4, 9} is assigned 

to partitions S2, S4, and S1, B = {3, 8, 18} goes into partitions 

S3, S0, and S2, etc. The partition number of each set of R is 

determined using a single, randomly selected element of the 

set. We assign a to one of the partitions 0, 1, . . . , 7 by taking 

the element value modulo k = 8. 

R1 = a{2, 9}    9 mod 8 = 1 

  

R2 = b{8, 18}    18 mod 8 = 2 

R2 = b{1, 3}    3 mod 8 = 3 

The same procedure for R, But all elements into account 

ensures that all elements into account ensures that all joining 

tuples will be found. 

 A {2, 4, 9}      2 mod 8 = 2   4 mod 8 = 4   9 mod 8 = 1

  

 

 

 

   B {3, 8, 18}  3 mod 8 = 3  8 mod 8 = 0   8 mod 8 = 2 

  

  

 

   C {1, 3, 4} 1 mod 8 = 13 mod 8 = 3  4 mod 8 = 4 

 

  

  

   D {3, 4, 7}  3 mod 8 = 3   4 mod 8 = 4  7 mod 8 = 7

    

 

 

The complete partition assignment for R and S. PSJ requires 

that no R set be empty (a set with no elements cannot be 

assigned to any of the partitions without losing joining 

tuples). Once both relations are partitioned, i.e., the set 

signatures and tuple identifiers have been written out to  

 

Figure 1. Partitioning with PSJ: 7 Comparison, 15 

Replicated 

disk, each pair of partitions is read from disk and joined 

independently. For example, when R3 and S3 are joined, the 

signature of set c is read from R3, and is compared with the 

signatures of sets B, C, and D stored in S3. Hence, computing 

R3   S3 results in 1 · 3 = 3 signature comparisons. The 

total number of signature comparisons required in our 

example amounts to 0+2+2+3+0+0+0+0 = 7, whereas a total 

of 15 signatures need to be written out to disk. Thus, in this 

R1 = 2 

R1 = a 

R1 = 2 

S2 = A 

S2 = A 

S2 = A 

S2 = B 

S2 = B 

S2 = B 

S2 = C 

S2 = C 

S2 = C 

S2 = D 

S2 = D 

S2 = D 
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example, we obtain the comparison factor 7/12 ≈ 0.58, and 

Replication factor 15/3+4 ≈ 2.14 

B. Adaptive Pick and Sweep Join (APSJ) 

The Adaptive Pick-and-Sweep Join (APSJ) generalizes and 

extends the PSJ algorithm. We illustrate APSJ using our 

running example of Two Relation with Set – Valued 

attributes of Table I and k = 8 partitions. Assume that there 

exist k − 1 = 7 Boolean hash functions h1, . . . , h7 that take a 

set of integers as input and return 0 or 1 as output. For 

example, consider the functions defined as 

hi  (x) = 1    e    x : (e mod 9) = i for i = 1, . . . , 7. 

R-Relation of (a) sets  

a{2, 9}    2 mod 9 = 2   9 mod 9 = 0 

 

 

 

R-Relation of (b) sets  

b{8, 18} 8 mod 9 = 8   9 mod 9 = 0 

 

 

 

R-Relation of (c) sets 

 c{1, 3}  1 mod 9 = 1    3 mod 9 = 3 

 

 

 

S-Relation of (A) sets 

    A {2, 4, 9}    2 mod 9 = 2 4 mod 9 = 4 9 mod 9 = 9 

 

 

 

S-Relation of (B) sets 

 B{3, 8, 18}    3 mod 9 = 3     8 mod 9 = 8 18 mod 9 = 0 

 

 

 

S-Relation of (C) sets 

    C{1, 3, 4} 1 mod 9 = 1 3 mod 9 = 3 4 mod 9 = 4 

 

 

 

S-Relation of (D) sets 

    D{ 3, 4, 7} 3 mod 9 = 3 4 mod 9 = 4 7 mod 9 = 7 

 

 

 

Using these k − 1 = 7 functions, we partition our sample 

relations into k = 8 partitions as follows. For each set r   R, 

we consider the indexes of the hash functions that fired, i.e., 

{j | hj(r) = 1}. We randomly pick an index i from this set, and 

assign r to partition Ri. If the set is empty, we assign r to the 

‘default’ partition R0. For example, for set c we can choose 

between index 1 and 3, so say we select 1 and place c in R1. 

(The selected indexes are underlined in Table III.) Set b is 

placed in R0. Every set s   S is inserted into all partitions Sj 

with hj(s) = 1, i.e., we sweep the indexes of all firing 

functions. Additionally, each s is assigned to the ‘default’ 

partition S0. Thus, for example, set A is assigned to partitions 

S2, S4, and, additionally, to partition S0. 

Table 1. Boolean Hash Functions used in APSJ 

The complete partition assignment produced by APSJ for our 

sample relations IS depicted in figure 2. we use Notice that 

because we use the default partitions R0 and S0, k−1 hash 

functions produce k partitions. The default partitions allow us 

h1 h2 h3 h4 h5 h6 h7 

0 0 0 0 0 0 0 

h1 h2 h3 h4 h5 h6 h7 

1 0 1 0 0 0 0 

h1 h2 h3 h4 h5 h6 h7 

0 1 0 1 0 0 0 

h1 h2 h3 h4 h5 h6 h7 

0 1 0 0 0 0 0 

h1 h2 h3 h4 h5 h6 h7 

0 0 1 1 0 0 1 

h1 h2 h3 h4 h5 h6 h7 

0 1 0 1 0 0 0 

h1 h2 h3 h4 h5 h6 h7 

1 0 1 1 0 0 0 

x   

R 

h1 h2 h3  h4  h5  

h6  h7 

y   

R 

h1 h2 h3  h4  h5  

h6  h7 

a 0   1    0    0    0    0   

0 

A 0   1    0    1    0    0   

0 

b 0   0    0    0    0    0   

0 

B 0   0    1    0    0    0   

0 

c 1   0    1    0    0    0   

0 

C  1   0    1    1    0    0   

0 

D  0   0    1    1    0    0   

1 
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to partition the relations correctly even if R contains empty 

sets, or, in general, set for which none of hi fires (recall that 

PSJ cannot deal with empty sets). In our example, the joining 

tuples b and B are found when the partitions R0 and S0 are 

read from disk. Overall, 4+1+1+0+0+0+0+0 = 6 signature 

comparisons are needed, while the total of 16 signatures need 

to be stored on disk. Hence, we obtain the comparison factor 

6/12 = 0.5 and replication factor 16/3+4 ≈ 2.14. In our tiny 

running example, APSJ wins over PSJ since it is lucky: had c 

been randomly assigned to bucket 4, APSJ would use more 

signature comparisons than PSJ. However, in real data, when 

the set cardinalities are large, PSJ tends to assign n almost all 

sets of S to each of the Si partitions, yielding many signature 

comparisons 

  

Figure 2 Partitioning with APSJ: 6 comparison, 16 

Replicated 

and high replication. APSJ offers an extra ‘tuning knob’ that 

is not available in PSJ, namely the boolean hash functions. 

Because of this flexibility, APSJ can often be tuned to 

achieve better performance than PSJ. Notice that if all hash 

functions fire with very high probabilities, then each Si will 

include most of S, So joins will be expensive. In contrast, if 

the functions fire with very low probabilities, then R0 will 

contain most of R, and we will have to join R0   S0 = R   S. 

Clearly, to minimize the work, we need to select a firing 

probability somewhere in the middle. In Section 3.1 we show 

how to construct the APSJ hash functions adaptively 

depending on the characteristics of the input relations. Both 

algorithms PSJ and APSJ can be tuned by varying the 

number of partitions. The more partitions we use, the fewer 

comparisons are necessary. However, a larger number of 

partitions also causes more replication.  

Adaptive Divide-and-Conquer Set Join (ADCJ) 

The Adaptive Divide-and-Conquer Set Join (ADCJ) is based 

on the DCJ algorithm that we present in [Melnik and Garcia-

Molina 2002]. Again, we illustrate the ADCJ algorithm using 

our running example of Table I and k = 8 partitions. We 

explain the algorithm using a series of partitioning steps 

depicted in Figure 3. In every step, one monotone Boolean 

hash function is used to transform an existing partition 

assignment into a new assignment with twice as many 

partitions. This transformation, or repartitioning, is done by 

applying either operator α or operator β to each pair of 

partitions Ri    Si, as indicated by the labels ‘α’ and ‘β’ 

placed on the forks in Figure 3. Although we illustrate ADCJ 

conceptually as a branching tree, the final partition 

assignment is computed without using any intermediate 

partitions (see Appendix G). First, we explain the main idea 

of DCJ and then present the contribution of ADCJ, the 

adaptive design of the α, β-pattern. The monotone boolean 

hash functions that we use in Figure 3 are defined as  

hi (x) = 1    e    x : (e mod 4) = i for i = 1, 2, 3. 

R-Relation of (a) sets 

 a{2, 9} 2 mod 4 = 2  9 mod 4 = 1 

    h1      h2     h3             

 

 

R-Relation of (b) sets 

b{8, 18}  8 mod 4 = 0 18 mod 4 = 2 

 h1         h2         h3             

 

 

R-Relation of (c) sets 

c{1, 3} 1 mod 4 = 1 3 mod 4 = 3 

                h1       h2       h3               

 

 

S-Relation of (A) sets 

A {2, 4, 9} 2 mod 4 = 2  4 mod 4 = 4 9 mod 4 = 1 

 h1       h2         h3               

 

 

S-Relation of (B) sets 

 B{3, 8, 18}  mod 4 = 3 8 mod 4 = 0  18 mod 4 = 2 

 h1         h2        h3               

 

S-Relation of (C) sets 

 C{1, 3, 4} 1 mod 4 = 1 3 mod 4 = 3 4 mod 4 = 4 

      h1          h2            h3               

 

 

1

 

  

1 0 

0

 

  

1 0 

1 

 

1 0 1 

 

  

0 1 

1 

 

1 0 1 

 

  

1 0 

0 

 

1 0 1 

 

  

1 1 

1 

 

1 0 1 

 

  

0 1 
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S-Relation of (D) sets 

 D{ 3, 4, 7}  3 mod 4 = 3 4 mod 4 = 0 7 mod 4 = 3 

  h1         h2       h3               

 

 

 

Table 2. Boolean Hash Functions used in ADCJ 

x   R h1 h2  h3   y   R h1 h2 h3   

A 1    1    0   A 1   1    0     

B 0    1    0    B 0   1    1     

C 1    0    1    C 1   0    1     

D 0   0    1     

 

Relations R = {a, b, c} and S = {A, B, C, D} form the initial 

partition assignment        R   S = R0
 1 

  S0 
1
, where the 

superscript 0 indicates the step number. In Step 1, we derive 

a new partition assignment (R1
1
   S1

1
 )   (R1 

2
   S1 

2
) 

from R   S using operator β and hash function h1. Sets B 

and D with h1(B) = h1(D) = 0 are assigned to partition S1
1
 , 

while the remaining sets A and C with h1(A) = h1(C) = 1 are 

inserted into S2
1
 . We abbreviate this procedure concisely as 

S1
1
 := S/¬h1, S2 

1
 := S/h1. Since h1 is monotone, each subset x 

of B or D must satisfy h1(x) = 0. Therefore, partition S1
1
 = {B, 

D} needs to be joined only with those sets in R = {a, b, c} 

that satisfy h1(x) = 0, i.e. just with set b. In contrast, each set 

of R may possibly be a subset of A or C. Thus, we obtain R1
1
 

:= R/¬h1 and R1
2
 := R (the values 0 and ‘any’ taken by h1 are 

depicted above R1
1
 and R1

 2
). Notice that instead of 4·3 = 12 

signature comparisons required for R   S, only 1·2+3·2 = 8 

signature comparisons would be needed for joining the 

partitions of assignment 1. Given a pair of partitions Ri   Si, 

operator β splits partition Si and replicates partition Ri. In 

contrast, operator α splits Ri and replicates Si. Figure 3 shows 

how operator α is used to repartition R1
2
   S1

2
 = {a, b, c}   

{A,C}. First, R1
2
 is split into R2

3
 = R1

2
/h2 = {a, b} and R2

4
 = 

R1
2
/¬h

2
 = {c}. Since each superset x of a or b must satisfy 

h2(x) = 1, R2
3
 needs to be joined only with those sets of S1

2
 = 

{A,C} that satisfy h2(x) = 1, i.e., just with the set A. Hence, 

S2
3
 is obtained as S2

3
 = S1

2
/h2, whereas S2

4
 must contain all of 

S1
2
 = {A,C}. The definitions of operators α and β are 

presented in Table V. 

 

Table 3. Repartitioning of R   S using operators α and β, 

and a monotone Boolean hash function h 

operator Ideally, 

When 

Resulting assignment  

Α(R   S, h) |R| ≥ |S| (R/h   S/h)   (R/¬h  S) 

Β(R   S, h) |R| ≥ |S| (R/¬h   S/¬h)   (R   

S/h) 

 
 

Figure 3: Partitioning with ADCJ: 4 comparisons, 11 

replicated 

Adaptive design of α, β-pattern. The operators α and β both 

perform correct repartitioning and thus can be applied 

interchangeably at each fork in the branching tree of Figure 

3. Different patterns of applying α and β yield distinct 

partition sizes in the final assignment, so we can improve 

performance by selecting the operators judiciously. Optimal 

performance is achieved when the comparison and 

replication factors are minimal. As shown in Appendix C, the 

comparison factor is determined entirely by the firing 

probabilities of the hash functions, and is independent of the 

α,β-labelling of the tree. However, the choice of α, β-pattern 

is crucial for minimizing replication. The smallest replication 

factor is obtained if at each fork we always split the larger 

partition and replicate the smaller one. Otherwise, if a 

suboptimal choice is made, the replication factor of the sub 

tree originating at that fork increases and makes the overall 

replication factor grow. Hence, if |Ri| ≥ |Si|, we should apply 

operator α, otherwise we should use β. For example, in Step 

1, we have |R| = 3 < 4 = |S|. Therefore, operator β is best.  

0 

 

 

1 0 1 

 

  

0 1 
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If we computed the intermediate partitions, we would know 

their sizes and could apply the above rule. However, we do 

not generate the intermediate partitions, since storing them 

temporarily on disk is prohibitively expensive. 

Suppose for now that we know the optimal α,β-pattern, i.e., 

the one that minimizes replication. Then, we can compute the 

partition assignment of each set of R or S by ‘tracing’ its way 

through the tree, with no need for intermediate, materialized 

partitions. In our example, set A belongs initially to S0
1
 = S. 

Given that the β is applied at the first fork, we compute h(A) 

to decide whether A is sent to S11 (‘up’) or S1
2
 (‘down’). 

Since h1(A) = 1, A is sent ‘down’. At the next fork we send A 

both ‘up’ (S2
2
 ) and ‘down’ (S2

4
 ), based on h2(A) = 1 and the 

use of operator α. Now the path of A splits, and we have to 

track both paths. After the final step, A is assigned to S3
6
 and 

S3
7
. In Appendix G we present a formal specification of the 

ADCJ algorithm that computes the partition assignment for 

each set based on the above technique. 
 

Thus, our final challenge is to determine a ‘good’ α,β-pattern 

for the partitioning  technique of the previous paragraph. We 

design the pattern adaptively based on the characteristics of 

the input relations. The key idea is to estimate the sizes of the 

intermediate partitions using the firing probabilities of the 

hash functions. Suppose that in our example we know that 

functions h1, h2, h3 fire with probability of 0.5 for sets in R, 

and with probability 0.6 for sets in S. Consider partitions R1
2
 

  S1
2
 obtained in Step 1 using function h1. The expected size 

of partition S1
2
 = S/h1 can be estimated as |S1

2
 | = 0.6 · |S| = 

0.6 · 4 = 2.4. Given that |R1
2
| = |R| = 3 > 2.4 = |S1

2
 |, we 

select operator α for repartitioning R1
2
    S1

2
 . Assuming 

that R1
2
   S1

2
 are repartitioned using α, we can estimate the 

sizes of partitions R2
3
 and S2

3
. Since R2

3
 = R1

2
/h2 = R/h2, we 

get |R2
3
| = 0.5·|R| = 0.5·3 =1.5, while the expected size of S2

3
 

is 0.6·|S1
2
| = 0.62 ·|S| = 1.44. Because |R2

3
| = 1.5 > 1.44 = 

|S1
2
|, we choose operator α again to repartition R3

3
   S2

3
 . Of 

course, the actual partition sizes may deviate from the 

expected values, so we can choose a suboptimal operator. 

For example, the estimated size of partition R2
1
 is |R2

1
| 

=|(R/¬h1)/¬h2| = (1−0.5)
2
 ·|R| = 0.75, whereas |S2

1
 | = (1 − 

0.6)
2
 · |S| = 0.64. Thus, we choose to apply operator α. 

However, as shown in Figure 3, in our example the actual 

sizes of R2
1
 and S2

1 
turn ut to be 0 and 1, i.e., β would have 

been a better choice. In fact, choosing β would require one 

less signature to be stored to disk. 

To summarize, our algorithm computes the partition 

assignment in three stages. 

(1). First, we construct the hash functions that minimize the 

comparison factor (just ike in DCJ). 

(2). Second, we determine the α,β-tree that reduces 

replication using the firing probabilities of the hash 

functions. 

(3). Finally, we compute the partition assignment by tracing 

each set of R and S through the α,β-tree. 

In the final assignment produced in our example 

(Assignment 3), the total of 0 + 0 + 0 + 1 + 0 + 2 + 0 + 1 = 4 

signature comparisons are required, whereas 11 signatures 

need to be written out to disk (one more than absolutely 

necessary if we had used β for R2
1
   S2

1
). Thus, we obtain 

comparison factor 4/12 ≈ 0.33 and  replication factor 11/3+4 

≈ 1.57, close to the best possible replication factor of 10/3+4 

≈ 1.42.  

 

IV. CONCLUSION AND FUTURE SCOPE 

 

We presented three novel partitioning algorithms, the 

Adaptive Pick-and-Sweep Join (APSJ), the Adaptive Divide-

and-Conquer Join (ADCJ), Divide-and-Conquer Set Join 

DCJ which allow computing many set containment joins 

several times more efficiently than the previously known 

approaches. We provided a detailed analysis of the 

algorithms and studied their performance using an 

implemented. We found that APSJ, ADCJ, DCJ and the 

existing algorithm PSJ need to be used complementary for 

maximal performance. PSJ is the algorithm of choice when 

the set cardinalities are very small, e.g., below ten elements. 

For larger cardinalities, APSJ tends to outperform all other 

algorithms. In some settings, especially in those where the 

superset relation is much larger than the subset relation, or 

the element domain is small, ADCJ wins over APSJ and PSJ. 

It would be interesting to see whether the hash functions used 

in APSJ and ADCJ can be constructed optimally for small or 

non-uniform domains, or whether the algorithms presented in 

this paper reduce the theoretical complexity of containment 

joins below O(|R|・|S|). In this paper we suggested a novel 

algorithm called all three Set Join for computing, another 

challenging and mostly unexplored research direction. 

Table 4. Summary of strong points of proposed 

techniques 

No. 
Techniques 

Proposed 

Strong Point 

1 

Dynamically 

optimizing 

high-

dimensional 

index 

structures. 

 We have proposed a dynamic 

optimization technique for 

multidimensional index structures. 

In contrast to conventional page-

size optimization where the 

administrator determines the 

optimal page-size parameter before 

installing the database, our index is 

automatically adapted according to 

the data distribution of the objects 

currently stored in the database 

2 

On the 

complexity of 

join predicates 

While the development of join 

algorithms is perhaps one of the 

best studied problems in database 

systems research, to date there has 

been very little published about the 
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intrinsic difficulty of join 

problems. This may be because 

joins are too “easy.” Any join can 

be computed in polynomial time 

— just compute the cross product 

and iterate through the result 

applying the join predicate to each 

tuple in the cross product. While 

this is true, this coarse-grained 

analysis belies the experience of 

researchers who have tried to find 

truly “good” algorithms for these 

join problems. 

3 

Quickly-

generating 

billion-record 

synthetic 

databases 

Convert a simple sequential load 

into a parallel load –turning a two -

day task into a one-hour task. It 

then explored the ways to generate 

synthetic data. At first it focused 

on generating the primary keys of 

records and values uncorrelated to 

these keys: dense-unique-pseudo-

random sequences. Then, attention 

turned to building indices on these 

synthetic tables –either by sorting, 

or by using discrete logarithms. By 

careful selection of generators, the 

discrete log problem is tractable 

and indices can be quickly 

generated within the 1-hour limit 

we set for the billion-record load. 

The paper then looked at skewed 

distributions. It presented the 

standard ways to generate uniform, 

exponential, normal, and Poisson 

distributions. It went into more 

detail on the new topic of self -

similar and Zairian distributions. 

Using these techniques, one can 

generate billion-record databases 

in an hour, and a two terabyte 

databases per day 

4 

On the 

analysis of 

indexing 

schemes 

This chapter examined techniques 

for implementing index structures 

for two-dimensional range queries. 

The focus was on the EPS-tree, a 

new access method for three-sided 

queries, with asymptotically 

optimal worst-case performance. 

The detail of the presentation was 

high, in order to demonstrate the 

practical decisions involved in 

designing such data structures. We 

now review some of the main 

conclusions from the material 

presented 

5 

evaluation of 

main Memory 

joins 

algorithms for 

joins with set 

comparison 

join predicates 

For the first time, this paper 

investigates join algorithms for 

join predicates based on set 

comparisons. More specifically, 

this paper treats subset predicates. 

It has been shown that remarkably 

more efficient algorithms exist 

than a naive nested-loop join. Even 

the signature nested-loop join 

results in an order of magnitude 

improvement over the naive 

nested-loop join. 

The hash join surpasses the 

signature nested-loop join only by 

a factor of 5-10 depending on 

various parameters. Although this 

is a result’ that is not to be 

neglected, the question arises 

whether even better alternatives 

exist. This is one issue for future 

research. Other problems need to 

be solved as well. First, join 

algorithms whose join predicate is 

based on non-empty intersection 

have to be developed Second, all 

the algorithms presented are main 

memory algorithms. Hence, 

variants for secondary storage have 

to be developed. Also the different 

tuning parameters will have to be 

adjusted for 393 secondary storage 

variants. 

6 
A repository of  

web pages 

Our work raises a number of areas 

for further work: 

(i) How can we annotate and 

organize the communities 

discovered by the trawling process 

of Section 2.2? 

(ii) Bipartite cores are not 

necessarily the only sub graph 

enumeration problems that are 

interesting in the setting of the 

Web graph. The sub graphs 

corresponding to Web rings (which 

look like bidirectional stars, in 

which there is a central page with 

links to and from a number of 

\spoke" pages), cliques, and 
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directed trees are other interesting 

structures for enumeration. How 

does one devise general paradigms 

for such enumeration problems? 

(iii)   What are the properties and 

evolution of random graphs 

generated by specific versions of 

our models in Section 4? This 

would be the analog of the study of 

traditional random graph models 

such as Gn;p .  

(iv)   How do we devise and 

analyze algorithms that are e - 

client on such graphs? Again, this 

study has an analog with 

traditional random graph models. 

(v)    What can we infer about the 

distributed sociological process of 

creating content on the Web? 

(vi)   What are structure can we 

determine for the map of the Web 

graph (Figure 4) in terms of 

domain distributions, pages that 

tend to be indexed in search 

engines, and so on? 

7 

Evaluation of 

signature files 

as set access 

facilities in 

oodbs 

We have in this report described 

how signatures can be stored in the 

the OIDX. As the OD is accessed 

on every object access in any case, 

there is no extra signature retrieval 

cost. In non-versioned OODBs, 

maintaining signatures means that 

the OIDX needs to be updated 

every time an object is updated, 

but as the analysis shows, it will in 

most cases pay back, as less 

objects need to be retrieved. 

Storing signatures in the OIDX is 

even more attractive in TOODBs. 

In TOODBs, the OIDX will have 

to be updated on every object 

update anyway, so that in this case, 

the extra cost associated with 

signature maintenance is very low. 

As showed in the analysis, 

substantial gain can be achieved by 

storing the signature in the OIDX. 

We have done the analysis with 

different system parameters, access 

patterns, and query patterns, and in 

most cases, storing the object 

signatures in the OIDX is 

beneficial. The typical gain is from 

20 to 40%. Interesting to note is 

that the optimal signature size can 

be quite small. In this paper we 

suggested a novel algorithm called 

the Divide-and-Conquer Set Join 

for computing the set containment 

joins. We compared the 

performance of DCJ with that of 

PSJ and LSJ. We developed a 

detailed analytical model that 

allowed us to study the join 

algorithms qualitatively, and to 

tune them for different input 

relations. Furthermore, we 

explored the behaviour of the 

algorithms experimentally using an 

implemented. We found that DCJ 

always outperforms LSJ in terms 

of the replication factor. In 

contrast, PSJ and DCJ provide 

complementary approaches for 

computing set containment joins. 

Specifically, when the set 

cardinalities are large, DCJ 

introduces a significant 

performance improvement as 

compared to PSJ. On the other 

hand, PSJ wins over DCJ when 

small sets are used. 

9 

Partition based 

spatial-merge 

join 

 In web-based environments, 

access to remote servers is 

restricted, progressive or 

inaccurate results can be tolerated, 

and existence of full spatial 

capabilities (e.g., spatial index 

structures and operations) cannot 

be assumed. Therefore, support for 

spatial joins in these environments 

becomes challenging. We proposed 

a three step simulation of spatial 

join on web-based environments. 

We put together an experimental 

setup with real database servers to 

evaluate our different plans. We 

demonstrated that Dynamic-MBR, 

which dynamically a proxy mates 

and merges polygons at the local 

site is the superior approach for the 

first step. We also proposed two 

alternative heuristics for Dynamic-

MBR and we showed that the 

Minimum-Centroid Distance 
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heuristic results in more merges 

while the Minimum-Wasted Area 

heuristic results in less number of 

false hits. Hence, in an 

environment with fast network and 

powerful local server that can deal 

efficiently with false hits, 

Minimum-Centroid Distance is the 

superior heuristic since it 

minimizes the remote query 

processing time 

10 

Set 

containment 

joins: The 

good, the bad 

and the ugly 

This paper investigates algorithms 

for computing a set containment 

join. These algorithms cover two 

possible attributes: the un nested 

external representation and the 

nested internal representation. The 

un nested external representation is 

used by commercial O/R DBMSs 

for implementing set-valued 

attributes. In this case, set 

containment join is implemented 

using a standard SQL2 query. For 

the nested internal representation, 

this paper considers two 

algorithms. The rst is a variation of 

nested loops (Sig-NL) that uses 

signatures to speed up the 

evaluation of the join predicate. 

The second algorithm is PSJ, a 

new partition based algorithm that 

is proposed in this paper. This 

algorithm is based on a two level 

partitioning scheme by using set 

elements to partition relation R and 

replicate relation S. Within each 

partition, it uses an in-memory 

algorithm based on partitioning of 

signatures. 
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