
 © 2018, IJCSE All Rights Reserved 602

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-6, Issue-11, Nov 2018 E-ISSN: 2347-2693

ACO for Regression Testing By the Process Automated Slicing

Riza Dhiman*
1
, Vinay Chopra

2

1,2

DAV Institute of Engg and Technology, Jalandhar, Punjab, India

Available online at: www.ijcseonline.org

Accepted: 24/Nov/2018, Published: 30/Nov/2018

Abstract- The Regression testing is used to retest the component of a system that verifies that after modifications. The test case

prioritization is the technique of regression testing which prioritizes the test cases according to the changes which are done in

the developed project. This work is based on automated and manual test case prioritization To test the new version of software

test case prioritization is applied which prioritize the test cases according to changes and generate maximum number of faults.

In this work, technique is been proposed which will traverse the DFD of the project and calculate the function importance

which is calculated automated slicing. The functional importance values are given as input to hill climbing algorithm which

prioritizes the test cases in the ascending or descending order according to function importance. The algorithm is performed in

MATLAB and it is detect more faults in less time period.

Keywords: Regression Testing, Test Case Prioritization, m-ACO, Automated slicing, FTV(function traversal value).

I. INTRODUCTION

Software testing is a procedure of testing or comparing the

actual outcome with the expected outcome. Testing of the

software is being done in order to check the correct

functionality of the system or project. If the testing will not

be performed then system may lead to catastrophic or

improper results in the field. So it’s better to check or test

the system earlier, so that the excellent results can be

produced.

1.1. Regression Testing

It is a software testing that refers to section of the test cycle

in which programs are being tested to make sure that

changes do not affect features that are not believed to be

affected. The process of verifying the customized software

in the maintenance phase is commonly known as Regression

testing. Time and budget constraints are the major

disadvantage due to its complex process. Regression testing

is basically the re-execution of a number of subset of test

that has been previously conducted. In regression testing as

integration testing takings, number of regression tests

increases and it is not practical approach and ineffective to

re-execute every test for each program function if once

change occurs. It is quite an expensive testing process that is

being used to detect regression faults. Research has been

shown that at least 50% of the total software cost is

comprised of testing activities [1].

1.2. Techniques for Regression Testing

1.2.1. Retest All

It is one of the methods for regression testing in which all

the tests that are present in the existing test bucket or suite

has been re-executed. This is very expensive as it requires

huge time and resources.

1.2.2. Regression Test Selection (RTS)

Due to expensive nature of “retest all” technique, Regression

Test Selection is being performed. In this technique instead

of rerunning the whole test suite we must select a certain

part of test suite to rerun if the cost of selecting a certain part

of test suite is less than the cost of running the tests that RTS

allows us to omit [2].

1.2.2. Test Case Prioritization

A mechanism is needed for arranging a test case in an

appropriate order to increase their effectiveness in order to

meet some performance goal and rate of fault detection such

mechanism is commonly known as test case prioritization.

Test case prioritization is a method to prioritize and schedule

test cases in an appropriate order. Test cases that are having

higher priority must be run before than the lower priority test

case in order to minimize time, cost and effort during

software testing phase. Various performance goals such as

rate of fault detection which is a measure of how quickly the

fault is being detected so that during testing faster feedback

can provide about system under testing and allow the

software tester to correct the software at earlier phase as

possible [3].

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 603

1.3. Test Case Prioritization

The Regression testing is technique in which changes can be

tested using existing test cases. The test case prioritization is

the technique which will prioritize the test cases according to

their priority which depends upon changes made in the

project. The various techniques have been proposed in recent

times for test case prioritization and these techniques are

[4]:-

1.3.1. Customer-requirement based Technique

In this technique Customer requirement factors are taken

into account and provided some weights and based of these

values test case weight for requirement is evaluated. Test

cases with high weights value are executed first following

the ones with lower value. Customers requirement factors

are Customer assigned priority on requirement, Requirement

complexity and Requirement volatility [5].

1.3.2. Coverage-based Technique

It is based on code coverage analysis and the measurement

of code covered by a test case. Various coverage criterions

are considered and the amount of coverage is evaluated and

used to prioritize the test cases. Coverage-based technique is

a white-box testing technique i.e., a method that tests

internal structures of software [6].

1.3.3. Cost effective based Technique

This technique prioritizes the test cases which are based

upon costs factors like cost of operation of test cases, cost of

analysis, cost of prioritization, cost of execution, validating

test cases. Cost is of two types i.e., Direct cost include test

selection, test execution, result analysis and Indirect cost

include overhead cost and tool development cost.

1.3.4. Chronographic History-based Techniques

This technique prioritizes the test cases based on test case’s

earlier executions in order to enlarge or reduce the

probability that it will be considered into account in current

test execution [7].

II. LITERATURE SURVEY

Leung et al., [1989] identified that regression testing can be

grouped into progressive regression testing and corrective

regression testing depending on whether the specification is

changed or not. The test cases can be grouped into five

classes: reusable, retestable, obsolete, new-structural and

new-specification test cases [1].

 Khan et al. [2006] described a test case reduction technique

called Test filter that reduces the size of test suites by simply

eliminating unnecessary test cases and also decreases the test

case storage, management and execution cost. The results

show that our technique is quite beneficial in identifying

non-redundant test cases at a quite little cost. Ultimately it is

beneficial to optimize time & cost spent on testing and it is

also helpful during regression testing [2].

Zheng et al., [2007] identified most effective algorithm in

solving the test case prioritization problem for regression

testing and factors that could affect the efficiency of the

algorithm i.e., this paper addresses the problems of choice of

fitness metric, characterization of landscape modality and

determination of the most suitable search technique to apply

[3].

Rothermel et al., [2009] described multiple techniques for

prioritizing test cases and measure the effectiveness of these

techniques by using metrics for improving the rate of fault

detection and report the empirical results that measure the

effectiveness of these techniques for improving rate of fault

detection [4].

Daengdej et al., [2010] identified two efficient prioritization

methods aim to resolve the problem of many test cases

assigned the same weight values. The second method is

being developed to effectively prioritize multiple suites. As a

result of which this paper discussed an ability to reserve high

prioritize tests in multiple suites while minimizing a

prioritization time[5]

Chen et al., [2010] described dependence analysis based test

case prioritization technique. In this firstly they have analyze

the dependence relationship using control and data flow

information then construct a weighted graph and do impact

analysis to identify modification-affected elements. After

that, prioritize test cases according to covering more

modification-affected elements with the highest weight [6].

 Haidry et al., [2012] described the concept of functional

dependency that exists between test cases. In this paper two

techniques are used to find the dependency between the test

cases namely: open dependency and closed dependency and

the technique which is used to assign the priority to test case

based on dependency information of the test cases are

known as dependency structure prioritization [7].

 Jatain et al., [2013] illustrated various techniques of

regression testing and test case prioritization and also

describes various search algorithms used in the process of

test case prioritization. This paper also list various

challenges associated with the requirement based

prioritization and also proposes an approach to overcome

these challenges [8]. Muthusamy et al., [2014] identified that

Test Cases are prioritize on the basis of following factors

namely: Prioritization Weight Factor, Customer Allotted

Priority, Developer-observed Code Implementation

Complexity, Changes in Requirements, Fault Impact of

Requirement, Completeness, and Traceability [9].

Joshi et al., [2014] described a new prioritization technique

that prioritize test cases in a descending order for

Component Based Software Development (CBSD) by using

the concept of Prim’s algorithm. It makes use of CIG

(Component Interaction Graph) as input for medium/large

size CBSD (Component Based Software Development

Process) [10].

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 604

 Konsaard et al., [2015] described an algorithm that

prioritize the test cases based on total coverage which

includes five steps namely: graph generation, test case

generation, test suite generation, fitness calculation and

genetic algorithm. Its performance on the average

percentage of condition covered and execution time are

compared with other approach [11].

 Wang et al., [2015] illustrated that most of current

regression test case prioritization researches neglect to use

internal structure of software which is a significant factor

that influence the prioritization of test cases. In this paper

prioritization approach schedules test cases based on

dependence analysis of internal activity in service oriented

workflow application [12].

III. NEED OF REGRESSION TESTING

• Change in requirements and code is modified according

to the requirement.

• New feature is added to the software.

• Defect fixing.

• Performance issues fix.

3.1 Algorithms For Test Case Prioritization

Greedy Algorithm

 It is based upon the principle that the element with the

highest weight is taken into account first, followed by the

element with second-highest weight and this process

continues until a complete solution has been obtained. It is

quite a simple algorithm but in some situations where the

results are of high quality it is also prove to be attractive one

because it is quite inexpensive both in terms of

implementation and execution time.

Additional Greedy Algorithm

The Additional Greedy Algorithm is one of the type of

Greedy Algorithm, but it follows quite different process. It

combines feedback from previous selection and randomly

selects the maximum weighted element of the problem from

that part that is not being already consumed by the

previously selected elements.

Genetic Algorithm

The population is a set of random individuals. In which each

individual is represented by the sequence of genes

commonly known as the chromosome. In this selection

procedure depends upon the fitness value which decides that

which individuals are to be selected as the “parents” for

producing the next generation. Crossover is a genetic

operator which combines two individuals in order to produce

a new individual known as offspring. The mutation operator

will alter one or more gene values in the individual

depending on the probability of mutation.

IV. ANT COLONY OPTIMIZATION ALGORITHM

Ant colony Optimization algorithm is a mathematical

optimization Approach which belongs to the family of local

search. Therefore because of this reason it is also known as

local search approach. It is an iterative algorithm that starts

its search from an arbitrary solution of the problem and then

it will find a better solution by simply changing a single

element of the solution. If the alteration will produce a better

solution than a change is becomes a new solution, repeating

this process until no further improvements can be found.

 The procedure of ACO Meta-heuristic algorithm can be

defined as given steps.

 ACO ALGORITHM

While(Not termination)

Generate solutions()

daemon Actions

pheromone Update

 end while

The Ant colony Optimization algorithm for test case

prioritization is composed of the following steps:

1. Pick a random solution state and make this the current

(i.e.initial) state.

2. Evaluate all the neighbors of the current state.

3. Move to the state with the largest increase in fitness from

the current state. If no neighbor has a larger fitness than the

current state, then no move is made.

4. Repeat the previous two steps until there is no change in

the current state.

5. Return the current state as the solution state [3].

4.1 Applications of Ant colony Optimization Approach

• Ant colony Optimization can be applied to any

problem where the current state allows for an accurate

evaluation function. For example, the travelling salesman

problem, the eight-queens problem, circuit design and a

variety of other real-world problems.

• Ant colony Optimization has been used in inductive

learning models

• Ant colony Optimization has also been used in robotics

to manage multiple-robot teams which allows scalable

and efficient coordination in multi-robot systems.

• Ant colony Optimization allows robots to choose

whether to work alone or in team.[22]

V. RESEARCH METHODOLOGY

The regression testing is the type of testing which tests the

changes made in the project by prioritizing the test cases. To

prioritize the test cases, functional dependency is calculated

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 605

using automated slicing. The functional dependency is based

on number of functions associated and number of functions

affected when certain change is made in the function. To

calculate number of associated functions and number of

functions affected, automated slicing is applied using m-

ACO . The Hill climbing algorithm is the Greedy algorithm

which is based on the initial population, mutation value and

fitness functions. The function’s importance is given as

initial population on which mutation formula is applied and

mutation value of particular function is calculated until best

value is achieved which is known as fitness value. To

calculate functional importance equation number 1 is applied

Functional Importance= -(1)

Number of functions affected =

+ ----(2)

The output of equation 2 is the initial population which is

given as input to algorithm to achieved best value of

functional importance.[22].

Figure 1. Proposed Flowchart

5.1. Pseudo Code of Proposed Algorithm

Input : Test cases=P(i)

Number clicks on each function =F(i)

Output: prioritized testcases

I<-Consider value of F(i) for the each test case

Test case F(i) value <- i

while (fault value of each test case is calculated)

a=F(i)

calculate number of links L(i)=F(i)’/F(i)

if(L(i)>L(i+1)

b=L(i)

else

b=L(i)

end

Calculate fault value Fault (i+1)=fault(i)/L(i)

if Fault(i) > Fault(i+1)

best_so_far <-Fault(i)

i <- generate an individual randomly end

VI. EXPERIMENTAL RESULTS

To analyze performance of proposed and existing systems

dataset is considered which gave attributes defined in Table

1.

Table 1. Dataset Attributes

Number of projects 10

Number of changes 4

Function association Yes

Functional faults YES

The MATLAB is used to performance experimental results

of proposed and existing algorithm and performance is

measured in terms of fault detection rate.

Figure 2. Fault Detection Comparison

 International Journal of Computer Sciences and Engineering Vol.6(11), Nov 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 606

As shown in Figure 2, the fault detection of manual slicing

and automated slicing is compared and it is been analyzed

that with the use of automated slicing fault detection rate in

improved regression testing.

VII. CONCLUSION

In this work, it is been concluded that test case prioritization

is applied to prioritize the test cases when certain changes as

been done in the project. In this work, the test cases are

prioritized according to their functional importance which is

calculated using automated slicing. The simulation is

performed in MATLAB and it is been analyzed that

proposed technique performs batter in terms of fault

detection. In future, proposed algorithm can be compared

with some other algorithms of test case prioritization to

check reliability. The paper is formulated to solve the two

objective test case problems. The first objective is that to

cover maximum fault from list and the second is to take less

time to find fault for intention to minimize the effort and

cost.

REFERENCES

[1] H. Leung and L. White, “Insight into regression testing”, In

Proceeding 27
th
 IEEE International Conference Software

Engineering, vol. 20, (1989), pp. 60-69.

[2] S. Khan and A. Awais, “TestFilter: A Statement-Coverage based

test case reduction technique”, In Proceeding 12
th
 IEEE

International Conference Engineering, vol. 11, (2006), pp. 5-12.

[3] Z. Harman and R. Hierons, “Search algorithms for regression test

case prioritization”, In Proceedings 12
th
 IEEE International Journal

Software Engineering, vol. 33, (2007), pp. 225-237.

[4] S. Khan and A. Nadeem, “TestFilter: A Statement-Coverage Based

Test Case Reduction Technique”, IEEE Conference on multitopic,

(INMC’ 06), (2009), pp. 275-280.

[5] J. Daengdej, “Test case prioritization techniques”, Proceedings of

IEEE International Journal Software Engineering Knowledge

Engineering, vol. 22, (2010), pp. 161-183.

[6] S. Mirarab, “The effect of time constraint on test case

prioritization”, IEEE Transaction on Software Engineering, vol. 36,

no. 7, (2010), pp. 85-91.

[7] R. Malhotra, A. Kaur and Y. Singh, “A Regression Test Selection

and Prioritization Technique”, Journal of Information Processing

Systems, vol. 6, no.2, (2010), pp.167-171.

[8] E. Engstrom and P. Runeson, “A Qualitative Survey of Regression

Testing Practices”, Springer-Verlag Berlin heidelbreg, LNCS 6156,

(2010), pp. 3-16.

[9] D. Hyunsook and S. Mirarab, “The effect of time constraint on test

case prioritization”, IEEE Transaction on Software Engineering,

vol. 36, (2010), pp. 145-151.

[10] H. Srikanthi and J. Williams, “System test case prioritization of

new regression test case”, IEEE Transaction on Software

Engineering, vol. 36, no. 2, (2011), pp. 87-94.

[11] A. Kaur and S. Goyal, “A genetic algorithm for regression test

case prioritization using code coverage”, International journal on

computer science and engineering 3.5, (2011), pp. 1839-1847.

[12] S. Yoo and M. Harman, “Regression testing minimization,

selection and prioritization: a survey”, International journal on

computer science and engineering, (2012), pp. 67-120.

[13] J. Hwang, “Selection of regression system tests for security policy

evolution”, Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. ACM, (2012),

pp. 69-74.

[14] X. Zhang and G. Uma, “Factors Oriented Test Case Prioritization

Technique in Regression Testing using Genetic Algorithm”,

European Journal of Scientific Research, vol. 74, (2012), pp. 34-

37.

[15] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou and G. Rothermel,

“A Static Approach to Prioritizing Junit Test Cases”, IEEE

Transactions on Software Engineering, vol. 38, no. 6, (2012), pp.

1258-1275.

[16] S. Yoo and M. Harman, “Regression Testing Minimisation,

Selection and Prioritisation: A Survey”, Software Testing,

Verification and Reliability, vol. 22, no. 2, (2012), pp. 67-120.

[17] A. Jatain and G. Sharma, “A systematic review of techniques for

Test case prioritization”, International Journal of Computer

Applications, vol. 68, (2013), pp. 132-135.

[18] M. Athar and L. Ahmad, “Maximize the Code Coverage for Test

Suit by Genetic Algorithm”, International Journal of Computer

Science and Information Technologies, vol. 5, (2014), pp. 431-

435.

[19] P. Konsaard and L. Ramingwong, “Total Coverage Based

Regression Test Case Prioritization using Genetic Algorithm”,

Proceeding IEEE International Journal Software Engineering

Knowledge Engineering, vol. 24, no. 5, (2015), pp. 24-31.

[20] H. Wang, J. Xing and Q. Yang Q, “Modification Impact Analysis

based Test Case Prioritization for Regression Testing of Service-

Oriented Workflow Applications”, in Proceedings 39
th
 IEEE

International Journal Software Engineering Knowledge

Engineering, vol. 30, no. 8, (2015), pp. 67-72.

[21] Saloni Ghai and Sarabjit Kaur, “A Hill-Climbing Approach for

Test Case Prioritization” International Journal of Software

Engineering and Its Applications,Vol. 11, No. 3 (2017), pp. 13-20

[22] Riza Dhiman and Dr Vinay Chopra, “Modified ACO model for

Regression Testing Using Automated Slicing “Journal of

Emerging Technologies and Innovative Research,Vol. 5, Issue 6

(June 2018), pp. 180.

