

 © 2019, IJCSE All Rights Reserved 548

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

A Study and Analysis of Lock and STM Overheads

Ryan Saptarshi Ray

1*
, Parama Bhaumik

2
, Utpal Kumar Ray

3

1,2,3

Dept. of Information Technology, Jadavpur University, Kolkata, India

*Corresponding Author: ryan.ray@rediffmail.com, Tel.: 9831520613

DOI: https://doi.org/10.26438/ijcse/v7i5.548556 | Available online at: www.ijcseonline.org

Accepted: 18/May/2019, Published: 31/May/2019

Abstract— In this paper we make a comparative study of the overheads of locks and STM by taking different practical synchronization

problems as examples to understand why the performance of STM is worse than that of locks. Overhead is the combination of excess or

indirect computation time, memory, bandwidth, or other resources that are required to perform a specific task. While executing parallel

programs whenever any lock or STM function is called it takes some time and also occupies some space. The total time taken by all the lock

or STM calls of the program is the total lock or STM time overhead of that program. The total space occupied by all the lock or STM calls of

the program is the total lock or STM space overhead of that program. The flexible approach is an approach of programming with STM by

which STM has been made more user-friendly and by which execution time of STM has been reduced. We make a study of the overheads of

the flexible approach also. We found that the time and space overheads of STM are higher than that of locks. The time and space overheads

of the Flexible Approach were less than those of STM but higher than those of locks.

Keywords— Multiprocessing, Parallel Processing, Locks, Software Transactional Memory, Overheads

I. INTRODUCTION

Overhead is the combination of excess or indirect

computation time, memory, bandwidth, or other resources

that are required to perform a specific task [1].

Software Transactional Memory (STM) is a new approach

for solving synchronization problems in parallel programs

that does not suffer from the drawbacks of locks. However

performance of STM is either equal to or worse than that of

locks. In this paper we make a comparative study of the

overheads of locks and STM to understand why this happens.

While executing parallel programs whenever any lock or

STM function is called it takes some time and also occupies

some space. The total time taken by all the lock or STM calls

of the program is the total lock or STM time overhead of that

program. The total space occupied by all the lock or STM

calls of the program is the total lock or STM space overhead

of that program.

The flexible approach is an approach of programming with

STM by which STM has been made more user-friendly and

by which execution time of STM has been reduced. We

make a study of the overheads of the flexible approach also.

We found that the time and space overheads of STM are

higher than that of locks. The time and space overheads for

the Flexible Approach were less than those of STM but

higher than those of locks.

Section II discusses about different approaches which have

been proposed to improve the performance of STM. Section

III shows the time overhead for locks and STM for different

practical synchronization problems. Section IV shows the

space overhead for locks and STM for different practical

synchronization problems. Section V shows the time

overhead for the Flexible Approach for different practical

synchronization problems. Section VI shows the space

overhead for the Flexible Approach for different practical

synchronization problems. Section VII makes a comparison

of the overheads for locks, STM and the Flexible Approach.

Section VIII shows the specifications of the system in which

the programs were compiled and executed. Section IX

concludes the paper.

II. RELATED WORK

Different approaches have been proposed to improve the

performance of STM. These are discussed below.

In 2007 Yang Ni, Vijay Menon, Richard L. Hudson, Ali-

Reza Adl-Tabatabai, J. Eliot, B. Moss, Bratin Saha, Antony

L. Hosking, Tatiana Shpeisman published a paper entitled

“Open Nesting in Software Transactional Memory” [2]. This

paper described new language constructs to support open

nesting in Java and also discussed new abstract locking

mechanisms that a programmer could use to prevent logical

https://en.m.wikipedia.org/wiki/Task_(computing)
https://en.m.wikipedia.org/wiki/Task_(computing)

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 549

conflicts. In 2009 Zhengyu He and Bo Hong published a

paper entitled “Impact of Early Abort Mechanisms on Lock-

Based Software Transactional Memory” [3]. This paper

adopted Queuing theory to model the behaviors of

transactional execution. Also in 2009 Yossi Lev, Victor

Luchangco, Virendra J. Marathe, Mark Moir, Dan Nussbaum

and Marek Olszewski published a paper entitled “Anatomy

of a Scalable Software Transactional Memory” [4]. This

paper described novel techniques to eliminate bottlenecks

from existing STM mechanisms and presented SkySTM. In

2010 Justin E. Gottschlich, Manish Vachharajani, Jeremy G.

Siek published a paper entitled “An Efficient Software

Transactional Memory Using Commit-Time Invalidation”.

This paper presented an efficient implementation of

committime invalidation, a strategy where transactions

resolved their conflicts with in-flight (uncommitted)

transactions before they commited [5]. In 2011 Sandhya

S.Mannarswamy and Ramaswamy Govindarajan published a

paper entitled “Variable Granularity Access Tracking

Scheme for Improving the Performance of Software

Transactional Memory” [6]. In order to mitigate the

disadvantages associated with Uniform Granularity Access

Tracking (UGAT) scheme, this paper proposed a Variable

Granularity Access Tracking (VGAT) scheme.

In our work we have made a comparative study of the

overheads of locks, STM and the flexible approach. This is

because by reducing the overheads of STM its performance

can be improved.

III. TIME OVERHEAD FOR LOCKS AND STM

While executing parallel programs whenever any lock or

STM function is called it takes some time. Thus the sum of

the time taken by all the lock or STM calls of a program is

the total lock or STM time overhead of that program. Some

lock calls are:-

i) pthread_mutex_lock(&mutex1)- Any thread must

acquire the lock on the variable mutex1 to execute the

critical section following this function.

ii)pthread_mutex_unlock(&mutex1)- This function is

used for unlocking.

The execution time of both these functions is 2

microseconds.

Some STM Calls are:-

i)byte_under_stm=(unsigned char)LOAD(&global_min)-

It stores the value of global_min in byte_under_stm.

ii)STORE(&global_min, byte_under_stm)- It stores the

value of byte_under_stm in global_min.

The execution time of both these functions is 2

microseconds.

Start of transaction in case of STM takes 4 microseconds and

commit of transactions takes 2 microseconds.

The time overheads for lock and STM for some different

practical synchronization problems are shown now.

Finding minimum element in an array

In the program for finding minimum element in an array

using locks in each thread there is one set of

pthread_mutex_lock() and pthread_mutex_unlock() calls.

So for each thread the time overhead is 4 microseconds[7].

In the program for finding minimum element in an array

using STM for each thread there is one transaction and one

LOAD and STORE call. Thus for each thread the time

overhead is 10(4+2+2+2) microseconds.

The table below shows the time taken for finding minimum

element in an array in case of different numbers of threads

for both locks and STM.

Table.1 Time Overhead for finding minimum element in an array

No. of

Threads

Time

Overhead(microseconds)(Locks)

Time

Overhead(microseconds)(STM)

1 4 10

2 8 20

3 12 30

4 16 40

The graph below shows the comparison of time overheads

for locks and STM for finding minimum element in an array.

0

10

20

30

40

50

1 2 3 4

Ti
m

e
 O

ve
rh

e
ad

(m
ic

ro
se

co
n

d
s)

Number of Threads

Time Overhead vs No. of
Threads in finding out

minimum element in array

Locks

STM

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 550

Readers-Writers Problem

In the program for solving Readers-Writers Problem using

locks there are two sets of pthread_mutex_lock() and

pthread_mutex_unlock() calls for every Reader-Writer pair.

So for each Reader-Writer pair the time overhead is 8

microseconds [8].

In the program for solving Readers-Writers Problem using

STM for each Reader-Writer pair there are two transactions

and two LOAD and STORE calls. Thus for each Reader-

Writer pair the time overhead is 2x10(4+2+2+2)=20

microseconds.

The table below shows the time taken for solving Readers-

Writers Problem in case of different numbers of Reader-

Writer Pairs for both locks and STM.

Table.2 Time Overhead for Readers-Writers Problem

No. of

Reader-

Writer

Pairs

Time

Overhead(microseconds)(Locks)

Time

Overhead(microseconds)(STM)

1 8 20

2 16 40

3 24 60

4 32 80

The graph below shows the comparison of time overheads

for locks and STM in Readers-Writers Problem.

0

20

40

60

80

100

1 2 3 4

Ti
m

e
 O

ve
rh

e
ad

(m
ic

ro
se

co
n

d
s)

Number of Reader-Writer Pairs

Time Overhead vs No. of
Reader-Writer Pairs in

Readers-Writers Problem

Locks

STM

Dining Philosophers’ Problem

In the program for solving Dining Philosophers’ Problem

using locks there are two sets of pthread_mutex_lock() and

pthread_mutex_unlock() calls for every thread. So for each

thread the time overhead is 8 microseconds.

In the program for solving Dining Philosophers’ Problem

using STM for each thread there is one transaction, two

LOAD and two STORE calls. Thus for each thread the time

overhead is 4+2+4+4=14 microseconds [9].

The table below shows the time taken for solving Diming

Philosophers’ Problem in case of different numbers of

threads for both locks and STM.

Table.3 Time Overhead for Dining Philosophers’ Problem

No. of

Threads

Time

Overhead(microseconds)(Locks)

Time

Overhead(microseconds)(STM)

1 8 14

2 16 28

3 24 42

4 32 56

The graph below shows the comparison of time overheads

for locks and STM in Dining Philosophers’ Problem.

0

10

20

30

40

50

60

1 2 3 4

Ti
m

e
 O

ve
rh

e
ad

(m
ic

ro
se

co
n

d
s)

Number of Threads

Time Overhead vs No. of
Threads in Dining

Philosophers' Problem

Locks

STM

Cigarette Smokers’ Problem

In the program for solving Cigarette Smokers’ Problem using

locks there are four sets of pthread_mutex_lock() and

pthread_mutex_unlock() calls for every Agent-Smoker set.

So for each Agent-Smoker set the time overhead is 16

microseconds.

In the program for solving Cigarette Smokers’ Problem using

STM for each Agent-Smoker Set there are four transactions,

six LOAD and six STORE calls. Thus for each Agent-

Smoker Set the time overhead is 16+8+12+12=48

microseconds [10].

The table below shows the time taken for solving Cigarette-

Smokers’ Problem in case of different numbers of Agent-

Smoker sets for both locks and STM.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 551

Table.4 Time Overhead for Cigarette-Smokers’ Problem

No. of

Agent-

Smoker

Sets

Time

Overhead(microseconds)(Locks)

Time

Overhead(microseconds)(STM)

1 16 48

2 32 96

3 48 144

4 64 192

The graph below shows the comparison of time overheads

for locks and STM in Cigarette-Smokers’ Problem.

So from the above observations we can say that the time

overhead of STM in all the applications is higher than that of

locks.

In case of locks every critical section has to be enclosed

within one set of pthread_mutex_lock() and

pthread_mutex_unlock() calls irrespective of the number of

global variables being accessed in the critical section. In case

of STM each critical section has to be enclosed within a

transaction. Start and commit of transactions take time. Then

for each global variable being accessed within a transaction

there has to be one set of LOAD and STORE calls.

So even though the time overhead of individual lock and

STM function calls are almost same the time overhead of

STM is higher as more number of function calls have to be

used in case of STM than locks and also as there is additional

time overhead for start and commit of transactions.

IV. SPACE OVERHEAD FOR LOCKS AND STM

While executing parallel programs whenever any lock or

STM function is called it occupies some space. Thus the sum

of the space occupied by all the lock or STM calls of a

program is the total lock or STM space overhead of that

program.

The space occupied by pthread_mutex_lock(&mutex1)

and pthread_mutex_unlock(&mutex1) are 4 bytes each.

The space occupied by stm_load() and stm_store() are 11

bytes and 88 bytes respectively.

The space overheads for lock and STM for some different

practical synchronization problems are shown now.

Finding minimum element in an array

In the program for finding minimum element in an array

using locks for each thread there is one set of

pthread_mutex_lock() and pthread_mutex_unlock() calls.

So for each thread the space overhead is 8 bytes.

In the program for finding minimum element in an array

using STM for each thread there is one LOAD and STORE

call. Thus for each thread the space overhead is 99 bytes.

The table below shows the space occupied for finding

minimum element in an array in case of different numbers of

threads for both locks and STM.

Table.5 Space Overhead for finding minimum element in an array

No. of

Threads

Space

Overhead(bytes)(Locks)

Space

Overhead(bytes)(STM)

1 8 99

2 16 198

3 24 297

4 32 396

The graph below shows the comparison of space overheads

for locks and STM for finding minimum element in an array.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 552

Readers-Writers Problem

In the program for solving Readers-Writers Problem using

locks there are two sets of pthread_mutex_lock() and

pthread_mutex_unlock() calls for every Reader-Writer pair

(one set for reader() and one set for writer()). So for each

Reader-Writer pair the space overhead is 16 bytes.

In the program for solving Readers-Writers Problem using

STM for each Reader-Writer pair there are two LOAD and

STORE calls. Thus for each Reader-Writer pair the space

overhead is 198 bytes.

The table below shows the space occupied for solving

Readers-Writers Problem in case of different numbers of

Reader-Writer Pairs for both locks and STM.

Table.6 Space Overhead for Readers-Writers Problem

No. of

Reader-

Writer Pairs

Space

Overhead(bytes)(Locks)

Space

Overhead(bytes)(STM)

1 16 198

2 32 396

3 48 594

4 64 792

The graph below shows the comparison of space occupied

for locks and STM in Readers-Writers Problem.

Dining Philosophers’ Problem

In the program for solving Dining Philosophers’ Problem

using locks there are two sets of pthread_mutex_lock() and

pthread_mutex_unlock() calls for every thread. So for each

thread the space overhead is 16 bytes.

In the program for solving Dining Philosophers’ Problem

using STM for each thread there are two LOAD and STORE

calls. Thus for each thread the space overhead is 198 bytes.

The table below shows the space occupied for solving Dining

Philosophers’ Problem in case of different numbers of

threads for both locks and STM.

Table.7 Space Overhead for Dining Philosophers’ Problem

No. of

Threads

Space

Overhead(bytes)(Locks)

Space

Overhead(bytes)(STM)

1 16 198

2 32 396

3 48 594

4 64 792

The graph below shows the comparison of space overheads

for locks and STM in Dining Philosophers’ Problem.

Cigarette Smokers’ Problem

In the program for solving Cigarette Smokers’ Problem using

locks there are four sets of pthread_mutex_lock() and

pthread_mutex_unlock() calls for every Agent-Smoker set.

So for each Agent-Smoker set the space overhead is 32

bytes.

In the program for solving Cigarette Smokers’ Problem using

STM for each Agent-Smoker set there are six LOAD and

STORE calls. Thus for each thread the space overhead is 594

bytes.

The table below shows the space occupied for solving

Cigarette-Smokers’ Problem in case of different numbers of

Agent-Smoker sets for both locks and STM.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 553

Table.8 Space Overhead for Cigarette-Smokers’ Problem

No. of Agent-

Smoker Sets

Space

Overhead(bytes)(Locks)

Space

Overhead(bytes)(STM)

1 32 594

2 64 1188

3 96 1782

4 128 2376

The graph below shows the comparison of space overheads

for locks and STM in Cigarette-Smokers’ Problem.

So from the above observations we can say that the space

overhead of STM in all the applications is higher than that of

locks.

This is because the space overhead of individual STM

function calls are higher than that of locks and also as more

number of function calls have to be used in case of STM than

locks.

V. TIME OVERHEAD FOR FLEXIBLE

APPROACH

The STM calls used in case of Flexible Approach are:-

i) stm_unit_load()- It reads the specified memory location

outside of the context of any transaction and returns its value.

The operation behaves as if executed in the context of a

dedicated transaction (i.e., it executes atomically and in

isolation) that never aborts, but may get delayed.

ii) stm_unit_store()- It writes a value to the specified

memory location outside of the context of any transaction. It

also behaves as if executed in the context of a dedicated

transaction (i.e., it executes atomically and in isolation) that

never aborts, but may get delayed.

Both these function calls take 2 microseconds to execute.

The time overheads for Flexible Approach for the different

programs are shown now.

Finding minimum element in an array

In this program for each thread there is one stm_unit_load()

and stm_unit_store()call. Thus for each thread the time

overhead is 4 microseconds.

The table below shows the time taken for finding minimum

element in an array using flexible approach in case of

different numbers of threads.

Table.9 Time Overhead for finding minimum element in an array using

Flexible Approach

No. of Threads Time Overhead(microseconds)

1 4

2 8

3 12

4 16

Readers-Writers Problem

In this program for each Reader-Writer pair there are two

stm_unit_load() and stm_unit_store()calls. Thus for each

Reader-Writer pair the time overhead is 8 microseconds.

The table below shows the time taken for solving Readers-

Writers Problem using Flexible Approach in case of different

numbers of Reader-Writer Pairs.

Table.10 Time Overhead for Readers-Writers Problem using Flexible
Approach

No. of Reader-Writer Pairs Time Overhead(microseconds)

1 8

2 16

3 24

4 32

Dining Philosophers’ Problem

In this program for each thread there are two stm_unit_load(

) and stm_unit_store()calls. Thus for thread the time

overhead is 8 microseconds.

The table below shows the time taken for solving Dining

Philosophers’ Problem using flexible approach in case of

different numbers of threads.

Table.11 Time Overhead for Dining Philosophers’ Problem using Flexible

Approach

No. of Threads Time Overhead(microseconds)

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 554

1 8

2 16

3 24

4 32

Cigarette Smokers’ Problem

In this program for each Agent-Smoker Set there are six

stm_unit_load() and stm_unit_store()calls. Thus for each

Agent-Smoker Set the time overhead is 24 microseconds.

The table below shows the time taken for solving Cigarette-

Smokers’ Problem using Flexible Approach in case of

different numbers of Agent-Smoker sets.

Table.12 Time Overhead for Cigarette-Smokers’ Problem using Flexible

Approach

No. of Agent-Smoker Sets Time Overhead(microseconds)

1 24

2 48

3 72

4 96

From the above observations we can say that the time

overhead for the Flexible Approach is less than the time

overhead for STM and in some cases same as the time

overhead for locks. This is because in case of the Flexible

Approach there is no need to enclose the critical sections

within transactions.

VI. SPACE OVERHEAD FOR FLEXIBLE

APPROACH

The space occupied by stm_unit_load() and stm_unit_store(

) are 11 bytes and 44 bytes respectively.

The space overheads for Flexible Approach for the different

programs are shown now.

Finding minimum element in an array

In this program for each thread there is one stm_unit_load()

and stm_unit_store()call. Thus for each thread the space

occupied is 55 bytes.

The table below shows the space occupied for finding

minimum element in an array using flexible approach in case

of different numbers of threads.

Table.13 Space Overhead for finding minimum element in an array using

Flexible Approach

No. of Threads Space Occupied(bytes)

1 55

2 110

3 165

4 220

Readers-Writers Problem

In this program for each Reader-Writer pair there are two

stm_unit_load() and stm_unit_store()calls. Thus for each

Reader-Writer pair the space occupied is 110 bytes.

The table below shows the space occupied for solving

Readers-Writers Problem using Flexible Approach in case of

different numbers of Reader-Writer Pairs.

Table.14 Space Overhead for Readers-Writers Problem using Flexible

Approach

No. of Reader-Writer Pairs Space Occupied(bytes)

1 110

2 220

3 330

4 440

Dining Philosophers’ Problem

In this program for each thread there are two stm_unit_load(

) and stm_unit_store()calls. Thus for each thread the space

overhead is 110 bytes.

The table below shows the space occupied for solving Dining

Philosophers’ Problem using flexible approach in case of

different numbers of threads.

Table.15 Space Overhead for Dining Philosophers’ Problem using Flexible

Approach

No. of Threads Space Occupied(bytes)

1 110

2 220

3 330

4 440

Cigarette Smokers’ Problem

In this program for each Agent-Smoker Set there are six

stm_unit_load() and stm_unit_store()calls. Thus for each

Agent-Smoker Set the space occupied is 330 bytes.

The table below shows the space occupied for solving

Cigarette-Smokers’ Problem using Flexible Approach in case

of different numbers of Agent-Smoker sets.

Table.16 Space Overhead for Cigarette-Smokers’ Problem using Flexible

Approach

No. of Agent-Smoker Sets Space Occupied(bytes)

1 330

2 660

3 990

4 1320

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 555

From the above observations we can say that the space

occupied for the Flexible Approach is less than the space

occupied for STM but higher than the space occupied for

locks. This is because even though in case of the Flexible

Approach there is no need to enclose the critical sections

within transactions the space occupied by the individual

function calls are higher than that of locks.

VII. OVERHEAD COMPARISON OF LOCKS, STM

AND FLEXIBLE APPROACH

The time overhead of STM in all the applications is higher

than that of locks. In case of locks every critical section has

to be enclosed within one set of pthread_mutex_lock() and

pthread_mutex_unlock() calls irrespective of the number of

global variables being accessed in the critical section. In case

of STM each critical section has to be enclosed within a

transaction. Start and commit of transactions take time. Then

for each global variable being accessed within a transaction

there has to be one set of LOAD and STORE calls. So even

though the time overhead of individual lock and STM

function calls are almost same the time overhead of STM is

higher as more number of function calls have to be used in

case of STM than locks and also as there is additional time

overhead for start and commit of transactions.

The space overhead of STM in all the applications is also

higher than that of locks. This is because the space overhead

of individual STM function calls are higher than that of locks

and also as more number of function calls have to be used in

case of STM than locks.

The time overhead for the Flexible Approach is less than the

time overhead for STM and in some cases same as the time

overhead for locks. This is because in case of the Flexible

Approach there is no need to enclose the critical sections

within transactions.

The space occupied for the Flexible Approach is less than the

space occupied for STM but higher than the space occupied

for locks. This is because even though in case of the Flexible

Approach there is no need to enclose the critical sections

within transactions the space occupied by the individual

function calls are higher than that of locks.

In earlier works we had seen that the execution time of codes

with STM were either equal to or worse than that of locks.

We had also seen that in case of the flexible approach using

STM the time taken was somewhat less [7], [8], [9], [10],

[11]. The comparison of the overheads have confirmed these

observations.

VIII. SYSTEM SPECIFICATIONS

The specifications of the system in which we compiled and

executed the codes are given below:

SYSTEM DESCRIPTION

1. Hardware Configuration

Model Name: Intel® Xeon ® CPU E5645 2.40 GHz

Number of CPU cores: 6

Total Memory Space: 4.008 GB

Cache: 12288KB

2. Operating System

Fedora 11

3. Software Configuration

1) The language used in the programs is C.

2) gcc compiler version 4.4.0.

IX. CONCLUSION

The time overhead of STM in all the applications is higher

than that of locks. The space overhead of STM in all the

applications is also higher than that of locks. The time

overhead for the Flexible Approach is less than the time

overhead for STM and in some cases same as the time

overhead for locks. The space occupied for the Flexible

Approach is less than the space occupied for STM but higher

than the space occupied for locks. In earlier works we had

seen that the execution time of codes with STM were either

equal to or worse than that of locks. We had also seen that in

case of the flexible approach using STM the time taken was

somewhat less. The comparison of the overheads have

confirmed these observations.

REFERENCES

[1] Cornelia Cecilia Eglantine,“Overhead(Computing)”, published by
TypPress, 2012

[2] Yang Ni, Vijay Menon, Richard L. Hudson, Ali-Reza Adl-Tabatabai,

J. Eliot, B. Moss, Bratin Saha, Antony L. Hosking, Tatiana Shpeisman,
“Open Nesting in Software Transactional Memory”, In the Proceedings

of the 12th ACM SIGPLAN symposium on Principles and practice of

parallel programming, pp. 68-78, 2007

[3] Zhengyu He, Bo Hong, “Impact of Early Abort Mechanisms on Lock-

Based Software Transactional Memory”, In the Proceedings of the
International Conference on High Performance Computing (HiPC),

2009

[4] Yossi Lev, Victor Luchangco, Virendra J. Marathe, Mark Moir, Dan
Nussbaum, Marek Olszewski, “Anatomy of a Scalable Software

Transactional Memory”, In the Proceedings of the 4th ACM

SIGPLAN Workshop on Transactional Computing , 2009

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5426440

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 556

[5] Justin E. Gottschlich, Manish Vachharajani, Jeremy G. Siek, “An

Efficient Software Transactional Memory Using Commit-Time

Invalidation”, In the Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization , pp.

101-110, 2010

[6] Sandhya S.Mannarswamy, Ramaswamy Govindarajan, “Variable

Granularity Access Tracking Scheme for Improving the Performance
of Software Transactional Memory”, In the Proceedings of

International Conference on Parallel Architectures and Compilation

Techniques, pp. 232-242, 2011

[7] Ryan Saptarshi Ray, “STM:Lock-Free Synchronization”, Special Issue

of IJCCT, ISSN (ONLINE): 2231 – 0371, ISSN (PRINT): 0975 – 7449,

Volume- 3, Issue-2, pp. 19-25, 2012

[8] Anupriya Chakraborty, Sourav Saha, Ryan Saptarshi Ray, Utpal

Kumar Ray,“ Lock-Free Readers/Writers”, International Journal of
Computer Science Issues (IJCSI), ISSN (PRINT): 1694 – 0814, ISSN

(ONLINE): 1694 – 0784, Volume- 10, Issue-4, No-2, pp. 180-186,

2013

[9] Venkatakash Raj Rao Jillelamudi, Sourav Mukherjee, Ryan Saptarshi

Ray, Utpal Kumar Ray,“ Lock-Free Dining Philosopher”, International

Journal of Computer and Communication Technology (IJCCT), ISSN
(PRINT): 0975 – 7449, Volume- 4, Issue-3, pp. 54-58, 2013

[10] Rup Kamal, Ryan Saptarshi Ray, Utpal Kumar Ray, Parama Bhaumik,
“Cigarette Smokers’ Problem with STM”, International Journal of

Computer and Communication Technology (IJCCT), ISSN (PRINT):

0975 – 7449, Volume- 4, Issue-3, pp 63-68, 2013

[11] Ryan Saptarshi Ray, Parama Bhaumik, Utpal Kumar Ray, “Flexible

Programming Approach using STM”, International Journal of
Computer Sciences and Engineering (IJCSE) E-ISSN:2347-2693

Volume- 6, Issue-7, pp. 349-353, 2018

[12] Nilam Choudhary, Shikhar Agarwal, Geerija Lavania, “Smart Voting
System through Facial Recognition”, International Journal of Scientific

Research in Computer Sciences and Engineering (ISSN: 2320-7639)

Volume- 7, Issue-2, pp. 7-10, 2019

[13] S. JabeenBegum, B. Swaathi, “A Survey for identifying Parkinson’s

disease by Binary Bat Algorithm”, International Journal of Scientific
Research in Computer Sciences and Engineering (ISSN: 2320-7639)

Volume- 7, Issue-2, pp. 17-23, 2019

Authors Profile

 Ryan Saptarshi Ray received the degree of B.E. in I.T.

from School of Information Technology, West Bengal

University of Technology, India in 2007.

He received the degree of M.E. in

Software Engineering from Jadavpur

University, India in 2012. Currently he is

PhD Scholar in the Department of

Information Technology, Jadavpur

University, India.

He was employed as Programmer

Analyst from 2007 to 2009 in Cognizant Technology

Solutions. He has published 3 papers in International

Conferences, 13 papers in International Journals and also a

book titled “Software Transactional Memory: An Alternative

to Locks” by LAP LAMBERT ACADEMIC PUBLISHING,

GERMANY in 2012 co-authored with Utpal Kumar Ray.

Parama Bhaumik received B.Sc

Phy(Hons.), B.Tech and M.Tech in

Computer Science & Engineering

from Calcutta University, India in

1996,1999 and 2002 respectively.

She has done her Ph.D in

Engineering from Jadavpur

University, India in 2009.

Currently she is working as

Associate Professor in the

Department of Information

Technology, Jadavpur University,

India. She has more than 32 research publications in Journals

of repute, Book chapters and International Conferences.

Utpal Kumar Ray received the

degree of B.E. in Electronics and

Telecommunication Engineering in

1984 from Jadavpur University,

India and the degree of M.Tech in

Elecrical Engineering from Indian

Institute of Technology, Kanpur in

1986.

He was employed in different

capacities in WIPRO INFOTECH

LTD., Bangalore, India; WIPRO INFOTECH LTD.,

Bangalore, India, Client: TANDEM COMPUTERS, Austin,

Texas, USA; HCL America, Sunnyvale, California, USA,

Clent: HEWLETT PACKARD, Cupertino, California, USA;

HCL Consulting, Gurgaon, India; HCL America, Sunnyvale,

California, USA; RAVEL SOFTWARE INC., San Jose,

California, USA; STRATUS COMPUTERS, San Jose,

California, USA; AUSPEX SYSTEMS, Santa Clara,

California, USA and Sun Micro System, Menlo Park,

California, USA for varying periods of duration from 1986 to

2002. From 2003 he is working as Assistant Professor in the

Department of Information Technology, Jadavpur

University, India. He has published 23 papers in different

conferences and journals. He has also published a book titled

“Software Transactional Memory: An Alternative to Locks”

by LAP LAMBERT ACADEMIC PUBLISHING,

GERMANY in 2012 co-authored with Ryan Saptarshi Ray.

https://www.isroset.org/pdf_paper_view.php?paper_id=1266&2-IJSRCSE-01844.pdf
https://www.isroset.org/pdf_paper_view.php?paper_id=1266&2-IJSRCSE-01844.pdf
https://www.rediffmail.com/cgi-bin/red.cgi?red=http%3A%2F%2Fwww%2Eisroset%2Eorg%2Fjournal%2FIJSRCSE%2Findex%2Ephp&isImage=0&BlockImage=0&rediffng=0&rogue=bcfff7a21dad0dfb2183ca6df81fcfa9decea90b&rdf=ByAIc1cxVzxRIgAmVmRTfg==&els=c8593501d0a6d60846f1a4de9d34b6d2
https://www.rediffmail.com/cgi-bin/red.cgi?red=http%3A%2F%2Fwww%2Eisroset%2Eorg%2Fjournal%2FIJSRCSE%2Findex%2Ephp&isImage=0&BlockImage=0&rediffng=0&rogue=bcfff7a21dad0dfb2183ca6df81fcfa9decea90b&rdf=ByAIc1cxVzxRIgAmVmRTfg==&els=c8593501d0a6d60846f1a4de9d34b6d2
https://www.isroset.org/pdf_paper_view.php?paper_id=1268&4-IJSRCSE-01378.pdf
https://www.isroset.org/pdf_paper_view.php?paper_id=1268&4-IJSRCSE-01378.pdf
https://www.rediffmail.com/cgi-bin/red.cgi?red=http%3A%2F%2Fwww%2Eisroset%2Eorg%2Fjournal%2FIJSRCSE%2Findex%2Ephp&isImage=0&BlockImage=0&rediffng=0&rogue=bcfff7a21dad0dfb2183ca6df81fcfa9decea90b&rdf=ByAIc1cxVzxRIgAmVmRTfg==&els=c8593501d0a6d60846f1a4de9d34b6d2
https://www.rediffmail.com/cgi-bin/red.cgi?red=http%3A%2F%2Fwww%2Eisroset%2Eorg%2Fjournal%2FIJSRCSE%2Findex%2Ephp&isImage=0&BlockImage=0&rediffng=0&rogue=bcfff7a21dad0dfb2183ca6df81fcfa9decea90b&rdf=ByAIc1cxVzxRIgAmVmRTfg==&els=c8593501d0a6d60846f1a4de9d34b6d2

