International Journal of Computer Sciences and Engineering

Vol.**12**, Issue.**4**, pp.**61-67**, April **2024** ISSN: 2347-2693 (Online) Available online at: www.ijcseonline.org

Review Article

A Review on Analysing the Impact of IoT on Smart Agriculture

Hiresh Singh Sengar^{1*10}, Sakshi Rai²¹⁰

^{1,2}Dept. of Computer Science, LNCT University, Bhopal, India

*Corresponding Author: hireshtech@gmail.com, Tel.: +91 7566803514

Received: 22/Feb/2024; Accepted: 20/Mar/2024; Published: 30/Apr/2024. DOI: https://doi.org/10.26438/ijcse/v12i4.6167

Abstract: Nowadays technology has made significant strides, with countless of devices and techniques available in the agricultural sector. The Internet of Things (IoT) plays a vital role in increasing production, efficiency, and worldwide market reach, as well as lowering human involvement, expenditure, and time, all of which are crucial in the sector of agriculture. The Internet of Things (IoT) is a system that connects computing devices, objects, mechanical and digital devices, and living beings. These IoT components are given unique identifiers and can send data across a network without requiring human-to-human or human-to-computer interaction. To increase productivity, IoT partners with agriculture to enable smart farming. In this paper, we study the role of IoT in the sector of agriculture to make it smart farming.

Keywords: Smart Farming, IoT, sensors, productivity, Interfacing Sensors, water management, WPAN.

1. Introduction

India's economy is mostly supported by its agricultural sector. The biggest obstacle that traditional farming faces is climate change. The various effects include lower rainfall, intense hurricanes and heated winds, massive flooding, and other climatic changes. The result of these factors is a significant decline in performance. Natural consequences of climate change frequently include periodic changes in plant lifecycles.

In the farming industry, innovative thinking and Internet of Things techniques were required to boost output and lower barriers. Now, the Internet of Things (IoT) is turning its attention to the agriculture industry, helping farmers overcome the many challenges they encounter. Farmer access to a plethora of information about emerging trends and innovations could be facilitated by IoT.

The Internet of Things' impact on smart agriculture is revolutionary, altering traditional farming practices. Thanks to the Internet of Things, farmers may now more effectively monitor and manage crops, livestock, and resources. Realtime data gathering and analysis have become critical tools for agricultural process optimization because of the Internet of Things. Farmers can use IoT sensors and devices to remotely monitor soil moisture, temperature, and nutrient levels, which increases crop yield and quality. Smart irrigation systems powered by IoT change watering schedules based on real-time weather forecasts and soil conditions, saving water. Livestock monitoring with IoT devices guarantees animal health and well-being by tracking health over time and detecting diseases early. IoT applications in agriculture have resulted in more exact and targeted use of fertilizers and pesticides, lowering environmental impact. The incorporation of IoT in agriculture has revolutionized supply chain management, ensuring that produce is delivered on time to the market. IoT-driven predictive analytics assist farmers in making educated decisions, reducing risks, and increasing revenues. Overall, the Internet of Things' impact on smart agriculture has ushered in a new era of sustainable and efficient farming operations.

"In India, where farming supports 80% of the population, Smart Agriculture appears to be a realistic answer. This program focuses on critical elements such as water management, weather forecasting, and canal control in both automatic and manual modes, which are all operated via a mobile application. Users receive alerts and notifications depending on predefined parameters. The system, which is controlled by an internet-connected mobile device, increases performance by integrating sensors and providing wireless communication."

2. Background details

A. Internet of Things (IoT)

The term IoT or Internet of Things, refers to the interconnected web of gadgets and the technology that allows them to communicate with one another, with the cloud, and among themselves.

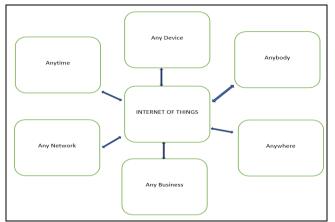


Figure 1. Internet of Things (IoT)

B. Sensors

Sensors are critical for designing IoT solutions. They are instruments that detect and convert external data into a signal that humans and machines can understand.

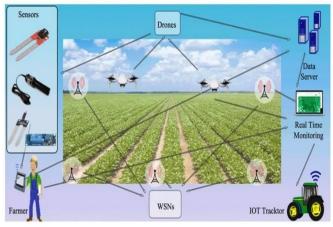
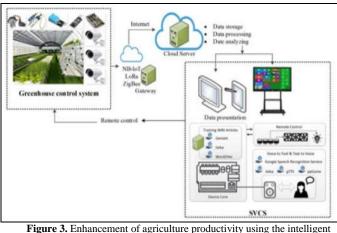



Figure 2. IoT Sensors Using in Smart Farming

C. Productivity

IoT improves efficiency by saving time and resources, two critical components of production. Ultimately, IoT allows employees to focus on key company operations rather than operational responsibilities. Companies that leverage the Internet of Things (IoT) enjoy a competitive advantage.

igure 3. Enhancement of agriculture productivity using the intelligen IoT

D. Smart Farming/Agriculture

Smart farming is a concept that seeks to provide the agricultural industry with the infrastructure necessary to measure, monitor, automate, and analyze processes using cutting-edge technologies such as big data, cloud computing, and the Internet of Things (IoT).

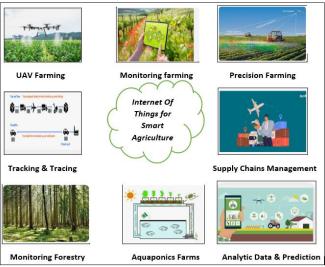


Figure 4. Role of IoT in Smart Farming

E. Interfacing Sensors

Interfacing sensors is the process of connecting and permitting communication between sensors and other devices, such as microcontrollers or computers, to gather and process data.

Figure 5. Interfacing Sensor in IoT

F. Water management

Water management is carefully controlling and distributing water supplies to ensure their efficient use for a variety of objectives, including agriculture, industry, and domestic requirements, while also considering conservation and environmental sustainability.

Figure 6. Farm Water-level Monitoring and Control

G. WPAN

WPAN stands for Wireless Personal Area Network. It is a form of wireless network that operates over a limited area, usually within a person's workstation or personal surroundings, such as a room or building. WPANs employ short-range wireless technologies like Bluetooth or Zigbee to communicate with personal devices such as smartphones, tablets, and wearables.

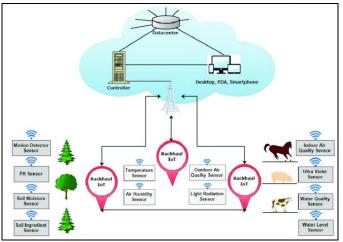


Figure 7. IoT-based Smart Farming Topology

3. Literature Survey

Smart agriculture, enabled by the Internet of Things (IoT), has revolutionized the way farming is done by integrating technology into traditional agricultural practices. This review focuses on analyzing the impact of IoT on smart agriculture, highlighting the various benefits, challenges, and future implications of this innovative approach.

One of the key impacts of IoT in smart agriculture is the enhancement of farming efficiency. IoT devices such as sensors, drones, and automated machinery collect real-time data on factors like soil moisture, temperature, and crop health, allowing farmers to make timely and informed decisions. By providing valuable insights into crop conditions, IoT technology optimizes resource utilization, increases crop yields, and reduces operational costs. Some prior works in this field are summarized in Table 1.

© 2024, IJCSE All Rights Reserved

3.3.00 Laper Aware Management Using IOT (1)[2] This project employs sensors to monitor water levels in the cloud and accessible via a mobile app. It allows for automatic or manual control of water motors depending on the water level shown on mobile phones, providing remote monitoring and control for a variety of applications, including industrial use and flood prevention. Risk minimization needs to be done 2 Internet of Things in Agriculture (3][4] Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IOT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture architecture for effective transmission [5][6] Internet of innovations in smart agriculture asper as a smart agriculture apper as a smart agriculture asper as a smart agriculture asper as a smart agriculture apper as a smart agriculture asper asper aspect of the signal so used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's recever aspective at the strength of the signals on the transmission connections. Second, by employing the linear congruentia	S.No	Paper Title	Description	Limitation
Management Using IOT (1)[2] sensors to monitor water levels in tanks, a mobile apones, or manual control of water a mobile apones, providing remote monitoring and control for a variety of applications, including industrial use and flood methods, and technology is always evolving. Knowledge processing is the prefered IOT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (1) applications in smart agriculture for effective for effective for effective transmission [5][6] Risk minimization needs water level shown on mobile phones, providing remote monitoring and control for a variety of applications, including industrial use and flood instruments and methods, and technology is always evolving. Knowledge processing is the preferred IOT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IOT) has changed every aspect of smart agriculture architecture for effective transmission [5][6] Internet of An Internet of Things- based architecture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collected by agricultural sensors, which then use a multi-criteria decision function to identify a collected by agricultural sensors, which the use a multi-criteria decision function to identify a collected by agricultural sensors, which the use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission connections. Second, by employing the linear corgunential generator's Imited Second to measure the strength of the signals on the transmission			^	
Using IOT [1][2] water levels in tanks with data stored in the cloud and accessible via a mobile app. Interoperability, and lack of Standardization. absolute absolutation water motors depending on the water level shown on mobile phones, providing remote monitoring and control for a variety of applications, including industrial use and flood prevention. Risk minimization needs to be done 2 Internet of Things in Agriculture [3][4] Risk minimization needs wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things- based An Internet of Things- based wSN architecture for effective was presented in this paper as a smart agriculture strongly gingla-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission [5][6] Imited resource constraints and computational capabilities.	1			6
[1][2] with data stored in the cloud and accessible via a mobile app. It allows for automatic or manual control of water motors depending on the water level shown on mobile phones, providing remote monitoring and control for a variety of applications, including industrial use and flood prevention. Risk minimization needs to be done 2 Internet of Agriculture [3][4] Risk minimization needs wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Smart agriculture to finags (IoT) has changed every aspect of smart agriculture transmission [5][6] limited resource constraints and computational acriticeture with several design layers was presented in this runsmission [5][6] 3 Internet of Things- based architecture for effective data transmission function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-nois eratio (SNR) is also used to measure the strength of the signals on the transmission concetions. Second, by employing the linear congruential generator's				
2 Internet of Things in Agriculture [3][4] Cloud and accessible via a mobile app. Int allows for automatic or manual control of water works depending on the water level shown on mobile phones, providing remote monitoring and control for a variety of applications, including industrial use and flood prevention. Risk minimization needs to be done 2 Internet of Things in Agriculture uses a wide range of the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational computational computational computational constraints and architecture for effective vas presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agriculture sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's		•	,	
3 Internet of Things- based architecture for Effective applications, including industrial use and fload prevention. Risk minimization needs to be done 3 Internet of Things- Agriculture [3][4] Risk minimization needs wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things, hased architecture for smart agriculture for cffective transmission [5][6] Internet of Things, architecture with several design layers was presented in this collected by agricultura sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the lineareators		[1][2]		
3 Internet of Things- in Chulture [3][4] Agriculture uses a wide range of applications, including industrial use and flood prevention. Risk minimization needs to be done 2 Internet of Things in Agriculture [3][4] Risk minimization needs wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture for effective transmission [5][6] Iimited resource are sult. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based wSN architecture with architecture with appication. Initially, pertinent data is collected by agricultura sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission				Lack of Standardization.
3 Internet of Things-based architecture with architecture division. Information (5)[6] Iimitent of An Internet of Things-based architecture with architecture with architecture with architecture with architecture division. Information (5)[6] Iimitent of An Internet of Things-based architecture with architecture division. Information (5)[6] Iimitent of An Internet of Things-based architecture with architecture division. Information (5)[6] 3 Internet of things-based architecture with architecture division. Information (5)[6] Iimitent of An Internet of Things-based architecture with architecture with architecture with architecture division. Information (5)[6] Iimitent of An Internet of Things-based architecture with architecture with architecture with architecture with architecture division. Information (5)[6] 4 Internet of the association of the architecture with architecture with architecture with architecture with architecture with architecture division architecture with a paper as a smart agriculture as a smart agriculture as a smart architecture based with the use a multi-criteria decision function to identify a collected by agricultural sensors, which then use a multi-criteria decision function to identify a collected by agriculture association of connections. Second, by employing the linear congruential generator's			via a mobile app. It	
3 Internet of Things- based arcsult. The outcome of timovations in smart agriculture for effective transmission [5][6] Namet of Things in the use of added sensors, which then use a methods and technology is always evolving. Knowledge processing is the preferred IoTu secase in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from facual to quantitative strongly influences this work. Iimited resource this work. 3 Internet of Things-based architecture with architecture is collected by agriculture dision. Initially, pertinent data is collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission oconnections. Second, by employing the linear congruential generator's			allows for automatic	
3 Internet of Things-in aptications in the agriculture (3][4] Risk minimization needs avide range of instruments and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things in activity has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computative processing is the preferred IoT use case in the agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things- based An Internet of Things- based wSN architecture for effective transmission [5][6] Internet of things- based architecture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission			or manual control of	
3 Internet of Things-in aptications in the agriculture (3][4] Risk minimization needs avide range of instruments and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things in activity has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computative processing is the preferred IoT use case in the agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things- based An Internet of Things- based wSN architecture for effective transmission [5][6] Internet of things- based architecture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission			water motors	
3 Internet of Things, in Agriculture [3][4] Agriculture uses a wide range of things in Agriculture uses a wide range of things in Agriculture agriculture (3][4] Risk minimization needs to be done 2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of the taggiculture (3][4] Risk minimization needs to be done 2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Imited resource constraints and constraints and con				
2 Internet of Things including industrial use and flood prevention. Risk minimization needs to be done 2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of instruments and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agriculture apriciation. Initially, pertinent data is collected by agriculture apatication tidentify a collected by agriculture apatication to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			1 0	
2 Internet of Agriculture [3][4] providing 'remote monitoring and pications, including industrial use and flood prevention. Risk minimization needs to be done 2 Internet of Agriculture [3][4] Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things- [3][4] Agriculture uses a wide range of Agriculture and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Imited resource constraints and computational sevent of the outcome of innovations in smart agriculture agriculture based architecture for effective transmission [5][6] 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture with several design layers was presented in this paper as a smart agricultura sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's Imited resource			· · · · · · · · · · · · · · · · · · ·	
2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of instruments and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly based architecture with several design layers was presented in this paper as a smart agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's limited resource			1 0	
2 Internet of Things in Agriculture Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things- based Risk minimization needs to be done 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture for effective transmission [5][6] Imitted resource to grading agriculture as a smart agriculture agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			Ų	
2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Iimited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agriculture reliable and effective data transmission connections. Second, by employing the linear congruential generator's Isseed with influences this work.			control for a variety of	
2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based are sumart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective for effective transmission [5][6] Internet of Things- based architecture for cluter transmission (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			applications,	
2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			including industrial	
2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			U	
2 Internet of Things in Agriculture [3][4] Agriculture uses a wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agricultural sensors, which then use a multi-criteria decision function to identify a collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
Things in Agriculture [3][4] wide range of instruments and methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and architecture for effective transmission [5][6] 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's	2	Internet of		Dist minimization poods
Agriculture [3][4] instruments and methods, evolving, Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based wSN architecture with several design layers was presented in this paper as a smart agricultural sensors, which then use a multi-criteria decision function to identify a collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's	2			
3 Internet of Things- based architecture for effective transmission [5][6] Mathematical methods, and technology is always evolving. Knowledge processing is the preferred IoT use case in the agriculture division. Information can be gathered with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Imited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based WSN architecture swas presented in this paper as a smart agricultural sensors, which then use a multi-criteria decision function of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's		•	8	to be done
3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based and there with the use of added sensors. Technology based on the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Imited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agricultural sensors, which then use a multi-criteria decision function of cluster heads. To produce reliable and effective data transmission signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's		Agriculture	instruments and	
3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture for effective transmission Internet of Things- based architecture for effective transmission Internet of Things- based architecture transmission Inited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture transmission [5][6] Iimited resource constraints and computational capabilities.		[3][4]	methods, and	
3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture for effective transmission Internet of Things- based architecture for effective transmission Internet of Things- based architecture transmission Inited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture transmission [5][6] Iimited resource constraints and computational capabilities.			technology is always	
3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture for effective transmission Internet of Things- based architecture for effective transmission Internet of Things- based architecture for effective transmission Internet of Things- based architecture for effective transmission 15][6] An Internet of Things- based architecture for effective transmission Imited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] Internet of Things- based architecture set as a smart agriculture application. Initially, pertinent data is collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things- based An Internet of the use of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. limited resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based wSN architecture with several design layers was presented in this paper as a smart agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture agriculture agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things-based 3 Internet of Things-based 3 Internet of Things-based 5 Internet of Things-based 6 Things-based 7 Internet of Things-based 8 Internet of Things-based 9 Internet of Things-based 9 The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things-based 9 An Internet of Things-based 9 architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			1 0	
3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based architecture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			I · · · · · · · · · · · · · · · · · · ·	
3 Internet of Things- based An Internet of Things- based or the Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Imitted resource constraints and computational capabilities. 3 Internet of Things- based architecture for effective transmission [5][6] An Internet of Things- based was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			U	
3 Internet of Things- based on the Internet of Smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things- based architecture with several design layers was presented in this transmission [5][6] Imited resource constraints and computational capabilities. it constraints and the several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Iimited resource constraints and computational several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			can be gathered with	
3 Internet of Things (IoT) has changed every aspect of smart agriculture. The industry has shifted from factual to quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Imitternet of Thingsbased architecture with achitecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			the use of added	
3 Internet of Things- based architecture for effective for effective for effective for effective for effective for effective for locitation [5][6] An Internet of Things- based architecture for effective for effective for locitation [5][6] limited resource constraints and computational several design layers several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			sensors. Technology	
3 Internet of Things- based architecture for effective for effective for effective for effective for effective for effective for locitation [5][6] An Internet of Things- based architecture for effective for effective for locitation [5][6] limited resource constraints and computational several design layers several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			based on the Internet	
3 Internet of An Internet of Thingsbased Imited resource 3 Internet of Thingsbased An Internet of Thingsbased Imited resource 3 Internet of Smart agriculture strongly influences this work. Imited resource 3 Internet of An Internet of Thingsbased Imited resource based work constraints and computational several design layers for effective was presented in this paper as a smart agriculture agriculture agriculture agriculture agriculture for effective transmission [5][6] Imited resource constraints and computational capabilities. was presented in this several design layers was presented in this griculture agriculture agriculture agriculture agriculture agriculture for effective data is collected by agriculture agriculture agriculture agriculture agriculture agriculture for the signal to no foldentify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things- based An Internet of Things- based limited resource constraints and computational capabilities. 3 Internet of Things- based An Internet of Things- based limited resource constraints and computational capabilities. 3 Internet of Things- based An Internet of Things- based limited resource constraints and computational capabilities. 5 Internet of Things- based Ma Internet of Things- based limited resource constraints and computational capabilities. 6 For effective transmission [5][6] An Internet of Things- was presented in this paper as a smart agriculture application. Initially, pertinent data is collected limited resource constraints and capabilities. 6 Signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things- based architecture An Internet of Things- based architecture with several design layers transmission [5][6] limited resource constraints and architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things- based An Internet of Things- based Iimited resource constraints and computational architecture 3 Internet of Things- based An Internet of Things- based Iimited resource constraints and computational architecture 5 Internet of Things- based An Internet of Things- based Iimited resource constraints and computational capabilities. 6 An Internet of Things- based Iimited resource constraints and computational capabilities. 7 For effective transmission [5][6] An Internet of Things- based Iimited resource constraints and computational capabilities. 8 Internet of Things- based Iimited resource constraints and computational capabilities. 9 paper as a smart agriculture application. Initially, pertinent data is collected Iimited resource constraints and computational capabilities. 9 Imited resource constraints and computational capabilities. Imited resource constraints and computational capabilities. 9 Imited resource transmission collected Imited resource constraints and computational capabilities. 9 Imited resource transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			6	
quantitative methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of An Internet of Things-based limited resource constraints and computational architecture with several design layers was presented in this paper as a smart agriculture agriculture agriculture data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmission, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			5	
methodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. Immethodologies as a result. The outcome of innovations in smart agriculture strongly influences this work. 3 Internet of Things-based An Internet of Things-based Immethodologies as a growth agriculture with architecture with architecture several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			shifted from factual to	
3 Internet of Things- based An Internet of Things- based Iimited resource constraints and computational capabilities. 3 Internet of Things- based An Internet of Things- based Iimited resource constraints and computational capabilities. 3 Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected is collected [5][6] agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			quantitative	
3 Internet of Things- based An Internet of Things- based Iimited resource constraints and computational capabilities. 3 Internet of Things- based An Internet of Things- based Iimited resource constraints and computational capabilities. 3 Internet of Things- based WSN architecture with several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected is collected [5][6] agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			methodologies as a	
3 Internet of Things- based An Internet of Things- based limited resource constraints and computational architecture 3 Internet of Things- based An Internet of Things- based limited resource constraints and computational capabilities. 3 Internet of Things- based An Internet of Things- based limited resource constraints and computational capabilities. 4 architecture with several design layers was presented in this paper as a smart agriculture capabilities. 5][6] agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
agriculture strongly influences this work. 3 Internet of Things- based An Internet of Things- based wSN architecture with several design layers for effective transmission limited resource constraints and computational several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things- based An Internet of Things- based limited resource constraints and computational architecture architecture with several design layers was presented in this paper as a smart agriculture limited resource constraints and computational capabilities. [5][6] agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
3 Internet of Things- based An Internet of Things- based limited resource constraints and computational capabilities. architecture with several design layers was presented in this paper as a smart agriculture capabilities. [5][6] agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			0	
Things- basedbasedWSN architectureconstraints and computationalarchitectureseveral design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collectedcapabilities.[5][6]agriculture application. Initially, pertinent data is collectedby agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's	-			
based architecture for effective transmission [5][6] agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's	3	Internet of	U	limited resource
architecture for effective transmission [5][6] several design layers was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's		Things-	based WSN	constraints and
for effective transmission [5][6] was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's		based	architecture with	computational
for effective transmission [5][6] was presented in this paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's		architecture	several design layers	capabilities.
transmission [5][6] paper as a smart agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				L
[5][6] agriculture application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			-	
application. Initially, pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			1 1	
pertinent data is collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's		[3][0]	0	
collected by agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			11	
agricultural sensors, which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			1	
which then use a multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			collected by	
multi-criteria decision function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			agricultural sensors,	
function to identify a collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			which then use a	
collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			multi-criteria decision	
collection of cluster heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			function to identify a	
heads. To produce reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			5	
reliable and effective data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
data transmissions, signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			· · · · · · · · · · · · · · · · · · ·	
signal-to-noise ratio (SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's				
(SNR) is also used to measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			data transmissions,	
measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			signal-to-noise ratio	
measure the strength of the signals on the transmission connections. Second, by employing the linear congruential generator's			0	
of the signals on the transmission connections. Second, by employing the linear congruential generator's			· · · ·	
transmission connections. Second, by employing the linear congruential generator's				
connections. Second, by employing the linear congruential generator's				
by employing the linear congruential generator's				
linear congruential generator's			,	
generator's			by employing the	
-				
-				
			linear congruential	
transfer from			linear congruential generator's	

Table 1. Related work

International Journal of Computer Sciences and Engineering

			1	. –				
		agricultural sensors to				Water	applications,	
		base stations (BS) is secured.				Meter Reading	including smart metering to improve	
4	Cumury data	Data was collected	Limited Imerulades and			System In	water management.	
4	Survey data on the cost	from houses picked at	Limited knowledge and awareness. Many			IoT	Water flow and heat	
	and benefits	random to assess	farmers may need to be			Environment	measurements can be	
	of climate-	climate smartness,	aware of climate-smart			[13][14]	monitored and	
	smart	profitability, and soil	agriculture practices and				managed using IoT-	
	agricultural	conservation	learn how to implement				based smart meters,	
	technologies	measures. The data,	them on their farms,				resulting in reduced	
	in	collected via a	High upfront costs,				water waste. This	
	western	standardized	Market challenges,				architecture	
	Kenya [7][8]	questionnaire	Policy and regulatory				framework	
		administered by	barriers,				incorporates	
		trained assistants and	Social and cultural				MediaTek's cloud	
		analyzed in STATA,	barriers.				sandbox as a platform for cost-effective data	
		is stored in an open- source data repository					storage and remote	
		for future research					user access, with an	
		and analysis.					emphasis on	
5	A Model for	Indian farmers are	high implementation				environmental	
U	Smart	rapidly adopting smart	cost, data security, and				sustainability via	
	Agriculture	agriculture, which	lack of sufficient digital				Restful-based web	
	Using	uses IoT for	knowledge in farmers.	ΙL			services.	
	IoT [9][10]	automated and guided	-	[8	An Internet	Rural regions	inaccurate data
		information				of Things	increasingly rely on	collection and
		technologies. This				(IoT) based	groundwater, resulting	management.
		strategy combines				Sustainable	in unsustainable	
		sensor technologies				Water	extraction.	
		and wireless networks				Management [15][16]	Groundwater management is crucial	
		to provide a Remote Monitoring System				[15][10]	in India due to its	
		(RMS) for real-time					uneven supply. This	
		data collection and					study proposes a	
		access. This					sustainable IoT-based	
		technology sends out					water management	
		alerts and information					system that automates	
		about weather patterns					water distribution,	
		and crop conditions,					storage, and	
		allowing farmers to					regulation to	
		react to changing					overcome water	
		agricultural conditions					scarcity in rural areas	
		and manage resources					such as Gudipadu	
	0 1 1	more efficiently.					Cheruvu in Andhra Pradesh. The system	
6	Combined	A robust methodology for assessing surface	requirement for high-				intends to eliminate	
	Radar– Radiometer	soil moisture and	quality, real-time data transmission				human intervention,	
	Surface	roughness, termed as	u ansinission				improve	
	Soil	active-passive (C-AP)					sustainability, and	
	Moisture	estimate, is described.					address issues like	
	and	This approach					illiteracy and the	
	Roughness	optimizes radar and					digital divide in rural	
	Estimation	radiometer		$ \downarrow$		-	areas.	
	[11][12]	observations to obtain			9	Internet of	Water management	Continual assessments of
		ideal soil moisture				Things (IoT)	and conservation are	the water's quality will
		retrievals, as proved by simulations and				Enabled Water	critical to human survival, especially in	be difficult and time- consuming.
		field data analysis,				Monitoring	light of environmental	consuming.
		with unbiased root				System	challenges. This study	
		mean squared errors				[17][18]	presents an IoT-based	
		ranging from 0.18 to				[1,][10]	water monitoring	
		0.03 cm. The method					system that measures	
		also employs					water levels in real-	
		numerous					time, with an	
		observations of					emphasis on	
		distinct polarizations					consumer-based	
		to recover more than					humanitarian projects	
		one unknown					and disaster-prone	
		parameter, resulting in					areas. The system	
		a completely adaptive					detects levels using a	
		scheme for soil					water level sensor and	
7	Anakitari	moisture retrieval.	data mini				sends alerts via social networks such as	
7	Architectural Framework	The Internet of Things (IoT) provides a	data privacy and security concerns				Twitter. It can be	
	of Smart	variety of residential	concerns				expanded with more	
	or smart	variety of residential	1	」 匚			espanded with more	

© 2024, IJCSE All Rights Reserved

		accurate sensors for more precision.	
10	Smart Agriculture using IoT and WSN- based modern technologies [19][20]		The cost of labor for managing IoT devices and the cost-of-service registration is included in the system's operational cost
11	Computers And Electronics In Agriculture Field Through Software Computer Science [21]	irrigation, and storage management. This study examines the emerging IoT applications in agro- industrial and environmental domains, emphasizing their reliance on various components and wireless sensor networks. References are divided into four domains: monitoring, controlling, logistics, and prediction, with an emphasis on the application of various technologies such as sensors, actuators, and edge computing. According to the proposed IoT architecture, future solutions would necessitate the full integration of cloud services and new connectivity technologies in order to create a truly connected and smart	Maintenance and repair costs
12	IOT based monitoring system in Smart Agriculture [22]	ecosystem. Many developing countries continue to rely on old and outmoded agricultural methods, but technological advances, such as smart farming with IoT, are increasing production efficiency. A revolutionary motor vehicle for cutting, spraving and weeding	high cost of implementation

spraying, and weeding

is launched, with a	
controller that	
monitors	
environmental	
conditions such as	
temperature,	
humidity, soil fertility,	
and water	
management. It can	
operate both	
automatically and	
manually. This	
technique, which	
combines green	
energy and smart	
technology, is a	
promising answer for	
increasing agricultural	
productivity.	

Research Gap:

Despite the growing interest and investment in IoT applications for smart agriculture, there exists a research gap in the comprehensive analysis of the socio-economic impact of these technologies on the agriculture sector. While existing studies often focus on the technical aspects of IoT implementation and its benefits in terms of enhancing productivity and sustainability, there is a lack of in-depth analysis of how IoT adoption influences the broader socio-economic landscape of agriculture.

Specifically, there is a need for more research that explores the following aspects:

1. Cost-Benefit Analysis: Many studies highlight the potential benefits of IoT in terms of increased yield, resource efficiency, and risk mitigation. However, there is a lack of detailed cost-benefit analyses that consider the financial implications of IoT adoption for different scales of farming operations. Understanding the economic feasibility of implementing IoT technologies in agriculture is crucial for informing policy decisions and investment strategies.

2. Impact on Employment: The introduction of IoT in agriculture has the potential to reshape labor requirements and skill sets needed in the sector. There is a need for research that examines how IoT adoption influences employment patterns in rural areas, including the displacement of traditional agricultural jobs and the emergence of new roles related to technology management and data analytics.

3. Market Structure and Competition: The integration of IoT in agriculture could affect the market structure by enabling data-driven decision-making and fostering new business models. Research is needed to investigate how IoT technologies influence market competition, access to markets for small-scale farmers, and the role of data ownership in shaping value chains in the agricultural sector.

4. Policy and Regulation: With the rapid advancement of IoT technologies in agriculture, there is a lack of clear regulatory frameworks to guide their deployment and ensure data privacy and security. Studying the current policy

International Journal of Computer Sciences and Engineering

landscape and identifying gaps in regulations related to IoT in smart agriculture will be essential for promoting responsible and sustainable adoption of these technologies.

Closing this research gap will contribute to a more holistic understanding of the implications of IoT on smart agriculture and facilitate evidence-based decision-making for stakeholders in the agriculture sector, policymakers, and technology providers.

4. Conclusion and Future Scope

Smart agriculture development would benefit from the Internet of Things. Improved time efficiency, water conservation, crop monitoring, soil management, bug spraying, pesticide safety, and other aspects of agriculture are all made possible by the application of IoT. It also takes out the need for human labor, breaks down agricultural practices, and changes how smart farming is applied. The agricultural industry has always depended on customs and knowledge from the past. But as time has gone on, rural customs have been impacted and have begun to shift with the times. The application of the Internet of Things (IoT) in agriculture would help manage all aspects of production and boost output. Given that a sizable section of the population depends on agriculture for survival, it needs major upgrades.

It is necessary to research the deployment and administration of perception nodes in agricultural IoT systems. Distributed, open, and resource-service sharable design is ideal. This allows for the realization of resource sharing and interconnections between diverse heterogeneous systems, as well as the acquisition of more precise and in-depth agricultural data.

Declarations:

Competing interests

No known competing/financial interests are reported in this paper.

Funding Sources:

No Funding was received by the authors.

Author's Contribution:

Hiresh Singh Sengar has prepared the manuscript under the guidance of Dr. Sakshi Rai. Dr. Sakshi Rai has done Proofreading of the work and reviewed the complete work.

Acknowledgement:

I would like to express my heartfelt gratitude to Dr. Sakshi Rai and LNCT University for their invaluable support and guidance throughout the process of writing this paper. Their expertise, feedback, and encouragement have been instrumental in shaping this work. I am truly grateful for their dedication and commitment to helping me achieve my goals. Thank you for your unwavering assistance and mentorship.

References

- Khattar, Sonam & Sharma, Lakshmi & Taneja, Anmol. IoT-based intelligent irrigation system using Arduino. 050008. 2024. 10.1063/5.0197057.
- [2] Fathy, Cherine & Ali, Hassan. A Secure IoT-Based Irrigation System for Precision Agriculture Using the Expeditious Cipher. 2023. Sensors. 23. 2091. 10.3390/s23042091.
- [3] Ogoh Ph.D, Brendan. THE EFFECT OF THE INTERNET OF THINGS (IOT) IN AGRICULTURE Introduction. 2782-8212, 2022.
- [4] Babu Loganathan, Ganesh. "Smart Agriculture System With E– E-Carbage Using Iot." International Journal of Modern Agriculture Vol.10, No.1, pp.928-931, 2021.
- [5] Ramsha Siddiqui, Mohammad Muzammil Khan, Aqeel Khalique & Imran Hussain, "Smart Green Roof A Prototype Toward Sustainable Smart Agriculture", Proceedings of International Conference on Intelligent Cyber-Physical Systems, India. pp.91-100, 2022.
- [6] Khalid Haseeb, Ikram Ud Din, Ahmad Almogren and Naveed Islam. "An Energy Efficient and Secure IoT based WSN Framework An application to Smart Agriculture." Sensors. Vol.20, Issue.7, pp.20-81, 2020.
- [7] Sain, Gustavo & Loboguerrero, Ana & Corner-Dolloff, Caitlin & Lizarazo, Miguel & Nowak, Andreea & Martinez Baron, Deissy & Andrieu, Nadine. Costs and benefits of climate-smart agriculture: The case of the Dry Corridor in Guatemala. Agricultural Systems. 2016. 151. 10.1016/j.agsy.2016.05.004.
- [8] S.K. Ng'ang'a, C.M. Mwungu, C. Mwongera, I. Kinyua, A. Notenbaert, E. Girvetz, Survey data on cost and benefits of climate smart agricultural technologies in western Kenya, Data in Brief, Vol. 16, pp.261-265, 2018. ISSN 2352-3409, https://doi.org/10.1016/j.dib.2017.11.027.(https://www.sciencedire ct.com/science/article/pii/S2352340917306236)
- [9] K. A. Patil and N. R. Kale, "A model for smart agriculture using IoT," 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, pp.543-545, 2016. doi: 10.1109/ICGTSPICC.2016.7955360.
- [10] G. Sushanth and S. Sujatha, "IOT Based Smart Agriculture System," 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, pp.1-4, 2018. doi: 10.1109/WiSPNET.2018.8538702.
- [11] R. Akbar, M. H. Cosh, P. E. O'Neill, D. Entekhabi and M. Moghaddam, "Combined Radar–Radiometer Surface Soil Moisture and Roughness Estimation," in IEEE Transactions on Geoscience and Remote Sensing, July, Vol.55, No.7, pp.4098-4110, 2017. doi: 10.1109/TGRS.2017.2688403.
- [12] Akbar, Ruzbeh & Cosh, Michael & O'Neill, Peggy & Entekhabi, Dara & Moghaddam, Mahta. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation. IEEE Transactions on Geoscience and Remote Sensing. pp.1-13, 2017. 10.1109/TGRS.2017.2688403.
- [13] N. Cherukutota and S. Jadhav, "Architectural framework of smart water meter reading system in IoT environment," 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, pp.0791-0794, 2016. doi: 10.1109/ICCSP.2016.7754253
- [14] Cherukutota, Neeharika & Jadhav, Shraddha. Architectural framework of smart water meter reading system in IoT environment. pp.0791-0794, 2016. 10.1109/ICCSP.2016.7754253.
- [15] S. Narendran, P. Pradeep and M. V. Ramesh, "An Internet of Things (IoT) based sustainable water management," 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, pp.1-6, 2017. doi: 10.1109/GHTC.2017.8239320.
- [16] Pradeep, Preeja & Narendran, Sreekanth & Vinodini Ramesh, Maneesha. An Internet of Things (IoT) based Sustainable Water Management. 2017. 10.1109/GHTC.2017.8239320.

- [17] T. Perumal, M. N. Sulaiman and C. Y. Leong, "Internet of Things (IoT) enabled water monitoring system," 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2015, pp.86-87, 2015. doi: 10.1109/GCCE.2015.7398710.
- [18] Perumal, Thinagaran. Internet of Things (IoT) enabled water monitoring system. 2015. 10.1109/GCCE.2015.7398710.
- [19] Rahu, Mushtaque & Karim, Sarang & Shams, Rehan & Hoshu, Ayaz & Chandio, Abdul. (2022). Wireless Sensor Networks-based Smart Agriculture: Sensing Technologies, Application and Future Directions. Sukkur IBA Journal of Emerging Technologies. 5. pp.18-32, 2022. 10.30537/sjet.v5i2.1104.
- [20] R. Deepa, M. Sankar, R. R, C. Sankari, Venkatasubramanian and R. Kalaivani, "IoT based Energy Efficient using Wireless Sensor Network Application to Smart Agriculture," 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), Bengaluru, India, pp.90-95, 2023. doi: 10.1109/IDCIoT56793.2023.10053446.
- [21] Wachowiak, Mark & Walters, Dan & Kovacs, John & Smolikova-Wachowiak, Renata & James, April. (2017). Computers and Electronics in Agriculture Original papers Visual analytics and remote sensing imagery to support community-based research for precision agriculture in emerging areas. Computers and Electronics in Agriculture. 143. pp.149-164, 2017. 10.1016/j.compag.2017.09.035.
- [22] S. R. Prathibha, A. Hongal and M. P. Jyothi, "IOT Based Monitoring System in Smart Agriculture," 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Bangalore, India, pp.81-84, 2017. doi: 10.1109/ICRAECT.2017.52.

AUTHORS PROFILE

Mr. Hiresh Singh Sengar Ph.D scholar in Dept. of Computer Science and Engineering from LNCT University, Bhopal, India

Dr. Sakshi Rai is the Director of Dept. of Computer Science and Technology, Lakshmi Narain College of Technology, Jabalpur – 482053, Madhya Pradesh, India. She has completed her Ph.D. in Computer Science and Engineering Department from LNCT University; her research area focuses on "An Enhancement Of Medical Cyber-Physical System A Security Prospects." She has published several papers in reputed international journals, including SCI & Web of Science, and conferences, including IEEE, and it's also available online.