
  © 2019, IJCSE All Rights Reserved                                                                                                                                        52 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                             Vol.-7, Issue-10, Oct 2019                              E-ISSN: 2347-2693 

                 

Enhanced K_way Method In "APRIORI" Algorithm for Mining the 

Association Rules Through Embedding SQL Commands 

 
Basel A. Dabwan

1*
, Mukti E. Jadhav

2
  

 
1
Dept. of Computer Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India 

2
Dept. of Computer Science, M.I.T.College, Aurangabad, India 

 
*Corresponding Author:   baseldbwan@yahoo.com,   Tel.: +91-8828196252 

 

DOI:   https://doi.org/10.26438/ijcse/v7i10.5256 | Available online at: www.ijcseonline.org 

Accepted: 14/Oct/2019, Published: 31/Oct/2019 

Abstract— No doubt, the notable and bursting  growth in data and databases has produced an imperative necessity for new 

mechanism and devices that can rationally and spontaneously convert the handled data into helpful and valid information and 

knowledge. Data mining is such a style that evolves non axiomatic, tacit, formerly anonymous, and possibly beneficiary 

information from data in databases. In this paper we achieved some Enhancements in  K_way Method In "APRIORI" 

Algorithm for Mining the Association Rules Through Embedding SQL Commands. 
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I. INTRODUCTION  

 

The quick growth in data and databases has created a 

pressing need for new tools and techniques that can quickly 

and efficiently  process raw data into useable information . 

Mining association is one of the regularly used methods in 

data mining.  Basket data analysis is typical of this method.     

There are some approaches proposed to mine association 

rules in relational databases using SQL [1,2,3,4,5,6,7,8,9,10]. 

Different efforts have been proposed  to enhance database-

related association rule mining. There  have been 

proposedlanguage extensions of SQL to support mining 

operations; for instance, in [7], DMQL extends SQL  with a 

series of operators forgeneration of characteristic  rules, 

discriminant rules and classification rules. In [4], an  

inductive method using SQL has been presented to generate  

frequent itemsets. In [5], the cost of generating association 

rule for a given item in object relational databases has been  

tested to show that the cost of computing association rules  

does not depend on support and confidence threshold. In [6],  

an improved algorithm for mining association rules based on  

computing Sequence Number Degree (SND) has been  

introduced  [10] presents the Btree index, as an approach to 

provide tight integration of item set extraction in a relational  

DBMS. 

 

Since the generation of frequent itemsets is the most  

expensive part of association rule mining, in this work we  

introduce an enhanced method for frequent item set  

generation by rewriting the SQL statement of frequent item  

set generation in such a way that avoid joining the item to  

itself as this step is not logic and consumes more time and  

resources. Our approach shows significant performance 

enhancement in terms of query execution time which is less 

than traditional K-way method. 

 

This paper is organized as the following: an introduction  and 

related work are presented in Section I. the definition of  

Association rules is presented in Section II. Apriori  

Algorithm is presented in Section III. In section IV, our  

enhanced method on K-way approach with related  

experiments and results are presented. Finally, conclusions  

are presented in  section V. 

 

II. DEFINITION  OF ASSOCIATION RULES 

 

Relationships between unrelated data in a targeted data 

sources can be stated as if/then statement. An example of an 

association rule would be  "If someone buys an apple, he is 

75% likely to also purchase orange. " 

 

The formal definition of Association rules mining provided 

by [1] is as follow:  

Let I = {iB1B, iB2B,.., iBmB} be a set of literal, called items. 

Let D = {tB1B, tB2B,.., tBnB} be a set of transactions, where 

each transaction, t, is a set of items such that  t   I. Note that 

the quantities of items in a transaction are not considered. 

Each transaction is associated with an identifier, called TID. 

Given an itemset X  I, a transaction t contains X if, and 

only if, X  t. 

 

 The itemset X has support, s, in the transaction set D if s% 

of transactions in D contain X; we denote s = support (X). 

An association rule is an implication of the form X => Y, 
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where X, Y  I, and X  Y = .Each rule has two measures 

of value, support, and confidence. The support of the rule X 

=> Y is support (X  Y). The confidence, c, of the rule X => 

Y in the transaction set D means c% of transactions in D that 

contain X also contain Y, which can be written as the ratio 

support (X  Y) / support (X). this confidence gives an 

indication how strong  the rule is. For a specific association 

rule mining exercise,    minimum support and minimum 

confidence should be specified to find all the association 

rules where support and confidence are greater than the 

provided minimum support and minimum confidence.  

 

The process of mining association rules can be divided into 

two sub-processes:   

 (1) Identifying the frequent itemsets: In this sub-process, all 

itemsets that have support above the specified minimum 

support are identified. These itemsets are called large 

itemsets or frequent itemsets.   

(2) Identifying the valid/significant rules: in this sup-process, 

for each frequent itemset, all rules that have confidence more 

than the specified minimum confidence are identified. For 

example, if X and Y are frequent itemset, where X, Y   I, 

and X    Y =  if support (X   Y) / support  (X)   

(specified confidence), then the rule X => Y is derived. 

 

Generally, the efficiency and performance of mining 

association rules exercise is determined by the first sub-

process by which the frequent itemsets are recognized; then 

the related association rules can be generated in a 

straightforward manner. 

 

Frequent itemset may contain 2 items, 3 item,…., or k items. 

The difficult and time consuming part of the mining 

association rules is finding the frequent k-itemsets;  this can 

be identified if the frequent (k-1)-itemsets are found. 

Frequent (k-1)itemsets will be used to generate candidate k-

itemset. if the candidate k-itemset’s support is greater than 

the specified support, then it will be considered as frequent 

k-itemset. Frequent (k-2) will be used to identify frequent 

(K-1) itemset, and so on. Candidate 1-itemset i any item that 

exists in the transaction database; i.e. any item in the set I  

where I = {i1 , i2 , . . , im } . 

 

III. APRIOPRI ALGORITHEM 

 

Because ―identifying the frequent itemsets‖ is the most 

important step in mining the association rules, a variety of  

algorithms and techniques have been developed to discover 

the frequent itemsets, see [1,5,6,8,9]. One of the most well  

known and efficient algorithms in the mining of association 

rules is the Apriori algorithm. Apriori algorithm, as shown in  

―Fig. 1‖, can be outlined as follows:   

 

1-iterations are used to generate the frequent itemsets. In 

each iteration, the transaction table is scanned one time to 

generate all frequent itemsets of the same size; ascending 

order of itemsets is used to generate the frequent itemsets. In 

the first iteration, the size-1 frequent itemsets(L1) ) are 

generated. then candidate C2  itemsets are generated by using 

the candidate set generating function  Apriori-gen on L1. 

Subsequently, C k  in the kth iteration is generated by using 

Apriori-gen on L k-1 , where Lk-1 is the set of all frequent 

(k-1)-itemsets found in iteration k-1. Apriori-gen generates 

only those k-itemsets whose every (k-1)-itemset subset is in 

L k-1. The support counts of the candidate itemsets in C k  

are then generated by searching the transaction table once, 

and the Lk frequent itemsets are generated from the 

candidates Ck  [8]. For example, let L3  be {A B C}, {A B 

D}, {A C D}, {A C  E}, {B C D}. After executing the 

joining step, C4 will be {{A B C D},{A C D E}}. After 

applying the prune step, the following itemsets will be 

deleted {A C D E} because the itemset {A D E} is not in L3 

. Ending with C4  having only {A B C D}.2.Generating 

rules. For every frequent item set l, we output all rules a  

(l-a), where a is a subset of l, such that the ratio support (l) / 

support (a) is at least minconf  

 

 
Figure 1: Apriori algorithm (Sarawak, Thomas and Agrawal 

1998). 

 

Suppose x is any subset of b, the support of x must be greater 

or equal the support of b.  Therefore, the confidence of x => 

(l-x) will not be more than the confidence of b => (l-b).  

Hence, if b did not generate a rule containing all the items in 

l with b as the antecedent, neither will b. It is known that for 

a rule b =>  (l-b) to hold, all rules of the form  x => (l-x)  

must also hold, where x is a nonempty subset of b.  

 

Based on the rule generation algorithm, shown in ―Fig.2‖, for 

frequent itemset l, all rules with one item in the consequent  

are first generates. The algorithm then use the consequents of 

these rules to generate all consequents with two items that 

can appear in a rule generated from l, etc.  
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Figure 2.:  Rule generation algorithm (Sarawak, Thomas and 

Agrawal 1998). 

 

To clarify how  Apriori algorithms works, consider the 

database in Table I, which shows sample transactional 

database, in this example, minimum support  of  50% and 

minimum confidence of  60%  will be used.  

 

TABLE I. SAMPLE TRANSACTION DATABASE 

 

Since there are four records in the table, the number of 

transactions above the minimum support  is  2 (4 × 50% = 2). 

This means any itemset that has 2 or more transactions will  

be considered a frequent item set. 

 

To generate frequent 1-itemset, the algorithm scan the 

database and count the support for every item in the 

transaction databases, the  frequent 1-itemset  is {1, 2, 3, 5};  

item 4 has been deleted because it is exits in only one 

transaction. Next, frequent k-itemset will be generated by 

using candidate generation and pruning phases.  Candidate 2-

itemset are {{1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}}. The 

algorithm then calculate the support of each set of candidate 

2-itemset and prune the 2-itemset whose support is lower 

than minimum support to get frequent 2-itemset which is 

{{1,3}, {2, 3}, {2, 5}, {3, 5}}. The same previous step will  

used for candidate 3-itemset generation to generate {{2, 3, 

5}}; this yields frequent 3-itemset which is {{2, 3, 5}}. Since 

frequent 4-itemset is empty, frequent k-itemset  generation 

comes to an end. Next, the algorithm derives the association 

rules for frequent 3-itemset {{2, 3, 5}} where minimum 

support is 50%  and minimum confidence is  60%  Table II 

bellow shows these rules.  
 

TABLE II.   SAMPLE TRANSACTION DATABASE 

Rule Support confidence 

 

2 and 3=>5 50% 100% 

2 and =>53 50% 66.7% 

3 and =>52 50% 100% 

2=>3 and 5 50% 66.7% 

3=>2 and 5 50% 66.7& 

5=>2 and 3 50% 66.7& 

 

IV. ENHANCED METHOD ON K-WAY METHOD 

APPROACHE & EXPERIMENTAL RESULTS 
 

Apriori algorithm is implemented using SQL to integrate the 

algorithm directly with Oracle Database. In this paper, we 

moved the algorithm forward by enhancing the SQL 

statement that is used get frequent item sets; to give sound 

and accurate judgment on our achievement, a performance 

comparison between our approach and the K-way approach 

provided by [8] has been conducted by generating frequent 

itemsets using  both approaches on different minimum 

support values.  

 

The DataSet used is a transaction table named ―tt‖ that has 

40028 transactions, 210520 records, 20 different items, 5.25 

as an average number of items in transaction. Table III shows 

the structure of the transactional table . 

  

       TABLE III. TRANSACTIONAL  TABLE 

Column name Type 

Sequence_id Number 

Attribute_name Char(50) 

 

Generating frequent itemset (F5) has been used in this 

comparison using candidate itemset C5. ―Fig. 3‖   shows the 

original SQL statement used by [8] to generate the F5- 

Itemsets 

 

In this statement, there is a need to join thtransactional table 

(tt) to itself 5 times. Counting the number of records that 

would result because of such join (see SQL statement#1 

below) ends up with (880985330) records retrieved within 7 

minutes. This number in fact is not the correct one that we 

have to use in counting for frequent items. It is gigantic 

number because of missing important point that there is no 

need to join the item in t1 to itself in t2, t3, t4, t5; so instead 

we used an improved version of SQL statement using ―>‖ 

ID Solid Item 

1 1               3                   4 

2 2                 3                    5 

3 1          2                  3           5 

For all frequent k-itemsets l BkB, k  2, do begin 

    HB1B = {consequents of rules from l BkB with one item in the 

consequent} 

      Call ap-genrules (l BkB, HB1B); 

End 

Procedure ap-genrules (l BkB: frequent k-itemset, H BmB: set of 

m-item consequents) 

      If  (k  m+1) then begin 

           H Bm+1 B= apriori-gen (H BmB); 

           For all h Bm+1 B H Bm+1, Bdo begin 

 Conf = support (l BkB) / support (l Bk B– h Bm+1B); 

        If  (conf  minconf) then 

Output the rule (l BkB – h Bm+1B)  h Bm+1  

 With confidence = conf and support = support (l BkB);   Else   

                       Delete h Bm+1 Bfrom H Bm+1B; 

                         End 

                    Call ap-genrules (l BkB, H Bm+1B); 

     End 
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operator to avoid joining the table to itself (see statement#2 

below) where the correct number of records is (1839307 

records) retrieved in 35 seconds only. 

 

Statement#1 

select count(*) 

from tt t1, tt t2, tt t3, tt t4, tt t5 

where 

t1.sequence_id=t2.sequence_id and 

t2.sequence_id=t3.sequence_id and 

t3.sequence_id=t4.sequence_id and 

t4.sequence_id=t5.sequence_id; 

COUNT (*) 

---------- 

880985330 

---------- Execution Time: 7 minutes 

 

statement#2 (enhancement) 

select count(*) 

from tt t1, tt t2, tt t3, tt t4, tt t5 

where (t1.sequence_id=t2.sequence_id 

and t2.sequence_id=t3.sequence_id 

and t3.sequence_id=t4.sequence_id 

and t4.sequence_id=t5.sequence_id) 

and (t1.attribute_name>t2.attribute_name 

and t2.attribute_name>t3.attribute_name 

and t3.attribute_name>t4.attribute_name 

and t4.attribute_name>t5.attribute_name); 

COUNT(*) 

---------- 

1839307 

---------- 

Execution Time: 35 seconds 

Figure 3.  SQL statement used by K-way method 

 ―Fig. 4‖ below depicts the execution time (in seconds) for 

the Apriori algorithm for both cases (K-way method and our 

enhanced method) using different values of minimum 

support. As seen in Table IV our proposed method has 

significant performance enhancement compared to the K-

way approach for all specified minimum support values. 

 

 

 
Figure 4.   Execution time  for K-way method and enhanced 

method. 

 

TABLE IV. COMPARISON RESULTS 

 

V. CONCLUSION  
 

Where the generation of frequent itemsets is the most 

important and vital part of association rule mining, we 

introduce a promoted method for frequent itemset generation 

through rewriting the SQL statment of frequent itemset 

generation in a way that can eschew joining the item to itself, 

where this step is not logic and consumes more time and 

resources. The process that we have adopted in this paper 

demonstrated a considerable performance promotion in terms 

of query execution time, which is less than conventional K-

way method. 
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