
 © 2019, IJCSE All Rights Reserved 52

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-10, Oct 2019 E-ISSN: 2347-2693

Enhanced K_way Method In "APRIORI" Algorithm for Mining the

Association Rules Through Embedding SQL Commands

Basel A. Dabwan

1*
, Mukti E. Jadhav

2

1
Dept. of Computer Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

2
Dept. of Computer Science, M.I.T.College, Aurangabad, India

*Corresponding Author: baseldbwan@yahoo.com, Tel.: +91-8828196252

DOI: https://doi.org/10.26438/ijcse/v7i10.5256 | Available online at: www.ijcseonline.org

Accepted: 14/Oct/2019, Published: 31/Oct/2019

Abstract— No doubt, the notable and bursting growth in data and databases has produced an imperative necessity for new

mechanism and devices that can rationally and spontaneously convert the handled data into helpful and valid information and

knowledge. Data mining is such a style that evolves non axiomatic, tacit, formerly anonymous, and possibly beneficiary

information from data in databases. In this paper we achieved some Enhancements in K_way Method In "APRIORI"

Algorithm for Mining the Association Rules Through Embedding SQL Commands.

Keywords— Ddata mining; association rules; relational, database; Apriori ; SQL.

I. INTRODUCTION

The quick growth in data and databases has created a

pressing need for new tools and techniques that can quickly

and efficiently process raw data into useable information .

Mining association is one of the regularly used methods in

data mining. Basket data analysis is typical of this method.

There are some approaches proposed to mine association

rules in relational databases using SQL [1,2,3,4,5,6,7,8,9,10].

Different efforts have been proposed to enhance database-

related association rule mining. There have been

proposedlanguage extensions of SQL to support mining

operations; for instance, in [7], DMQL extends SQL with a

series of operators forgeneration of characteristic rules,

discriminant rules and classification rules. In [4], an

inductive method using SQL has been presented to generate

frequent itemsets. In [5], the cost of generating association

rule for a given item in object relational databases has been

tested to show that the cost of computing association rules

does not depend on support and confidence threshold. In [6],

an improved algorithm for mining association rules based on

computing Sequence Number Degree (SND) has been

introduced [10] presents the Btree index, as an approach to

provide tight integration of item set extraction in a relational

DBMS.

Since the generation of frequent itemsets is the most

expensive part of association rule mining, in this work we

introduce an enhanced method for frequent item set

generation by rewriting the SQL statement of frequent item

set generation in such a way that avoid joining the item to

itself as this step is not logic and consumes more time and

resources. Our approach shows significant performance

enhancement in terms of query execution time which is less

than traditional K-way method.

This paper is organized as the following: an introduction and

related work are presented in Section I. the definition of

Association rules is presented in Section II. Apriori

Algorithm is presented in Section III. In section IV, our

enhanced method on K-way approach with related

experiments and results are presented. Finally, conclusions

are presented in section V.

II. DEFINITION OF ASSOCIATION RULES

Relationships between unrelated data in a targeted data

sources can be stated as if/then statement. An example of an

association rule would be "If someone buys an apple, he is

75% likely to also purchase orange. "

The formal definition of Association rules mining provided

by [1] is as follow:

Let I = {iB1B, iB2B,.., iBmB} be a set of literal, called items.

Let D = {tB1B, tB2B,.., tBnB} be a set of transactions, where

each transaction, t, is a set of items such that t  I. Note that

the quantities of items in a transaction are not considered.

Each transaction is associated with an identifier, called TID.

Given an itemset X  I, a transaction t contains X if, and

only if, X  t.

 The itemset X has support, s, in the transaction set D if s%

of transactions in D contain X; we denote s = support (X).

An association rule is an implication of the form X => Y,

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 53

where X, Y  I, and X  Y = .Each rule has two measures

of value, support, and confidence. The support of the rule X

=> Y is support (X  Y). The confidence, c, of the rule X =>

Y in the transaction set D means c% of transactions in D that

contain X also contain Y, which can be written as the ratio

support (X  Y) / support (X). this confidence gives an

indication how strong the rule is. For a specific association

rule mining exercise, minimum support and minimum

confidence should be specified to find all the association

rules where support and confidence are greater than the

provided minimum support and minimum confidence.

The process of mining association rules can be divided into

two sub-processes:

 (1) Identifying the frequent itemsets: In this sub-process, all

itemsets that have support above the specified minimum

support are identified. These itemsets are called large

itemsets or frequent itemsets.

(2) Identifying the valid/significant rules: in this sup-process,

for each frequent itemset, all rules that have confidence more

than the specified minimum confidence are identified. For

example, if X and Y are frequent itemset, where X, Y  I,

and X  Y =  if support (X Y) / support (X) 

(specified confidence), then the rule X => Y is derived.

Generally, the efficiency and performance of mining

association rules exercise is determined by the first sub-

process by which the frequent itemsets are recognized; then

the related association rules can be generated in a

straightforward manner.

Frequent itemset may contain 2 items, 3 item,…., or k items.

The difficult and time consuming part of the mining

association rules is finding the frequent k-itemsets; this can

be identified if the frequent (k-1)-itemsets are found.

Frequent (k-1)itemsets will be used to generate candidate k-

itemset. if the candidate k-itemset’s support is greater than

the specified support, then it will be considered as frequent

k-itemset. Frequent (k-2) will be used to identify frequent

(K-1) itemset, and so on. Candidate 1-itemset i any item that

exists in the transaction database; i.e. any item in the set I

where I = {i1 , i2 , . . , im } .

III. APRIOPRI ALGORITHEM

Because ―identifying the frequent itemsets‖ is the most

important step in mining the association rules, a variety of

algorithms and techniques have been developed to discover

the frequent itemsets, see [1,5,6,8,9]. One of the most well

known and efficient algorithms in the mining of association

rules is the Apriori algorithm. Apriori algorithm, as shown in

―Fig. 1‖, can be outlined as follows:

1-iterations are used to generate the frequent itemsets. In

each iteration, the transaction table is scanned one time to

generate all frequent itemsets of the same size; ascending

order of itemsets is used to generate the frequent itemsets. In

the first iteration, the size-1 frequent itemsets(L1)) are

generated. then candidate C2 itemsets are generated by using

the candidate set generating function Apriori-gen on L1.

Subsequently, C k in the kth iteration is generated by using

Apriori-gen on L k-1 , where Lk-1 is the set of all frequent

(k-1)-itemsets found in iteration k-1. Apriori-gen generates

only those k-itemsets whose every (k-1)-itemset subset is in

L k-1. The support counts of the candidate itemsets in C k

are then generated by searching the transaction table once,

and the Lk frequent itemsets are generated from the

candidates Ck [8]. For example, let L3 be {A B C}, {A B

D}, {A C D}, {A C E}, {B C D}. After executing the

joining step, C4 will be {{A B C D},{A C D E}}. After

applying the prune step, the following itemsets will be

deleted {A C D E} because the itemset {A D E} is not in L3

. Ending with C4 having only {A B C D}.2.Generating

rules. For every frequent item set l, we output all rules a 

(l-a), where a is a subset of l, such that the ratio support (l) /

support (a) is at least minconf

Figure 1: Apriori algorithm (Sarawak, Thomas and Agrawal

1998).

Suppose x is any subset of b, the support of x must be greater

or equal the support of b. Therefore, the confidence of x =>

(l-x) will not be more than the confidence of b => (l-b).

Hence, if b did not generate a rule containing all the items in

l with b as the antecedent, neither will b. It is known that for

a rule b => (l-b) to hold, all rules of the form x => (l-x)

must also hold, where x is a nonempty subset of b.

Based on the rule generation algorithm, shown in ―Fig.2‖, for

frequent itemset l, all rules with one item in the consequent

are first generates. The algorithm then use the consequents of

these rules to generate all consequents with two items that

can appear in a rule generated from l, etc.

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 54

Figure 2.: Rule generation algorithm (Sarawak, Thomas and

Agrawal 1998).

To clarify how Apriori algorithms works, consider the

database in Table I, which shows sample transactional

database, in this example, minimum support of 50% and

minimum confidence of 60% will be used.

TABLE I. SAMPLE TRANSACTION DATABASE

Since there are four records in the table, the number of

transactions above the minimum support is 2 (4 × 50% = 2).

This means any itemset that has 2 or more transactions will

be considered a frequent item set.

To generate frequent 1-itemset, the algorithm scan the

database and count the support for every item in the

transaction databases, the frequent 1-itemset is {1, 2, 3, 5};

item 4 has been deleted because it is exits in only one

transaction. Next, frequent k-itemset will be generated by

using candidate generation and pruning phases. Candidate 2-

itemset are {{1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}}. The

algorithm then calculate the support of each set of candidate

2-itemset and prune the 2-itemset whose support is lower

than minimum support to get frequent 2-itemset which is

{{1,3}, {2, 3}, {2, 5}, {3, 5}}. The same previous step will

used for candidate 3-itemset generation to generate {{2, 3,

5}}; this yields frequent 3-itemset which is {{2, 3, 5}}. Since

frequent 4-itemset is empty, frequent k-itemset generation

comes to an end. Next, the algorithm derives the association

rules for frequent 3-itemset {{2, 3, 5}} where minimum

support is 50% and minimum confidence is 60% Table II

bellow shows these rules.

TABLE II. SAMPLE TRANSACTION DATABASE

Rule Support confidence

2 and 3=>5 50% 100%

2 and =>53 50% 66.7%

3 and =>52 50% 100%

2=>3 and 5 50% 66.7%

3=>2 and 5 50% 66.7&

5=>2 and 3 50% 66.7&

IV. ENHANCED METHOD ON K-WAY METHOD

APPROACHE & EXPERIMENTAL RESULTS

Apriori algorithm is implemented using SQL to integrate the

algorithm directly with Oracle Database. In this paper, we

moved the algorithm forward by enhancing the SQL

statement that is used get frequent item sets; to give sound

and accurate judgment on our achievement, a performance

comparison between our approach and the K-way approach

provided by [8] has been conducted by generating frequent

itemsets using both approaches on different minimum

support values.

The DataSet used is a transaction table named ―tt‖ that has

40028 transactions, 210520 records, 20 different items, 5.25

as an average number of items in transaction. Table III shows

the structure of the transactional table .

 TABLE III. TRANSACTIONAL TABLE

Column name Type

Sequence_id Number

Attribute_name Char(50)

Generating frequent itemset (F5) has been used in this

comparison using candidate itemset C5. ―Fig. 3‖ shows the

original SQL statement used by [8] to generate the F5-

Itemsets

In this statement, there is a need to join thtransactional table

(tt) to itself 5 times. Counting the number of records that

would result because of such join (see SQL statement#1

below) ends up with (880985330) records retrieved within 7

minutes. This number in fact is not the correct one that we

have to use in counting for frequent items. It is gigantic

number because of missing important point that there is no

need to join the item in t1 to itself in t2, t3, t4, t5; so instead

we used an improved version of SQL statement using ―>‖

ID Solid Item

1 1 3 4

2 2 3 5

3 1 2 3 5

For all frequent k-itemsets l BkB, k  2, do begin

 HB1B = {consequents of rules from l BkB with one item in the

consequent}

 Call ap-genrules (l BkB, HB1B);

End

Procedure ap-genrules (l BkB: frequent k-itemset, H BmB: set of

m-item consequents)

 If (k  m+1) then begin

 H Bm+1 B= apriori-gen (H BmB);

 For all h Bm+1 B H Bm+1, Bdo begin

 Conf = support (l BkB) / support (l Bk B– h Bm+1B);

 If (conf  minconf) then

Output the rule (l BkB – h Bm+1B)  h Bm+1

 With confidence = conf and support = support (l BkB); Else

 Delete h Bm+1 Bfrom H Bm+1B;

 End

 Call ap-genrules (l BkB, H Bm+1B);

 End

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 55

operator to avoid joining the table to itself (see statement#2

below) where the correct number of records is (1839307

records) retrieved in 35 seconds only.

Statement#1

select count(*)

from tt t1, tt t2, tt t3, tt t4, tt t5

where

t1.sequence_id=t2.sequence_id and

t2.sequence_id=t3.sequence_id and

t3.sequence_id=t4.sequence_id and

t4.sequence_id=t5.sequence_id;

COUNT (*)

880985330

---------- Execution Time: 7 minutes

statement#2 (enhancement)

select count(*)

from tt t1, tt t2, tt t3, tt t4, tt t5

where (t1.sequence_id=t2.sequence_id

and t2.sequence_id=t3.sequence_id

and t3.sequence_id=t4.sequence_id

and t4.sequence_id=t5.sequence_id)

and (t1.attribute_name>t2.attribute_name

and t2.attribute_name>t3.attribute_name

and t3.attribute_name>t4.attribute_name

and t4.attribute_name>t5.attribute_name);

COUNT(*)

1839307

Execution Time: 35 seconds

Figure 3. SQL statement used by K-way method

 ―Fig. 4‖ below depicts the execution time (in seconds) for

the Apriori algorithm for both cases (K-way method and our

enhanced method) using different values of minimum

support. As seen in Table IV our proposed method has

significant performance enhancement compared to the K-

way approach for all specified minimum support values.

Figure 4. Execution time for K-way method and enhanced

method.

TABLE IV. COMPARISON RESULTS

V. CONCLUSION

Where the generation of frequent itemsets is the most

important and vital part of association rule mining, we

introduce a promoted method for frequent itemset generation

through rewriting the SQL statment of frequent itemset

generation in a way that can eschew joining the item to itself,

where this step is not logic and consumes more time and

resources. The process that we have adopted in this paper

demonstrated a considerable performance promotion in terms

of query execution time, which is less than conventional K-

way method.

REFERENCES

[1] R. Agrawal, T. Imielinski, A. Swami. Mining Association Rules between

Sets of Items in Large Databases. In Proc. of the ACM SIGMOD

Conference on Management of Data, 1993.

[2] R. Agrawal, R. Strikant. Fast Algorithms for Mining Association Rules.

In Proc. of the Very Large Database (VLDB) Conference, 1994.

Select i1, i2, i3, i4, i5, count(*) support1

from c5, t t1, t t2, t t3, t t4, t t5

Where

t1.attribute_name= c5.i1 and

t2.attribute_name= c5.i2 and

t3.attribute_name= c5.i3 and

t4.attribute_name= c5.i4 and

t5.attribute_name= c5.i5 and

t1.sequence_id = t2.sequence_id and

t2.sequence_id = t3.sequence_id and

t3.sequence_id = t4.sequence_id and

t4.sequence_id = t5.sequence_id

group by i1, i2, i3, i4, i5

having count(*) > min_support

 Minimm

Support

Execution time

K-way

Approach
(seconds)

Execution

time Proposed

Approach
(seconds)

Time variance

(seconds)

250 823 224 599

500 553 159 394

1000 224 132 92

2000 110 100 10

3000 55 48 7

 International Journal of Computer Sciences and Engineering Vol.7(10), Oct 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 56

[3] Mirela Danubianu, Stefan Gheorghe Pentiuc, Iolanda Tobolcea. Mining

Association Rules Inside a Relational Database – A Case Study. IARIA,

2011.pp14-20

[4] Cyrille Masson, Céline Robardet, Jean-François Boulicaut: Optimizing

subset queries: a step towards SQL-based inductive databases for

itemsets.in processing of ACM symposium of applied computing SAC

2004: 535-539

[5] Jamil, H.M. Ad hoc association rule mining as SQL3 queries.

Proceedings IEEE International Conference on Data Mining, 2001, 609

– 612.

[6] Gang Fang Zu-Kuan Wei Yu-Lu Liu . An algorithm of improved

association rules mining. In proceeding of International Conference on

Machine Learning and Cybernetics, 2009, 133 - 137

[7] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A data

mining query language for relational datbases.In Proc. of the 1996

SIGMOD workshop on research issues on data mining and knowledge

discovery, Montreal, Canada, May 1996.

[8] Sunita Sarawagi, Shiby Thomas, Rakesh Agrawal, integrating

Association rule mining with relational database systems, Proceedings

of the 1998 ACM SIGMOD international conference on Management of

data, Volume 27 Issue 2.

[9] D. Mirela, G.Stefan, T. PentiucIolanda. Mining Association Rules Inside

a Relational Database – A Case Study. The Sixth International Multi-

Conference on Computing in the Global Information

Technology(ICCGI 2011). June 19-24, 2011 Luxembourg.14-19.

[10] Rao, V.V., R, ―Efficient association rule mining using indexing

support,‖ Proceedings of the International Conference on Recent Trends

in Information Technology (ICRTIT), 3-5 June 2011, Chennai, Tamil

Nadu. pp. 683 – 688.

