
 © 2016, IJCSE All Rights Reserved 55

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Survey Paper Volume-4, Issue-7 E-ISSN: 2347-2693

A Survey of Performance Comparison between Virtual Machines and

Containers

Prashant Ramchandra Desai

Department of Computer Engineering, Bharati Vidyapeeth University, Pune, India

Available online at: www.ijcseonline.org

Received:18/Jun/2016 Revised: 26/Jun/2016 Accepted: 16/Jul/2016 Published: 31/Jul/2016

Abstract—: Since the onset of Cloud computing and its inroads into infrastructure as a service, Virtualization has become peak

of importance in the field of abstraction and resource management. However, these additional layers of abstraction provided by

virtualization come at a trade-off between performance and cost in a cloud environment where everything is on a pay-per-use

basis. Containers which are perceived to be the future of virtualization are developed to address these issues. This study paper

scrutinizes the performance of a conventional virtual machine and contrasts them with the containers. We cover the critical

assessment of each parameter and its behavior when its subjected to various stress tests. We discuss the implementations and

their performance metrics to help us draw conclusions on which one is ideal to use for desired needs. After assessment of the

result and discussion of the limitations, we conclude with prospects for future research.

Keywords—Performance, Virtual Machines(VMs), Containers, Virtualization, Kernel Virtual machines (KVM), Docker, Hypervisor.

I. INTRODUCTION

 The abundance of cloud computing over the past decade has

lead to significant growth in virtualization techniques used.

The services provided by Cloud Computing indirectly

depend on the level of virtualization provided by the

underlying virtual machines. Hardware virtualization

consists of abstracting complete hardware resources so that

entire software like an operating system can run on it.

Hardware virtualization is categorized further depending

upon the levels of abstraction it offers into full virtualization,

partial virtualization, and Para virtualization. In Para

virtualization, the guest operating system is recompiled

before being installed in a virtual machine. The hypervisor

serves as a host for the guest OS and adds a layer of

virtualization. It also acts as an interface between guest OS

and the hardware. In full virtualization, the hypervisor is

directly installed on the hardware. Each guest operating gets

all the features of the underlying hardware because of the

layer of abstraction provided it doesn't feel the hypervisor's

presence. It is a commonly implemented form of

virtualization in virtual machines [1][2]. Since the

virtualization software is a bundle of hardware drivers and

interfaces which needs to be pre-installed before creating the

virtual machines. It is been observed, in some cases [1]some

of the interfaces and drivers do not function as expected thus

enabling the usage of Dockers where a small size

Unix/Linux operating system is installed on the bare-metal

and the virtual machines are hosted from the Docker or the

container-based virtualization. Container-based

virtualization is an alternate technology to virtual machines

and is quickly replacing them in the cloud environment. The

virtualization layer runs as an application, where the

operating system's kernel runs on bare metal with guest OS

installed on top of it. These are known as containers.

II. BACKGROUND

A. KVM

Kernel-based Virtual Machine (KVM) is a virtualization

technology for Linux systems that turns it into a hypervisor

and is designed for x86 processor architecture. The

hypervisor is built on Linux kernel, running an open source

operating system. It provides support for multiple guest OS

include windows, BSD, and Solaris. KVM is a full

virtualization technique where you can provide virtualized

hardware: that allocates the number of CPUs, memory, hard

disk space to the guest operating system.

There are a number of management tools as libvirt, oVirt

and Virtual Machine Manager available to easily manage

KVM through graphical user interface . One of the features

supported by KVM is the live migration in which entire data

centers can be backed up for maintenance without affecting

the functioning of the guest operating system.KVM supports

"hot plugging" that means you can resize or add additional

resources to the virtual machine while it is in operation

without disrupting its services.

B. Containers

Containers are similar to virtual machines in the services

they provide except they don't come with an overhead of

running a separate kernel and virtualizing all hardware

components. It modifies the host operating system to provide

abstraction. They have a container ID and group permission

system. Its main concept is built on the use of kernel

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(55-59) Jul 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 56

namespaces where isolated containers are created. These

have no access to objects outside the container. A container

which runs a full operating system is a system container

whereas the one which runs an application is an application

container. Because a containerized system has only one

kernel, there is only one level of resource scheduling and

allocation. The process that run inside a container is not

aware of the limit on the resources it can utilize hence there

always remains a risk where an application may over-

allocate itself resources.[3]

Security in containers is achieved by managing the group

permissions and by creating namespace awareness, where

the users are not treated with the same privileges inside the

container as those outside them. Docker is the most widely

used container today that deploys applications inside

software containers along with its code, runtime, system

tools, system libraries, etc . Docker has layered file system

images, supported by AUFS (Another UnionFS). Containers

have a faster boot time than virtual machines.

III. ASSESSMENT

A virtual machine can be benchmarked using various
performance measurements tools that integrate with your
hypervisor accordingly. Some of the tools used are VMware
ESXi, VSphere, vCenter. These tools monitor the resource
utilization of an active virtual machine and later aggregate
data into excel format for analysis. These same tools can be
used to benchmark application or system containers.

The performance can be measured on the basis of various
parameters such as throughput, latency, bandwidth, etc of
the system. We are mainly concerned with the overhead
generated by native, virtualized and non-virtualized
environments and how it can be optimized to improve
system performance and prove which one is suitable to use
under preferred conditions. [7]-[10]

The behavior of various parameters under the defined

workload is observed carefully and recorded, to study its

characteristics and get a consolidated comparison between

the three implementations.

A. CPU Performance

Throughput is the parameter used to measure the output
of the workload the CPU is subjected to a compression, High
Performance Computing (HPC) test. As observed the native
and Docker performance is similar in compression while
KVM is slower as compared to them.

HPC performance is similar on native and Docker but is

reasonably slow on KVM because of abstraction that works

as a disadvantage in this situation. The CPU schedulers do

not influence the processor in the native and Docker setup

hence there is no difference in performance.

B. Memory Performance

Bandwidth is the parameter used to measure the speed of

memory access and operations. Under various benchmarks

developed to stress test the memory in sequential and

random access methods, it is observed that the

performance of native, Docker and KVM environment is

almost the same for various operations with very little

deviation. The testing was carried out on a single node on

large datasets. Container based systems have the ability to

return unused memory to the host resulting in better usage.

Para virtualization systems suffer from double cache since

the same memory blocks are used by the host and the

virtual machine.

C. Network Performance

Bandwidth is used to measure the performance of the

network communication. The communication scenario is

bulk data transfer over a single TCP connection like the

client -server model.

The data transfer rate is measured in both directions since

TCP/IP stack has different policies for sending and

receiving data. The major component that causes a

bottleneck in performance is the NIC in which case we use

the CPU cycles to measure the overhead. As for the

performance goes Docker uses bridging and NAT which

increases the route length. Dockers which do not use NAT

have same performance to native systems.KVM

performance can be improved if the VM can directly

communicate with the host bypassing the in-between

layers.

Latency can also be another network parameter used to

determine performance. In the above setup of the

experiment, the client sends 200 bytes of request to the

server and the server response with a 400 bytes reply in

this case the client has to wait to process the complete

request. If we consider wireless and wired communication

protocols Docker with NAT doubles latency time KVM

also adds to latency time compared to its native system

implementations. The difference in network performance

is due to the virtualized network devices implemented by

virtual machines and Docker.

D. Disk Performance

Throughput is used to measure the efficiency of the disk

operations. As duly noted for sequential read and

sequential write operations, the Docker and KVM add

very little overhead when compared to native, but there is

a lot of performance variance in KVM's case cause of

suspected bottleneck in fiber channel.

For random read and random write operations, Docker has

no overhead, but KVM's performance decreases

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(55-59) Jul 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 57

significantly. Disk performance is affected by the I/O

scheduler used by the system.

 E. Application Performance-Redis

Redis (REmote Dictionary server) is the most popular

NoSQL database used in containers and is open source. It is

an in-memory data store and key-valued database.

Generalized operations between client and server where

performance issues are noticed only in the form of network

latency. This arises due to the large number of concurrent

requests the client makes simultaneously to the server. Redis

is widely used in the cloud environment. In this test scenario,

the number of requests made simultaneously is ten times the

number of clients. Redis is extensively used to test the

networking and memory subsystem.

The native environment can handle a large number of clients

connected to the networking subsystem, so we can easily

scale the number of clients connected. The bottleneck in

performance is visible at the CPU because Redis is a single-

threaded application; it increases the latency of the CPU.

Docker's performance is virtually similar to that of native

except with NAT enabled, latency increases as new

connections are added. KVM's performance is lower initially

but approaches that of native systems as concurrency

increases. Hence we can draw the conclusion that Redis

application needs to be concurrent to be fully utilized.

F. Application Performance-MySQL

MySQL is a relational database that can be used to stress the

memory, file system, networking and inter-process

communication subsystems. Various open source

benchmarks can be run against the database to test the

transaction throughput of the system. Various configurations

were used to test MySQL, running under the native system,

MySQL under Docker that uses the host's networking,

MySQL under Docker using NAT for networking and KVM

running MySQL.

Throughput is the number of transactions per second

increase until the peak point where it becomes stable.

Docker has similar performance to that of native systems;

KVM has higher overhead compared to all other

configurations used to demonstrate. The Docker's layered

file system also introduces overhead because of the I/O

request getting redirected through various layers. The

latency of the system increases with the load, but Docker

does not show this observation when compared to other to

other setups because of lower throughput at lower

concurrency rates. When it comes to CPU peak utilization

native system is able to achieve a higher rate as compared to

Dockers which show that Dockers have a small but

significant impact. [4]-[16]

CPU utilization measured in throughput is minimal for the

same amount of CPU used for Docker and Docker with

NAT, but the latency for Docker is higher for lower values

of concurrency. This is due to mutex contention which

prevents MySQL from fully utilizing the CPU for

configurations. [17]-[26]

G. Discussion

We can analyze the results, as expected for the given

environment containers and VMs generate a negligible

amount of overhead when it comes to CPU and memory

usage. When it comes to network usage both Docker and

KVM add to the latency and hence need to tune and are of

no good with their standard implementations. Most of the

overhead added are because of the bottlenecks in end

communication devices. When it comes to disk performance

Docker and native are similar to each other but KVM sees a

considerable downfall in performance since each operation

has to pass through AUFS.

The major limitation of virtualization technology is

bottlenecks in I/O intensive applications. The idea is to get

very close to native systems when it comes to I/O processing

and decrease as many layers as possible in virtual machines

and containers. Container-based virtualization system has

better CPU and I/O performance because of its ability to

release used unused and resources and work in isolation.

CONCLUSIONS AND FUTURE WORK
This study analyzes the behavior of various well-known

parameters, under different workload conditions to give us a

comprehensive performance comparison between Containers

and Virtual Machines. As the survey clearly states, that no

one, technology can be substituted by another right away,

each having its own merits and demerits and each

technology can be used efficiently with proper configuration

suiting your particular needs.

Some of the areas which are not researched to its full extent

are:

• Performance analysis in isolation when more than

more than one workload is executing on the server.

• The performance of different kinds of workloads such

as data intensive workloads which are more I/O bound

in nature.

• Performance trade-off between live migration and

restarting virtual machines and containers.

REFERENCES
[1] Xavier, M.G., Neves, M.V. and De Rose, C.A.F., 2014,

February. A performance comparison of container-

based virtualization systems for mapreduce clusters.

In 2014 22nd Euromicro International Conference on

Parallel, Distributed, and Network-Based

Processing (pp. 299-306). IEEE.

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(55-59) Jul 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 58

[2] Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A. and

Peterson, L., 2007, March. Container-based operating

system virtualization: a scalable, high-performance

alternative to hypervisors. In ACM SIGOPS Operating

Systems Review (Vol. 41, No. 3, pp. 275-287). ACM.

[3] Vaughan-Nichols, S.J., 2006. New approach to

virtualization is a lightweight.Computer, 39(11), pp.12-

14.

[4] Raval, K.S., Suryawanshi, R.S., Naveenkumar, J. and

Thakore, D.M., 2011. The Anatomy of a Small-Scale

Document Search Engine Tool: Incorporating a new

Ranking Algorithm. International Journal of

Engineering Science and Technology, 1(3), pp.5802-

5808.

[5] Archana, R.C., Naveenkumar, J. and Patil, S.H., 2011.

Iris Image Pre-Processing And Minutiae Points

Extraction. International Journal of Computer Science

and Information Security, 9(6), p.171.

[6] Jayakumar, M.N., Zaeimfar, M.F., Joshi, M.M. and

Joshi, S.D., 2014. INTERNATIONAL JOURNAL OF

COMPUTER ENGINEERING & TECHNOLOGY

(IJCET). Journal Impact Factor, 5(1), pp.46-51.

[7] Naveenkumar, J. and Joshi, S.D., 2015. Evaluation of

Active Storage System Realized through MobilityRPC.

[8] Jayakumar, D.T. and Naveenkumar, R., 2012.

SDjoshi,“. International Journal of Advanced Research

in Computer Science and Software Engineering,” Int.

J, 2(9), pp.62-70.

[9] Jayakumar, N., Singh, S., Patil, S.H. and Joshi, S.D.,

Evaluation Parameters of Infrastructure Resources

Required for Integrating Parallel Computing Algorithm

and Distributed File System.

[10] Jayakumar, N., Bhardwaj, T., Pant, K., Joshi, S.D. and

Patil, S.H., A Holistic Approach for Performance

Analysis of Embedded Storage Array.

[11] Naveenkumar, J., Makwana, R., Joshi, S.D. and

Thakore, D.M., 2015. OFFLOADING

COMPRESSION AND DECOMPRESSION LOGIC

CLOSER TO VIDEO FILES USING REMOTE

PROCEDURE CALL. Journal Impact Factor, 6(3),

pp.37-45.

[12] Naveenkumar, J., Makwana, R., Joshi, S.D. and

Thakore, D.M., 2015. Performance Impact Analysis of

Application Implemented on Active Storage

Framework. International Journal, 5(2).

[13] Salunkhe, R., Kadam, A.D., Jayakumar, N. and

Thakore, D., In Search of a Scalable File System State-

of-the-art File Systems Review and Map view of new

Scalable File system.

[14] Salunkhe, R., Kadam, A.D., Jayakumar, N. and Joshi,

S., Luster A Scalable Architecture File System: A

Research Implementation on Active Storage Array

Framework with Luster file System.

[15] Jayakumar, N., Reducts and Discretization Concepts,

tools for Predicting Student’s Performance.

[16] Jayakumar, M.N., Zaeimfar, M.F., Joshi, M.M. and

Joshi, S.D., 2014. INTERNATIONAL JOURNAL OF

COMPUTER ENGINEERING & TECHNOLOGY

(IJCET). Journal Impact Factor, 5(1), pp.46-51.

[17] Kumar, N., Angral, S. and Sharma, R., 2014.

Integrating Intrusion Detection System with Network

Monitoring. International Journal of Scientific and

Research Publications, 4, pp.1-4.

[18] Namdeo, J. and Jayakumar, N., 2014. Predicting

Students Performance Using Data Mining Technique

with Rough Set Theory Concepts. International

Journal, 2(2).

[19] Naveenkumar, J., Keyword Extraction through

Applying Rules of Association and Threshold

Values. International Journal of Advanced Research in

Computer and Communication Engineering

(IJARCCE), ISSN, pp.2278-1021.

[20] Kakamanshadi, G., Naveenkumar, J. and Patil, S.H.,

2011. A Method to Find Shortest Reliable Path by

Hardware Testing and Software

Implementation. International Journal of Engineering

Science and Technology (IJEST), ISSN, pp.0975-5462.

[21] Naveenkumar, J. and Raval, K.S., Clouds Explained

Using Use-Case Scenarios.

[22] Naveenkumar J, S.D.J., 2015. Evaluation of Active

Storage System Realized Through Hadoop.

International Journal of Computer Science and Mobile

Computing, 4(12), pp.67–73.

[23] Rishikesh Salunkhe, N.J., 2016. Query Bound

Application Offloading: Approach Towards Increase

Performance of Big Data Computing. Journal of

Emerging Technologies and Innovative Research, 3(6),

pp.188–191.

[24] Sagar S lad s d joshi, N.J., 2015. Comparison study on

Hadoop’s HDFS with Lustre File System. International

Journal of Scientific Engineering and Applied Science,

1(8), pp.491–494.

[25] Salunkhe, R. et al., 2015. In Search of a Scalable File

System State-of-the-art File Systems Review and Map

view of new Scalable File system. International

Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT) - 2016. pp. 1–8.

[26] Naveenkumar, J. and Raval, K.S., Clouds Explained

Using Use-Case Scenarios. INDIACom-2011

Computing for Nation Development, 2011/3.

[27] N. Jayakumar, “Reducts and Discretization Concepts,

tools for Predicting Student’s Performance,” Int. J.

Eng. Sci. Innov. Technol., vol. 3, no. 2, pp. 7–15, 2014.

[28] BVDUCOE, B.B., 2011. Iris Image Pre-Processing and

Minutiae Points Extraction. International Journal of

Computer Science & Information Security.

[29] P. D. S. D. J. Naveenkumar J, “Evaluation of Active

Storage System Realized through MobilityRPC,” Int. J.

Innov. Res. Comput. Commun. Eng., vol. 3, no. 11, pp.

11329–11335, 2015.

International Journal of Computer Sciences and Engineering Vol.-4(7), PP(55-59) Jul 2016, E-ISSN: 2347-2693

© 2016, IJCSE All Rights Reserved 59

[30] Anjali Nigam and Vineet Singh, “Securing Data

Transmission in Cloud using Encryption Algorithms”,

International Journal of Computer Sciences and

Engineering Research Volume 4, Issue 6, June 2016.

[31] Pritika Goel, “An Improved Load Balancing Technique

in Weighted Clustering Algorithm”, International

Journal of Computer Sciences and Engineering

Research Volume 4, Issue 6, June 2016.

[32] Anish Babu S , Hareesh M J , John Paul Martin , Sijo

Cherian and Yedhu Sastri.”System Performance

evaluation of Paravirtualization, Container

virtualization and Full virtualization using Xen,

OpenVZ and XenServer” Fourth International

Conference on Advances in Computing and

Communications.pp 247-250 IEEE 2014

AUTHORS PROFILE

Prashant Ramchandra Desai has received his B.E(2014)

in computer engineering from Karmeer Bhaurao Patil

College of Engineering , Satara. He is currently pursuing

M.Tech in computer engineering from Bharati Vidyapeeth

College Of Engineering ,Pune. His area of interest include

virtualization,Big Data and storage area network.

