
 © 2016, IJCSE All Rights Reserved 40

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Survey Paper Volume-4, Issue-6 E-ISSN: 2347-2693

Vectorization on Intel Xeon Phi : A Survey

Akhilesh Thool
1*

 and Hemlata Channe
2

1
Post Graduate Department of Computer Science and Engineering (PICT), Pune University, India

2
Assistant Professor, Pune Institute of Cosmputer Technology (PICT), Pune University, India

www.ijcseonline.org

Received: May/16/2016 Revised: May/30/2016 Accepted: Jun/18/2016 Published: Jun/30/ 2016

Abstract— Intel Xeon Phi coprocessors are the new family members of processors and platforms to the Intel family. Intel

Xeon Phi is the first in the family of Intel MIC (Many Integrated Core) architecture. Software running on the coprocessor

should leverage innumerable cores as well as make use of wide SIMD operation. Vectorization is the process of converting an

algorithm from scalar implementation to vector. It is the form of parallel programming where the processors perform same

operation simultaneously on N data elements of vector i.e. one dimensional array of scalar data objects such as floating point

object , integers or double integers floating point. When the hardware is coupled with C/C++ compiler that supports it,

developers have easier time delivering more efficient and better performing software.

Keywords—Vectorization, Parallelism, High Performance Computing.

I. INTRODUCTION

Intel Xeon Phi is designed to extend the reach of application

that has figured the ability to fully utilize the scaling

capabilities of this co-processor based system. The

applications also make use of available processor vector

capabilities or memory bandwidth. For such application the

Intel Xeon co-processor offers additional power efficient

scaling, vector support and local bandwidth. Therefore the

programmability is maintained by it and support associated

with Intel Xeon Processors [7]. The first Intel Xeon Phi

coprocessor has innumerable score of cores with wide vector

or SIMD registers. Software running on this processor should

enable to utilize these cores as well as take advantage of the

wide SIMD operations i.e. Vector operations. Intel Xeon Phi

provides high computational numerical performance. Thus to

achieve this performance software must be properly tuned.

The software must be vectorized, scalable and make efficient

use of memory. These are the three factors i.e. scalability,

vectorization and memory utilization that most influence

performance on Intel Xeon Phi co-processor.

Fig.1. Intel Xeon Phi microarchitecture (Knights Corner)

The following list illustrates the features of first Intel Xeon

Phi family product. It is named as “Knight’s Corner”.

• 50 above cores which run the Intel instructions set

architecture (called as x86 Intel Architecture

Instruction set).

• 4 threads per physical core.

• 512 bit register for SIMD operation (vector

operation.

• 512K L2 cache per core.

• High speed bidirectional ring connecting the 50+

cores.

These cores are simpler than Intel Xeon since they have dual

in-order execution pipeline as contradistinction to the out-of-

order execution model on Intel Xeon processors. The

computational power comes from 512 bit registers. The

threads help to mask the effect of latencies on in order

instruction execution. The optimum performance will only

be achieved when the number of cores, threads or SIMD

operations is used efficiently.

II. VECTORIZATION

Vectorization is the form of parallel programming where the

processors perform same operation simultaneously on N

data elements of vector. Vectorization can give as much as

double precision (8x) or single precision float (16x) speedup

on the Intel Xeon Phi coprocessors. The application may not

reach this potential speedups, if the code is not vectorized.

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(40-43) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 41

A. ESSENTIALS

The very first step to work with vectorization is to

understand the vectorization i.e. to understand what is

vectorization, how it is used, weather compiler is able to

vectorize the code or not.

It is also important which section of the code the compiler

cannot vectorize and why it cannot. The developers should

know the compiler pragmas and direction to assist the

compiler to achieve vectorization.

III. VECTORIZATION USING SIMD REGISTERS

A. ARRAY NOTATION

One of the keys to the performance value of Intel Xeon Phi

coprocessors is the 512-bit registers and associated SIMD

operations. One of the first things to do to tune existing code

is to understand where the time is spent. The sections of code

which consume the most compute cycles are the hotspots and

are the places to focus tuning effort first. Thus to make sure

the optimization is working well in the hotspot region

following steps should be followed.

Write using an array notation style such as available in

Intel Cilka Plus or Fortran 90. When array notation is used,

the compiler will vectorize or utilize the SIMD instruction set.

The array notational syntax is the preferred method for

ensuring the compiler will effectively utilize the SIMD

operation.

B. DIRECTIVES AND PRAGMAS

Most software does not need to be rewritten in array notation

to benefit from vectorization. The Intel compiler

automatically vectorizes many for loops and constructs.

However, it is typically insufficient or inadvisable to rely

solely on auto-vectorization. Developers should be prepared

to assist the compiler generate efficient vector code. In these

cases the addition of pragmas or directives can provide the

compiler with sufficient information to vectorize the code.

Efficient vectorization is important, too. Giving the

compiler more information can help it generate far better

vectorized code. So after verifying that the compiler reports a

section is vectorized, check that it is doing so efficiently.

Check that the code is not using split loads or stores and that

the code avoids gather / scatter operations.

C. BANDWIDTH

Applications which are bandwidth-bound can run faster on

Intel Xeon Phi coprocessor systems. In such cases the

speedup is not a ratio of the number of additional cores. It is

more closely related to the total available aggregate

bandwidth on Intel Xeon Phi coprocessors, which exceeds

the bandwidth of the current class of Intel Xeon. Good

memory access patterns (unit stride 1) and prefetching help

to maximize the achieved memory bandwidth.

IV. SCALABLE OPTIMIZATION

A. GRANULARITY

If a problem size remains constant as the number of cores

increases, the amount of work for each core decreases,

becoming smaller and smaller (it is referred as granularity). If

overhead remains constant for each unit of work, the

overhead will make up a larger fraction of the runtime for

smaller units of work. Thus, as the grain size decreases, the

efficiency decreases. One way to check for this on a

sequential system is to think about the problem size and

amount of work that will be done in parallel.

B. WORKLOAD BALANCE

On Intel Xeon Architecture, processes are likely to have

200+ active threads. If all of the threads are issuing and

executing SIMD instructions, things are very efficient. But if

a small group of threads have more computation to complete

and the remaining threads must idly wait for these few

threads to catch up, the overhead and inefficiency increases.

In other words the application fails to scale to use the

available resources. One imbalanced task assignment can

cause many threads or processes to sit idle and thus decrease

system performance. If a developer sees poor workload

balance across an application, the developer may want to

explore techniques for improving it.

C. BARRIERS

System calls are barriers that many developers frequently

overlook. The two most common unintended calls that

impact scalability are malloc and get time of day. Calls to

malloc encounter locks inside it that serializes its callers,

serializes execution. If a thread allocates a large block of

memory and then operates for a long time, this overhead is

not as critical. Applications that make many calls to malloc

will be well served by using a more efficient memory

allocator. Intel Threading Building Blocks includes memory

allocation calls that scale extremely well for this purpose.

There are other third party memory allocation libraries

available which also do better than standard malloc.

Any fork, join, mutex, lock or barrier potentially reduces

efficiency. It is best to choose only the locks/barriers or

controls necessary to ensure there are no data races present in

the code.

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(40-43) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 42

V. RELATED WORK

Interactive computer aided code vectorization [1] presents

user friendly, interactive web application system that detects

for loop and vectorize it automatically, which allows

programmer to simply select the for loop which needs to be

converted into a vector equivalent operation, debug the

result and compare performance gain. The goal of this

system is to ease the job of learning and applying code

vectorization technique since it requires skilled

programming to convert a loop oriented code to a vector

based operation. In most cases, vectorization modifies the

program control flow. It modifies loop bounds of existing

loops. It also adds new loops and new if statements.

Taking complete advantage of SIMD instruction in

C program is a hectic task and requires non portable

programming using intrinsic. Thus to allow C programmers

to gain better performance of their application Whole

Function Vectorization (WFV) [2][6] is introduced. WFV

improves SIMD utilization without moving out of C

programming. WFV is a technique for extending the use of

SIMD across entire function.

To achieve high performance of the application

code running on Intel Xeon coprocessors exploiting SIMD

vector units is one of the important feature. In [3] several

SIMD vectorization techniques are introduced. Techniques

such as less-than-full-vector loop vectorization, Intel MIC

specific alignment optimization, small matrix 2-D

vectorization is implemented on Intel C/C++ and Fortran

compilers for Intel Xeon Phi coprocessors. The performance

results show that up to 12.5x performance gain on Intel

Xeon Phi coprocessors is achieved.

In [4], evaluation of energy efficiency of different

processors of Intel family using selected benchmark from

the PARSEC suite with variable core count and

vectorization technique to quantify energy under the

Thermal Design Power (TDP). According to this evaluation

vectorization should be given higher priority than

parallelization as it is better in energy efficiency.

In [5] a method to trace and maintain flow information

form source code to machine code when vectorization

optimization is applied is introduced. Through this

traceability Worst Case Execution Time (WCET) is

benefitted. In this paper it is proven that vectorization not

only improves average case performance but also WCET’s.

VI. CONCLUSION

The compiler vectorizer can help user to get good

performance out of Intel Xeon architecture through effective

use of SIMD hardware, in addition to the benefits of

threading over the many cores.

Users should look for the inner loops referred as hot

spots to see whether they are vectorized, and if necessary

help the compiler to vectorize them. For application s

dominated by vectorizable kernels, the speedups may be

large.

REFERENCES

[1] S. Sawadsitang, K. Suankaewmanee, S. Kuo, B.

Bhumiratne, “Interactive Computer Aided Code

Vectorization”, 2012 Ninth International Joint conference

on Computer Science and Software Engineering(JCSSE).

[2] Gil Raport, Ayal Zaks, Yosi Ben-Asher, “Streamlining

Whole Function Vectorization in C using Higher Order

Vector Semantics”, 2015 IEEE International Parallel and

Distributed Processing Symposium Workshops.

[3] Xinmin Tian, Hideki Saito, Serguei V. Preis, Eric N. Garcia,

Sergey S. Kozhukhov Matt Masten, Aleksei G. Cherkasov

and Nikolay Panchenko ”Practical SIMD Vectorization

Techniques for Intel Xeon Phi Coprocessors” 2013 IEEE

27th International Symposium on Parallel and

Distributed Processing

[4] Juan M., Lasse Natvig, Jan C. Meyer,”Improving Energy

Efficiency through Parallelization and Vectorization on Intel

Core i5 and i7 processors”,SC Companion: High

Performance Computing, Networking Storage and

Analysis,2012.

[5] Hanbing Li,Isabelle Puaut, Erven Rohou ”Tracing Flow

Information for Tighter WCET Estimation: Application to

Vectorization” 2015 IEEE 21st International Conference on

Embedded and Real-Time Computing Systems and

Applications

[6] Ralf Karrenberg, Sebastian Hack “Whole-Function

Vectorization” 978-1-61284-357-5/11/2011 IEEE

[7] O. Krzikalla1, K. Feldhoff1, R. Mller-Pfefferkorn1

andWolfgang E. Nagel1 Auto-Vectorization Techniques for

modern SIMD architecture

[8] Ilan Baron,A Practical Parallel Algorithm for Solving Band

Symmetric Positive Definite Systems of Linear Equations,

ACM Transactions on Mathematical Software (TOMS),

323-332, Dec 1987.

[9] J. Jeffers and J. Reinders. Intel Xeon Phi Co-Processor High

Performance Programming.

[10] P. Gavali, M. Shah, Gauri Kadam, Earthquake simulationof

large scale structures using OpenSEES software on-grid and

high performance computing in India,Earthquake simulation

of large scale structures using OpenSEES software on Grid

and high performance computing in India, Beijing,

China,Oct 2008

[11] P. Gavali, M. Shah, Gauri Kadam, Kranti Meher,

“Seismic response and simulations of reinforced

concrete bridge using OpenSEES on high

performance computing, CSI Transaction on ICT, Sep

2013.

[12] Chenggang Lal,Zhijun Hao,, Miaoquing Huang,

Comparison of parallel programming Models on Intel

MIC computer cluster, Parallel and Distributed

Processing Symposium Workshop (IPDPSW),2014

IEEE International.

[13] https://software.intel.com/enus/articles/vectorizationes

sential

 International Journal of Computer Sciences and Engineering Vol.-4(6), PP(40-43) Jun 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 43

[14] https://software.intel.com/enus/articles/optimization-

and- performance-tuning-for-intel-xeon-phi-

coprocessors-part-1-optimization

[15] https://software.intel.com/en-us/articles/intel-xeonphi-

coprocessors-performance-snapshot-on-cdac-cluster

[16] https://software.intel.com/enus/articles/theimportance-

of-vectorization-for-intel-many-integratedcore-architecture-

intel-mic

