

 © 2018, IJCSE All Rights Reserved 513

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-9, Sep 2018 E-ISSN: 2347-2693

Software Reliability Modeling Using Neural Network Technique

Dipak D. Shudhalwar

1
, Pallavi Agrawal

2

1
Department of Engineering and Technology, PSSCIVE, NCERT, Bhopal, India

2
Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal, India

Available online at: www.ijcseonline.org

Accepted: 19/Sept/2018, Published: 30/Sept/2018

Abstract— In this paper, we propose an artificial neural network-based approach for developing the model for software

reliability estimation. The use of intelligent neural network and hybrid techniques in place of the traditional statistical

techniques has shown a remarkable improvement in the development of prediction models for software reliability in the recent

years. Among the intelligent and the statistical techniques, it is not easy to identify the best one since their performance varies

with the change in data. In this paper, firstly the neural network from the mathematical viewpoints of software reliability

modeling is explained. Then it is show how to apply neural network to develop a model for the prediction of software

reliability. The implementation of proposed model is done with real software failure data sets. From simulation results, the

proposed model significantly outperforms the traditional software reliability models.

Keywords: Software Reliability, Statistical, Artificial Neural network, Reliability Prediction.

I. INTRODUCTION

Current scenario of working in modern society is heavily

depending upon the computation. Here the world

computation caries the applications those runs on the

computers i.e. software. The natural demand of the work and

dependence on the performance of software it is required that

the software must be reliable. Hence under these conditions

the software reliability is an important aspect of the efficient

and effective working so that the research of the computer

software reliability becomes more and more essential. Thus,

the prediction of software reliability and its estimation is an

important process with the software development. The

software reliability is defined as the probability that the

software will operate without a failure under a given

environmental condition during a specified period of time

[1]. Since 1970, many software reliability growth models

(SRGMs) [2],[4] have been proposed. Most published

reliability analysis methods are based on parametric and non-

parametric statistical models of time-to-failure data and its

associated metrics. The underlying assumption of these

methods is that a coherent, statistical model of system failure

time can be developed that will prove stable enough to

accurately predict a system’s behavior over its lifetime.

However, given the increasing complexity of the component

dependencies and failure behaviors of today’s real-time

safety-critical systems, the statistical models may not be

feasible to build or computationally tractable. This has led to

an increasing interest in more flexible modeling frameworks

for reliability analysis. In general, there are two major types

of software reliability models: the deterministic and the

probabilistic [5]. The deterministic one is employed to study

the number of distinct operators and operands in the

program. The probabilistic one represents the failure

occurrences and the fault removals as probabilistic events.

The probabilistic models can be further classified into

different classes, such as error seeding, failure rate, and non-

homogeneous Poisson process (NHPP). Among these

classes, the NHPP models are the most popular ones. The

reason is the NHPP model has ability to describe the

software failure phenomenon. The first NHPP model, which

strongly influences the development of many other models,

was proposed by [6]. Later, NHPP model [7] with S-shaped

mean value function. [8],[9] also made further progress in

various S-Shaped NHPP models. Many software reliability

models have been developed from past three decades. They

are developed through either an analytical or data-driven

approach. Analytical software reliability growth models

(SRGMs) represented by Non-Homogeneous Poisson

Process (NHPP), are stochastic models focusing on software

failure process. Data-driven models are developed from

historical software fault-related data, following the approach

of regression or time series analysis. Although these NHPP

models are widely used, they impose certain restrictions or a

priori assumptions about the nature of software faults and the

stochastic behavior of software failure process. To overcome

this problem, several alternative solutions are introduced.

One possible solution is to employ the neural network, since

it can build a model adaptively from the given data set of

failure processes. Many researchers [10], [11] have been

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 514

successfully adapted neural networks to software reliability

issues. Motivated by these successful cases, we employ the

neural network to solve the problems for software reliability

assessment.

ANN (Artificial Neural Network) software reliability models

have recently aroused more research interest [12], [13].

Traditionally, both kinds of models only consider single fault

detection process (FDP) and data for analysis are only from

FDP. However, while data from both FDP&FCP (fault

correction process) are available, NHPP and ANN models

can be extended into paired NHPP models and combined

ANN models, providing more accurate predictions.

Generally speaking, data-driven approach is much less

restrictive in assumptions compared to analytical approach.

Generally, accurate predictions cannot be obtained in the

early phase of testing through both approaches, as there are

not enough data for parameter estimation or learning at this

stage. However, early software reliability prediction is useful

for timely software development process control. Early

prediction [14] tried with Bayes framework with subjective

or/and objective data from older projects. Hence practical

approach [15] determined to develop early reliability

prediction based on NHPP models. In that paper, NHPP

models were adjusted to incorporate failure history

information from a similar project by assuming the same

failure rate. This approach has also been extended to paired

NHPP models, taking both the testing and debugging

environments as the same [16]. In addition, historical fault-

related data reuse is a practical approach for modern mature

software manufacturers, as they have plenty of reusable

information from previous releases or similar projects stored

in their database.

In this paper, we propose an artificial neural network-based

approach for developing the model for software reliability

estimation. We first explain the neural networks from the

mathematical viewpoints of software reliability modeling.

That is, we will show how to apply neural network to

develop a model for the prediction of software reliability.

The implementation of proposed model is shown with real

software failure data sets. From simulation results, we can

see that the proposed model significantly outperforms the

traditional software reliability models.

II. SOFTWARE RELIABILITY AND MODELING WITH

NEURAL NETWORK

There are various models for the estimation of prediction for

software reliability but most of the software reliability

models involve certain restrictions or assumptions. Therefore

to select an appropriate model according to the

characteristics of the software projects is challenging. In

order to locate the suitable model, two approaches are

adapted. The first one is to design a guideline, which could

suggest fitting models for software projects. The other is to

select the one with the highest confidence after various

assessments. In the last few years many research studies has

been carried out in the area of software reliability modeling.

They included the application of neural networks, fuzzy logic

models; Genetic algorithms (GA) based neural networks,

recurrent neural networks, Bayesian neural networks, and

support vector machine (SVM) based techniques, to name a

few. For example, some kinds of neural network was

applied[17] architecture to estimate the software reliability

and used the execution time as input, cumulative the number

of detected faults as desired output, and encoded the input

and output into the binary bit string. The results showed that

the neural network approach was good at identifying defect-

prone modules software failures. They ever used the neural

network as a tool for predicting the number of faults in

programs. They introduced an approach for static reliability

modeling and concluded that the neural networks produce

models with better quality of fit and predictive quality

[18],[19]. In addition, they examined the effectiveness of the

neural network approach in handling dynamic software

reliability data overall and present several new findings.

They found that the neural network approach is more

appropriate for handling datasets with `smooth' trends than

for handling datasets with large fluctuations and the training

results are much better than the prediction results in general

[20]. In this paper they made a comparative study of neural

networks and parametric-recalibration models in software

reliability prediction and found neural networks to be much

simpler to use and also to be better predictors. Also, through

empirical results it was shown that the neural network

models are better trend predictors [19]. In this paper

performed a comprehensive study of connectionist models

and their applicability to software reliability prediction and

found them to be better and more flexible than the traditional

models. A comparative study was performed between their

proposed modified Elman recurrent neural network, with the

more popular feedforward neural network, the Jordan

recurrent model, and some traditional software reliability

growth models. Numerical results show that the proposed

network architecture performed better than the other models

in terms of predictions. Despite of the recent advancements

in the software reliability growth models, it was observed

that different models have different predictive capabilities

and also no single model is suitable under all circumstances

[11]. In this paper they proposed an on-line adaptive software

reliability prediction model using evolutionary connectionist

approach based on multiple-delayed-input single-output

architecture. The proposed approach, as shown by their

results, had a better performance with respect to next-step

predictability compared to existing neural network model for

failure time prediction [21]. In this paper they proposed an

evolutionary neural network modeling approach for software

cumulative failure time prediction. Their results were found

to be better than the existing neural network models. It was

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 515

also shown that the neural network architecture has a great

impact on the performance of the network [22]. In this paper

Bayesian networks show a strong ability to adapt in problems

involving complex variant factors. They developed a

software prediction model based on Markov Bayesian

networks, and a method to solve the network model was

proposed [23]. They proposed an approach leading to a

multi-technique knowledge extraction and development of a

comprehensive meta-model prediction system in the area of

corrective maintenance of software. The system was based

on evidence theory and a number of fuzzy-based models. In

addition they carried out a detailed case study for estimating

the number of defects in a medical imaging system using the

proposed approach [24]. They have applied support vector

machine (SVM) for forecasting software reliability in which

simulated annealing (SA) algorithm was used to select the

parameters of the SVM model. The experimental results

show that the proposed model gave better predictions than

the other compared methods. They showed how to apply

neural networks to predict software reliability. Further they

made use of the neural network approach to build a dynamic

weighted combinational model (DWCM) and experimental

results show that the proposed model gave significantly

better predictions [24]. Also recently, neural networks were

applied for predicting faults in object-oriented software [25].

The study showed neural network models to be performing

much better than the statistical methods. Application of

intelligent techniques in place of the statistical techniques has

increased by leaps and bounds in the recent years.

Application of Neural network techniques in software

reliability engineering has come up recently [26]. Despite the

recent advancements in the software reliability growth

models, it was observed that different models have different

predictive capabilities and also no single model is suitable

under all circumstances.

III. MODELING OF NEURAL NETWORK

A simple model of the neuron that shows inputs from other

neurons and a corresponding output is depicted in figure 1.

As can be seen in the figure, three neurons feed the single

neuron, with one output emanating from the single neuron.

Figure 1: Artificial neuron with inputs and a single output.

Mathematically, the inputs and the corresponding weights are

vectors which can be represented as
 niii ..., 21 and

 nwww ..., 21 . The total input signal is the dot, or inner,

product of these two vectors. This simplistic summation

function is found by multiplying each component of the i

vector by the corresponding component of the w vector and

then adding up all the products. 111 *wiinput 
,

222 *wiinput 
, etc., are added as

ninputinputinput  ...21 .

The result is a single number, not a multi-element vector.

Geometrically, the inner product of two vectors can be

considered a measure of their similarity. If the vectors point

is in the same direction then the inner product will

maximum. If the vectors point in opposite direction (180

degrees out of phase), their inner product is minimum. The

summation function can be more complex than just the

simple input and weight sum of products. The input and

weighting coefficients can be combined in many different

ways before passing on to the transfer function. In addition to

a simple product summing, the summation function can

select the minimum, maximum, majority, product, or several

normalizing algorithms. The specific algorithm for

combining neural inputs is determined by the chosen network

architecture and paradigm.

The connection weight matrix W = [wij], where wij denotes

the connection weight from node i to node j, is used to

describe the network architecture. When wij = 0, there is no

connection from node i to node j. By setting the connection

weights between nodes as zero, one can realize different

network topologies. Basically, all artificial neural networks

have a similar structure or topology as shown in figure 2. In

that, structure some of the neurons interfaces to the real

world to receive its inputs. Other neurons provide the real

world with the network's outputs. This output might be the

particular character that the network thinks that it has

scanned or the particular image it thinks is being viewed. All

the rest of the neurons are hidden from view.

According to the architecture, neural networks can be grossly

classified into feedforward neural networks (FNNs),

recurrent neural networks (RNNs), and their combinations.

Some popular network topologies include fully connected

layered FNNs, RNNs, lattice networks, layered FNNs with

lateral connections. The nonzero elements of W can be

adapted by a learning algorithm. In an FNN, the connections

between neurons are in a feedforward manner.

Output

In
p

u
ts

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 516

Figure 2: A simple neural network diagram

The network is usually arranged in the form of layers. In

layered FNNs, there is no connection between the neurons

within each layer, and no feedback between layers. A fully

connected layered FNN is a network such that every node in

any layer is connected to every node in its adjacent forward

layer. When some of the connections are missing, it becomes

a partially connected layered FNN. FNNs exhibit no dynamic

properties and the networks are simply a nonlinear mapping.

The popular MLP and RBFN are fully connected layered

FNNs. In an RNN, there is at least one feedback connection

that corresponds to an integration operation or unit delay.

Thus, an RNN actually represents a nonlinear dynamic

system.

Most applications require networks that contain at least the

three normal types of layers - input, hidden, and output. The

layer of input neurons receives the data either from input

files or directly from electronic sensors in real-time

applications. The output layer sends information directly to

the outside world, to a secondary computer process, or to

other devices such as a mechanical control system. Between

these two layers there can be many hidden layers. These

internal layers contain many of the neurons in various

interconnected structures. The inputs and outputs of each of

these hidden neurons simply go to other neurons. In most

networks, each neuron in a hidden layer receives the signals

from all of the neurons in a layer above it, typically an input

layer. After a neuron performs its function it passes its output

to all of the neurons in the layer below it, providing a feed

forward path to the output. The way that the neurons are

connected to each other has a significant impact on the

operation of the network.

After finalizing the architecture of the neural network for a

given application, the training or learning is required for

getting the desired output from the network. Training or

learning of a neural network is an optimization process that

produces an output that is as close as possible to the desired

output by adjusting network parameters. This kind of

parameter estimation is also called learning or training

algorithm. Neural networks are usually trained by epoch. An

epoch is a complete run when all the training examples are

presented to the network and are processed using the learning

algorithm only once. After learning, a neural network

represents a complex relationship, and possesses the ability

for generalization. When a new input is presented to the

trained neural network, a reasonable output is produced.

Learning methods are conventionally divided into

supervised, unsupervised, reinforcement, and evolutionary

learning. Supervised learning is widely used in pattern

recognition, approximation, control, modeling and

identification, signal processing, and optimization.

Reinforcement learning is usually used in control.

Unsupervised learning schemes are mainly used for pattern

recognition, clustering, vector quantization, signal coding,

and data analysis. Evolutionary computation is a class of

optimization techniques, which can be used to search for the

global minima/maxima of an objective function.

Evolutionary learning is used for adjusting neural network

architecture and parameters using an evolutionary algorithm

(EA), and can also be used to optimize the control

parameters in a supervised or unsupervised learning

algorithm.

After finalizing the architecture of the neural network for a

given application, the training or learning is required for

getting the desired output from the network. Training or

learning of a neural network is an optimization process that

produces an output that is as close as possible to the desired

output by adjusting network parameters. This kind of

parameter estimation is also called learning or training

algorithm. Neural networks are usually trained by epoch. An

epoch is a complete run when all the training examples are

presented to the network and are processed using the learning

algorithm only once. After learning, a neural network

represents a complex relationship, and possesses the ability

for generalization. When a new input is presented to the

trained neural network, a reasonable output is produced.

Learning methods are conventionally divided into

supervised, unsupervised, reinforcement, and evolutionary

learning. Supervised learning is widely used in pattern

recognition, approximation, control, modeling and

identification, signal processing, and optimization.

Reinforcement learning is usually used in control.

Unsupervised learning schemes are mainly used for pattern

recognition, clustering, vector quantization, signal coding,

and data analysis. Evolutionary computation is a class of

optimization techniques, which can be used to search for the

global minima/maxima of an objective function.

Evolutionary learning is used for adjusting neural network

architecture and parameters using an evolutionary algorithm

(EA), and can also be used to optimize the control

parameters in a supervised or unsupervised learning

algorithm.

Supervised learning is based on a direct comparison between

the actual network output and the desired output. Network

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 517

parameters (weights) are adjusted by a combination of the

training pattern set and the corresponding errors between the

desired output and the actual network response. The errors

first calculated then propagated back through the system,

causing the system to adjust the weights, which evolve the

learning process. The pattern set, which enables the learning,

is called the "training set." During the learning of a network

the same set of data is processed many times as the

connection weights are ever refined. So supervised learning

can be defined as a closed-loop feedback system, where the

error is the feedback signal. The trained network is used to

emulate the system. To control a learning process, a criterion

is needed to decide the time for terminating the process. For

supervised learning, an error measure, which shows the

difference between the network output and the output from

the training samples, is used to guide the learning process.

The error measure is usually defined by the mean squared

error and calculated by the error function:






N

p

pp zz
N

E

1

2
ˆ

1

 (2.1)

Where the N is the total number of patterns pair from a

sample training set, pz
is the actual output and pẑ

 is the

output calculated by the network for p
th

 pair of sample of

training set. This function is also known as the objective

function to optimize the network. The error E is calculated a

new after each epoch. This process of network training is

terminated when E is sufficiently small or a failure criterion

is met. To minimize the error up to the non-significant value,

a gradient-descent procedure is usually applied. The LMS

[27] and back propagation algorithms [28] are two early, but

most popular, supervised learning algorithms. Both of them

are derived using a gradient-descent procedure. When

finally, the system has been correctly learned, and no further

learning is needed, the weights can, if desired, be "frozen." In

some systems, this finalized network is then turned into

hardware so that it can be fast. Other systems don't lock

themselves in but continue to learn while in production use.

Unsupervised learning involves no target values. It tries to

auto associate information from the inputs to decide what

features it will use to group the input data. Unsupervised

learning is solely based on the correlations among the input

data, and is used to find the significant patterns or features in

the input data without any supervision. A criterion is needed

to terminate the learning process. Without a termination

criterion, a continuous learning process continues even when

a pattern, which does not belong to the training patterns set,

is presented to the network. The network is adapted

according to a constantly changing environment. Hebbian

learning [29], competitive learning [30], and Kohonen’s

SOM [31],[32] are the three mostly used unsupervised

learning approaches. In general the unsupervised learning is

slow to settle into stable conditions. In Hebbian learning

[29], learning is a purely local phenomenon, involving only

two neurons and a synapse. The synaptic weight change is

proportional to the correlation between the pre and

postsynaptic signals. The C-means algorithm is a popular

competitive learning-based clustering method [33]. By using

the correlation of the input vectors, the learning rule changes

the network weights to group the input vectors into clusters.

The Boltzmann machine [34] uses a kind of stochastic

training technique known as SA [35], which can been treated

as a special type of unsupervised learning based on the

inherent property of a physical system. Tuevo Kohonen, an

electrical engineer at the Helsinki University of Technology

developed a self-organizing network [36], sometimes called

an auto-association that learns without the benefit of

knowing the right answer. It is an unusual looking network in

that it contains one single layer with many connections. The

weights for those connections have to be initialized and the

inputs have to be normalized. The neurons are set up to

compete in a winner-take-all fashion. The other most

common algorithm of unsupervised learning is the Hopfield

neural network model [37], [38] of associative memory.

Hopfield network is fully interconnected network with

symmetric weights, no self-feedback and asynchronous

update of the state of processing elements.

Reinforcement learning [39] is a special case of supervised

learning, where the exact desired output is unknown. It is

based only on the information as to whether or not the actual

output is close to the estimate. Explicit computation of

derivatives is not required. This, however, presents a slower

learning process. Reinforcement learning is a learning

procedure that rewards the neural network for its good

output result and punishes it for the bad output result. It is

used in the case when the correct output for an input pattern

is not available and there is need for developing a certain

output. The evaluation of an output as good or bad depends

on the specific problem and the environment. For a control

system, if the controller still works properly after an input,

the output is judged as good; otherwise, it is considered as

bad. The evaluation of the output is binary, and is called

external reinforcement. Thus, reinforcement learning is a

kind of supervised learning with the external reinforcement

as the error signal. Reinforcement learning can learn the

system structure by trial-and-error, and is suitable for online

learning [40], [41].

Evolutionary learning approach is attractive since it can

handle the global search problem better on a vast, complex,

multimodal, and no differentiable surface. It is not dependent

on the gradient information of the error (or fitness) function,

and thus is particularly appealing when this information is

unavailable or very costly to obtain or estimate. Evolutionary

Algorithms can be used to search for the optimal control

parameters in supervised as well as unsupervised learning by

optimizing their respective objective functions. It can also be

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 518

used as an independent training method for network

parameters by optimizing the error function. Evolutionary

Algorithms are widely used for training neural networks and

tuning fuzzy systems, and are generally much less sensitive

to the initial conditions. They always search for a globally

optimal solution, while supervised and unsupervised learning

algorithms can only find a local optimum in a neighborhood

of the initial solution [42].

The Backpropagation Learning Algorithm

The backpropagation (BP) learning algorithm is currently the

most popular supervised learning rule for performing pattern

classification tasks [43]. It is not only used to train feed

forward neural networks such as the multilayer perceptron, it

has also been adapted to recurring neural networks. The BP

algorithm is a generalization of the delta rule, known as the

least mean square algorithm. Thus, it is also called the

generalized delta rule. The BP overcomes the limitations of

the perceptron learning enumerated by Minsky and Papert

[44]. Due to the BP algorithm, the MLP can be extended to

many layers. The BP algorithm propagates backward the

error between the desired signal and the network output

through the network. After providing an input pattern, the

output of the network is then compared with a given target

pattern and the error of each output unit calculated. This

error signal is propagated backward, and a closed-loop

control system is thus established. The weights can be

adjusted by a gradient-descent-based algorithm. In order to

implement the BP algorithm, a continuous, nonlinear,

monotonically increasing, differentiable activation function

is required. The two most-used activation functions are the

logistic function and the hyperbolic tangent function, and

both are sigmoid functions.

We want to train a multi-layer feed forward network by

gradient descent to approximate an unknown function, based

on some training data consisting of pairs
  Szx ,

. The

vector x represents a pattern of input to the network, and the

vector z the corresponding desired output from the training

set S. The objective function for optimization is defined as

the error MSE can be calculated by equation (2.1).

All the network parameters
 1mW and

m , m = 2 ・ ・ ・

M, can be combined and represented by the matrix
 ijwW 

.

The error function E can be minimized by applying the

gradient-descent procedure as:

 W

E
W




 

 (2.2)

Where


is a learning rate or step size, provided that it is a

sufficiently small positive number.

Applying the chain rule, the equation (2.2) can express as

   

 

 m
ij

m
j

m
j

m
ij w

u

u

E

w

E

















1

1

 (2.3)

While

 

   
        m

i
m

j
mm

jm
ij

m
ij

m
j

oow
ww

u











 



1

1



 (2.4)

and

   

 

   
    11

1

1

11

























m
j

m
jm

j
im

j

m
j

m
j

m
j

u
o

E

u

o

o

E

u

E


 (2.5)

For the output unit m=M-1

  jm
j

e
o

E





1

 (2.6)

For the hidden units, m = 1,2,3………,M − 2,

 
1

2
21

2




 










 m
j

j

mm
j

m

u

E

o

E


 



 (2.7)

Define the delta function by

 
 m
p

m
j

u

E






 (2.8)

for m = m = 2,3………,M. By substituting (1.78), (1.79), and

(1.80) into (1.83), we finally obtain the following.

For the output units, m = M − 1,

      M
j

M
jj

M
j ue  

 (2.9)

For hidden units, m = 1,……..,M − 2,

         1

1

2
2








 m

J

mM
j

M
jj

M
j

m

ue 



 

 (2.10)

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 519

Equations (1.84) and (1.85) provide a recursive method to

solve

 1m
j

 for the whole network. Thus, W can be adjusted

by
 

   m
i

m
jm

ij

o
E 1








 (2.11)

For the activation functions, we have the following relations:

For the logistic function

      uuu   1
 (2.12)

For the tanh function

    uu 21  
 (2.13)

The update for the biases can be in two ways. The biases in

the (m+1)
th

layer θ
(m+1)

 can be expressed as the expansion of

the weight W
(m)

, that is,

      m

J

mm

m 1,01,0
1,.........


 

.

Accordingly, the output o(m) is expanded into
      m

J

mm

m
ooo,,.........,1 1

. Another way is to use a

gradient-descent method with regard to θ
(m)

, by following the

above procedure. Since the biases can be treated as special

weights, these are usually omitted in practical applications.

The algorithm is convergent in the mean if max

2
0


 

 , where

λmax is the largest eigenvalue of the autocorrelation of the

vector x, denoted as C. When η is too small, the possibility

of getting stuck at a local minimum of the error function is

increased. In contrast, the possibility of falling into

oscillatory traps is high when η is too large. By statistically

preprocessing the input patterns, namely, de correlating the

input patterns, the excessively large eigenvalues of C can be

avoided and thus, increasing η can effectively speed up the

convergence. PCA preconditioning speeds up the BP in most

cases, except when the pattern set consists of sparse vectors.

In practice, η is usually chosen to be 0 < η < 1 so that

successive weight changes do not overshoot the minimum of

the error surface. The BP algorithm can be improved by

adding a momentum term:

   1



 tW

W

E
tW 

 (2.14)

Where α is the momentum factor, usually 0 < α ≤ 1. The

typical value for α is 0.9. This method is usually called the

BP with momentum (BPM) algorithm.

The BP algorithm is a supervised gradient-descent technique,

wherein the MSE between the actual output of the network

and the desired output is minimized. It is prone to local

minima in the cost function. The performance can be

improved and the occurrence of local minima reduced by

allowing extra hidden units, lowering the gain term, and by

training with different initial random weights.

IV. SOFTWARE RELIABILITY MODELING WITH

ARTIFICIAL NEURAL NETWORK

It has been seen from the previous section that the error

function i.e. mean square error (MSE) works as the objective

function for the convergence of neural network. This

objective function can be considered as compound functions.

In other words, if we can derive a form of compound

functions from the conventional software reliability models,

we can build a neural-network-based model for software

reliability. Therefore to accomplish this we consider the

logistic growth curve model [3]. This model simply fits the

mean value function with a form of the logistic function. Its

mean value function is given by:

 (3.1)

We can derive a form of compound functions from its mean

value function by replacing with as:

 (3.2)

Assume that:

 (3.3)

Therefore, we can get:

 (3.4)

This means that the mean value function of logistic growth

curve model is composed of and .

Subsequently, we derive the compound functions from the

viewpoints of neural network. Consider the basic

feedforward neural network as shown in figure 3. This

network has only one neuron in each layer as and is the

weight and , is the bias. When the input , at time is

fed to the input layer, we have the following expressions for

the hidden layer and output layer respectively:

 (3.5)

Fig 3: Feed-Forward neural network architecture with

single neuron in each layer

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 520

Now we consider the output signal function from the neuron

as:

 (3.6)

Now after removing the bias term from the output layer we

have:

 (3.7)

Therefore from the equation (2.21), we can see that it models

the neural network as the logistic growth curve model. Hence

with the same process we can derive the neural network into

many other existing models. Let us consider a neural network

with an output signal function as in the hidden

layer, and there is no bias in both hidden

layer and output layer. Thus we have:

 (3.8)

Hence it is the Goel-Okumoto model [5] and this model has

strongly influenced the development of other models. There

is another example for confirming that the neural network

can apply for software modeling. Now, if we consider a

neural network with output signal function as

 in the hidden layer,

 and

output layer than we have:

 (3.9)

This can see that the equation 2.23 exhibits the Yamada

Delay S-shaped model [7, 8]. The model describes the fault

detection process as a learning process in which testing

members become familiar with the test environment or

testing tools. Thus, their testing skills gradually improved.

We have mentioned that selecting a particular model is very

important for the estimation of software reliability. But

sometimes, software projects cannot fit the assumptions of a

unique model. To overcome this problem, Lyu and Allen

[52] have proposed a solution by combining the results of

different software reliability models. This approach inspired

us to use the neural-network-based approach to combine the

models. Thus, we consider an application of proposed

approach to each combinational model. We implement the

neural network with single input single output but more than

one neuron in the hidden layer. In this approach we consider

the number of neurons in the hidden layer by the number of

models which assumptions are partially suitable to the

software project. We use different output signal functions in

the hidden layer at the same time to achieve combinational

models. Hence in order to implement the combinational

model we consider the combination of GO model, the Delay-

S-shaped, and the logistic growth curve model. Now we

consider the

output signal functions in the hidden layer. The output of the

network is defined as:

 (3.10)

Thus, this combinational model can adapt the characteristic

of the given data set. Hence, this model itself can be

considered as a general model for all software projects but

this method differs from those proposed by Lyu et al., since

their model only combined the results from various models

based on assigned weights. This proposed approach

automatically determines the weight of each model based on

the characteristic of the given data set.

V. EXPERIMENT AND IMPLEMENTATION DETAIL

Here in this section we implement the proposed method and

prepare the simulation for it. In this process the

implementation of the proposed neural-network-based

models is described. The following steps are required to

apply our approach to model the prediction for software

reliability.

1. Analyze the assumptions of the software project and if

there is a suitable model, select the model. If there is no

suitable model, select those models which partially meet

the assumptions of project.

2. Construct the neural network of selected models by

designing the activation functions and bias.

3. Given n fault-detection time interval

data , we accumulate the execution time

and divide it into 100 time units and

then calculate the number of failures, .

4. Feed the input output pattern pairs of to the

network to train the network by the back-propagation

algorithm.

5. When the network trained, feed the future testing time to

the network, and the network output is represented as the

predicated number of faults in the future.

Hence following these steps, we can use the neural-network-

based models to predict the reliability of the software from

the prediction of total faults to be detected in the future.

Hence to validate the performances of our proposed

approach, we use the following real software failure data set

as shown in table 1.

Table 1: Data of Software failure in the given time

Time

(t)

Observed failure in

software (T)

Time (t) Observed failure in

software (T)

0 5.7683 34 10.6301

1 9.5743 35 8.333

2 9.105 36 11.315

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 521

3 7.9655 37 9.4871

4 8.6482 38 8.1391

5 9.9887 39 8.6713

6 10.1962 40 6.4615

7 11.6399 41 6.4615

8 11.6275 42 7.6955

9 6.4922 43 4.7005

10 7.901 44 10.0024

11 10.2679 45 11.0129

12 7.6839 46 10.8621

13 8.8905 47 9.4372

14 9.2933 48 6.6644

15 8.3499 49 9.2294

16 9.0431 50 8.9671

17 9.6027 51 10.3534

18 9.3736 52 10.0998

19 8.5869 53 12.6078

20 8.7877 54 7.1546

21 8.7794 55 10.0033

21 8.0469 56 9.8601

22 8.0469 57 7.8675

23 10.8459 58 10.5757

24 8.7416 59 10.9294

25 7.5443 60 10.6604

26 8.5941 61 12.4972

27 11.0399 62 11.3745

28 10.1196 63 11.9158

29 10.1786 64 9.575

30 5.8944 65 10.4504

31 9.546 66 10.5866

32 9.6197 67 12.7201

33 10.3852 68 12.5982

Now first we analyze this data set by using Laplace trend test

[45] because software reliability studies are usually based on

the application of growth models to obtain various measures.

Hence in this model, let us consider the time interval [0, t] be

divided into k units of time, and let be the number of

faults observed during time unit . The Laplace factor, , is

given by:

 (4.1)

Since the negative value of indicates decreasing failure

intensity, and thus reliability growth, while positive value

indicates increasing failure intensity, and reliability decrease.

Hence figure 4 show the Laplace trend test for the given data

set. Thus we can find that the reliability of the system is

growth. If the trend of the data set is shown as reliability

growth, then this application of data set is suitable to use

exponential type of model, for example, the GO model. If the

trend of the data set is shown as reliability decay followed by

growth, then the data set is suitable to use the S-Shaped

model, for example, the Delay S-Shaped model or the

Inflection S-Shaped model.

Figure 4: Laplace trend for the given data set

Here in this simulation design we consider the three criteria

for the evaluation. These criteria’s are Root mean Square

error (RMSE), Average Error (AE) and Average Bias (AB).

Beside this we also consider the differences between

predicted and observed failure behavior. The purpose of this

difference is to determine whether the predictions are on

average close to the true distributions or not. A common way

to test the significant difference between predictions and

actual values is Kolmogorov distance (KD). Thus we

consider the KD to determine that whether the predictions

are on average close to the true distributions or not.

VI. EXPERIMENTAL RESULTS

It has been discussed in simulation design that we consider

two models of neural networks. The first model is NN-1

which is neural network model with one neuron in hidden

layer and the NN-3 means combinational model with three

neurons in the hidden layer. Here our objective is to analyze

the performances of our proposed neural-network-based

models with three selected software reliability growth

models i.e. the Goel-Okumoto model (GO), the Yamada

Delay S-Shaped model (DS), and the Inflection S-Shaped

model (IS). We use the least square estimation to solve the

parameters of above model. Here we find that the NN models

give the better fit than others on the basis of root mean

square error (RMSE) criteria as shown in Table 2. It can

observe from the table that the NN-2 model has significantly

better performance for RMSE in comparison. The neural

networks have been trained with different sizes of the

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 522

training set as shown in table 1, varied from 30% of the total

testing time to 100% testing time. After training, we feed the

t100 to predict the number of faults, M10 (t100). Then, we

calculate the Prediction error (PR) between the actual

number of faults and the predicated faults. Following the

similar procedures, we can calculate the R20, …, R100. Table 3

gives the relative error in fault predictions for each model.

This result shows that the endpoint predicted value of the

neural networks models can be much closed to the actual

value. That implies the neural-network-based models have

better fault predictions than others. This comparison can also

observe from the graph of figure 5.

Table 2: Comparisons of RMSE, AE, AB and KD

 Neural

Networ

k with

Single

Neuron

(NN-1)

Neural

Network as

Combinatio

nal Model

(NN-2)

GO

Model

DS

Model

IS

Mo

del

RMSE 3.47 1.17 5.74 11.27 3.98

AE 17.68 14.81 16.29 23.90 8.70

AB -17.68 -14.81 -16.29 -23.90 -

8.70

KD 0.118 0.083 0.091 0.263 0.85

Table 3: Relative error in Fault Predictions
R Neural

Networ

k with

Single

Neuron

(NN-1)

Neural

Network

as

Combina

tional

Model

(NN-2)

GO

Model

DS

Model

IS Model

R20 -0.388 -0.386 -0.296 -0.416 -0.133

R30 -0.382 -0.372 -0.285 -0.406 -0.127

R40 -0.319 -0.302 -0.274 -0.350 -0.155

R50 -0.287 -0.185 -0.242 -0.309 -0.145

R60 -0.228 -0.165 -0.194 -0.263 -0.116

R70 -0.065 -0.084 -0.131 -0.208 -0.071

R80 -0.084 -0.033 -0.083 -0.159 -0.039

R90 -0.033 -0.027 -0.056 -0.122 -0.025

R100 -0.017 -0.014 -0.039 -0.094 -0.018

Figure 5: Comparison Chart of relative error

for the different models

Conclusion

In this proposed approach we applied neural network

modeling for the prediction of reliability in any given

software. It has been shown that the neural network modeling

is applied to represent the existing software growth models in

detail. Further the neural-network-based modeling is used to

achieve a dynamic weighted combinational model. To

validate proposed models, we use a numerical example of

real software failure data set. We have compared the

performances of the neural network models with some

conventional software growth models from point of view of

goodness of fit and prediction ability for the faults. The

relative error in the prediction is also calculated on the basis

of root mean square error. It has been confirmed from the

experimental results that the neural network models are

workable and have more accuracy with both goodness of fit

and the prediction ability of faults compared to existing

conventional models.

References

[1] M. R. Lyu, “Handbook of Software Reliability Engineering”,

McGraw-Hill, 1996.

[2] J. D. Musa, A. Iannino, and K. Okumoto, “Software Reliability,

Measurement, Prediction and Application”, McGraw-Hill, (1987).

[3] M. Xie, “Software Reliability Modeling”, World Scientific

Publishing, (1991).

[4] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A Unified Scheme of

Some Non homogenous Poisson Process Models for Software

Reliability Estimation,” IEEE Trans. Software Eng., 29 (3) (20030

261-269.

[5] A. L. Goel, and K. Okumoto, “Time-Dependent error-Detection

Rate Model for Software Reliability and Other Performance

Measures,” IEEE transactions on Reliability, R-28 (3) (1979) 206-

211.

[6] M. Ohba, et al., “S-shaped Software Reliability Growth Curve:

How Good Is It?” , COMPSAC’82, (1982) 38-44.

[7] S. Yamada, and S. Osaki, “Reliability Growth Models for

Hardware and Software Systems Based on Non homogeneous

Poisson Processes: a Survey,” Microelectronics and Reliability, 23

(1983) 91-112.

[8] S. Yamada, and S. Osaki, “S-shaped Software Reliability Growth

Model with Four Types of Software Error Data”, International

Journal of Systems Science, 14 (1983) 683-692.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 523

[9] Z. Jelinski, and P. B. Moranda, “Software Reliability Research,”

Statistical Computer Performance Evaluation (ed. Freiberger, W.),

Academic Press, New York, (1972) 465-484.

[10] N. Karunanithi, Y. K. Malaiya, and D. Whitley, “Prediction of

Software Reliability Using Neural Networks,” Proc. 1991 IEEE

International Symposium on Software Reliability Engineering,

(1991) 124-130.

[11] S. L. Ho, M. Xie, and T. N. Goh, “A Study of the Connectionist

Models for Software Reliability Prediction, Computers and

Mathematics with Applications, (46) (2003) 1037-1045.

[12] Y. Takada, K. Matsumoto and K. Torii, “A Software-Reliability

Prediction Model Using a Neural Network”, System and

Computers” 25 (14) (1994) 22-31

[13] N. Gupta and M. P. singh, “Estimation of Software Reliability

with Execution time Model using the Pattern Mapping Technique

of Artificial Neural Network”, Computer and Operation Research

32 (2005) 187-199

[14] C. Smidts, M. Stutzke and R.W. Stoddard, “Software reliability

modeling: An approach to early reliability prediction”, IEEE

Transactions on Reliability 47 (3) (1998) 268-278.

[15] M. Xie, G. Y. Hong and C. Wohlin, “Software reliability

prediction incorporating information from a similar project”,

Journal of System and Software, 49 (1) (1999) 43-48.

[16] Q. P. Hu, M. Xie and S. H. Ng, “Software reliability prediction

improvement with prior information incorporated”, Proceeding of

the 12th ISSAT International Conference on Reliability and

Quality in Design 06 Chicago USA, (2006) 303-307

[17] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of

Software Reliability Using Connectionist Models,” IEEE

Transaction On Software Engineering, 18 (7) (1992) 563-574.

[18] T. M. Khoshgoftaar, R. M. Szabo, and P. J. Guasti, “Exploring the

Behavior of Neural-network Software Quality Models,” Software

Engineering Journal, 10 (3) (1995) 89–96.

[19] R. Sitte, “Comparison of Software Reliability Growth Predictions:

Neural networks vs. parametric recalibration”, IEEE Transactions

on Reliability, 48 (3) (1999) 285-291.

[20] K. Y. Cai, L. Cai, W. D. Wang, Z. Y. Yu, and D. Zhang, “On

the Neural Network Approach in Software Reliability Modeling”,

The Journal of Systems and Software, (2001) 47-62.

[21] L. Tian, and A. Noore, “On-line prediction of software reliability

using an evolutionary connectionist model”, The journal of System

and Software 77 (2005) 173-180.

[22] L. Tian and A. Noore, “Evolutionary neural network modeling for

software cumulative failure time prediction”, Reliability

Engineering & System safety, 87(1) (2005) 45-51

[23] C. G. Bai, Q. P. Hu, M. Xie, S. H. Ng, ”Software failure prediction

based on markov Bayesian network model”, The Journal of

System and Software 74 (3) (2005) 275-282.

[24] Y. S. Su and C. Y. Huang, “Neural-Network-based approaches for

software reliability estimation using dynamic weighted

combinational models”, Journal of System and Software, 80 (4)

(2006) 606-615.

[25] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P.

Thambidurai, “Object-oriented software failure fault prediction

using neural networks”, Information and Software Technology 49

(2007) 483-492.

[26] H. Madsen, P. Thyregod, B. Burtschy, G. Albeanu, F. Popentiu,

“On using soft computing techniques in software reliability

engineering”, International Journal of Reliability, Quality and

Safety Engineering, 13 (1) (2006) 61-72.

[27] R. Schalkoff, “Patten Recognition: Statistical, Structural and

Neural Network.” Wiley India, ISBN 978-81-265-1370-3, (2007).

[28] A. R. Webb, “Statistical Pattern Recognition.”, John Wiley and

Sons Ltd., 2nd, ISBN 0-470-84514-7,(2002).

[29] K. Hornik, M. Stinchcombe, and H. White, “Approximation

capabilities of multiplayer feedforward networks”, Neural

Networks, 4 (1989) 251- 257.

[30] S. Haykin, “Neural Networks”, Second Edition, Pearson Education

(Singapore), (2004).

[31] T. Kohonen, “Correlation matrix memories.”, IEEE Trans

Computers, 21 (1972) 353–359.

[32] J. B. MacQueen, “Some methods for classification and analysis of

multivariate observations.”, Proc 5th Berkeley Symposium on

Math Statistics and Probability, University of California Press,

Berkeley, (19670 281–297.

[33] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning

algorithm for Boltzmann machines.”, Cognitive Science, 9 (1985)

147–169

[34] S. Kirkpatrick, J. Gelatt, M. P. Vecchi, “Optimization by simulated

annealing. Science”, 220 (1983) 671–680.

[35] T. Kohonen, “A Simple Paradigm for the Self-Organized

Formulation of Structured Maps,” Competition and Cooperation in

Neural Nets, (Eds.) S. Amari, M. Arbib, Berlin, Springer-Verlag, 5

(1982).

[36] J. J. Hopfield, “Neural Networks and Physical Systems with

Emergent Collective Computational Abilities”. Proceedings of the

National Academy Sciences (USA), 79 (1982), 2554 – 2558.

[37] J. J. Hopfield, “Neurons with Graded Responses Have Collective

Computational Properties Like Those of Two-State Neurons”, in

Proceedings of The National Academy Sciences (USA), 81 (1984)

3088 – 3092

[38] A. G. Barto, “Reinforcement learning and adaptive critic

methods”, D. A. White, D. A. Sofge, (eds) Handbook of

intelligent control: neural, fuzzy, and adaptive approaches, Van

Nostrand Reinhold, New York, (1992) 469–471.

[39] A. G. Barto, R. S. Sutton, and C. W. Anderson” Neuron like

adaptive elements that can solve difficult learning control

problems”, IEEE Trans System Man Cybern, 13 (1983) 834–846.

[40] L. P. Kaelbling, M. H. Littman, and A. W. Moore, “Reinforcement

learning: A survey”, Journal of Artificial Intelligence Research, 4

(1996) 237–285.

[41] 41. P. J. Werbos, “Backpropagation through time: What it does

and how to do it”, Proc. IEEE, 78 (10) (1990) 1550–1560.

[42] H. Atlan, and I. R. Cohen, “Theories of immune networks.

Spriner-Verlag, Berlin (1989)

[43] F. J. Pineda, “Generalization of back-propagation to recurrent

neural networks.”, Physical Rev Letter, 59 (1987) 2229–2232.

[44] M. L. Minsky and S. Papert, “Perceptrons.”, MIT Press,

Cambridge, MA, (1969).

[45] K. Kanoun and J. C. Laprie, “Software Reliability Trend Analyses

from Theoretical to Practical Considerations”, IEEE Transactions

on Software Engineering, 20 (9) (1994) 740-747.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 524

Authors Profile

Dr. Dipak D. Shudhalwar, M. Sc., M. Phil., Ph.

D. in Computer Science, is Associate Professor

(CSE) and Head, Department of Engineering

and Technology, PSSCIVE, NCERT, Bhopal.

 He is having more than 22 years of experience

Research, Development and Training. He is

basically working for the design and

development curricula and instructional material for the various

vocational courses in IT, Electronics, Telecommunication, Media

and Entertainment under NSQF at NCERT, Bhopal. His research

area includes Software Engineering, Component Based Software

Reliability, Artificial Neural Network and Soft Computing. He has

more than been 10 papers published in the reputed journals and

several in the conferences. He has developed more than 30

curricula, 30 textbooks and organised more than 100 training

programmes at NCERT.

Ms. Pallavi Agrawal has received her

BE(Hons.) in Electronics and Communication

Engineering from RGPV, Bhopal, INDIA,

MTech in Digital Communications from

Maulana Azad National Institute of Technology

(MANIT), Bhopal, INDIA. She is now a PhD

scholar in Electronics and Communication

Department at MANIT Bhopal, INDIA, under

the supervision of Dr. Madhu Shandilya. Her areas of research and

interest are in the field of Digital Speech Signal Processing, Digital

Communication and Statistical Signal Processing and Artificial

Neural Networks.

