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Abstract— In this paper, we propose an artificial neural network-based approach for developing the model for software 

reliability estimation. The use of intelligent neural network and hybrid techniques in place of the traditional statistical 

techniques has shown a remarkable improvement in the development of prediction models for software reliability in the recent 

years. Among the intelligent and the statistical techniques, it is not easy to identify the best one since their performance varies 

with the change in data. In this paper, firstly the neural network from the mathematical viewpoints of software reliability 

modeling is explained. Then it is show how to apply neural network to develop a model for the prediction of software 

reliability. The implementation of proposed model is done with real software failure data sets. From simulation results, the 

proposed model significantly outperforms the traditional software reliability models. 
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I.  INTRODUCTION  

 

Current scenario of working in modern society is heavily 

depending upon the computation. Here the world 

computation caries the applications those runs on the 

computers i.e. software. The natural demand of the work and 

dependence on the performance of software it is required that 

the software must be reliable. Hence under these conditions 

the software reliability is an important aspect of the efficient 

and effective working so that the research of the computer 

software reliability becomes more and more essential. Thus, 

the prediction of software reliability and its estimation is an 

important process with the software development. The 

software reliability is defined as the probability that the 

software will operate without a failure under a given 

environmental condition during a specified period of time 

[1]. Since 1970, many software reliability growth models 

(SRGMs) [2],[4] have been proposed. Most published 

reliability analysis methods are based on parametric and non-

parametric statistical models of time-to-failure data and its 

associated metrics. The underlying assumption of these 

methods is that a coherent, statistical model of system failure 

time can be developed that will prove stable enough to 

accurately predict a system’s behavior over its lifetime. 

However, given the increasing complexity of the component 

dependencies and failure behaviors of today’s real-time 

safety-critical systems, the statistical models may not be 

feasible to build or computationally tractable. This has led to 

an increasing interest in more flexible modeling frameworks 

for reliability analysis. In general, there are two major types 

of software reliability models: the deterministic and the 

probabilistic [5]. The deterministic one is employed to study 

the number of distinct operators and operands in the 

program. The probabilistic one represents the failure 

occurrences and the fault removals as probabilistic events. 

The probabilistic models can be further classified into 

different classes, such as error seeding, failure rate, and non-

homogeneous Poisson process (NHPP). Among these 

classes, the NHPP models are the most popular ones. The 

reason is the NHPP model has ability to describe the 

software failure phenomenon. The first NHPP model, which 

strongly influences the development of many other models, 

was proposed by [6]. Later, NHPP model [7] with S-shaped 

mean value function. [8],[9] also made further progress in 

various S-Shaped NHPP models. Many software reliability 

models have been developed from past three decades. They 

are developed through either an analytical or data-driven 

approach. Analytical software reliability growth models 

(SRGMs) represented by Non-Homogeneous Poisson 

Process (NHPP), are stochastic models focusing on software 

failure process. Data-driven models are developed from 

historical software fault-related data, following the approach 

of regression or time series analysis. Although these NHPP 

models are widely used, they impose certain restrictions or a 

priori assumptions about the nature of software faults and the 

stochastic behavior of software failure process. To overcome 

this problem, several alternative solutions are introduced. 

One possible solution is to employ the neural network, since 

it can build a model adaptively from the given data set of 

failure processes. Many researchers [10], [11] have been 
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successfully adapted neural networks to software reliability 

issues. Motivated by these successful cases, we employ the 

neural network to solve the problems for software reliability 

assessment.  

 

ANN (Artificial Neural Network) software reliability models 

have recently aroused more research interest [12], [13]. 

Traditionally, both kinds of models only consider single fault 

detection process (FDP) and data for analysis are only from 

FDP. However, while data from both FDP&FCP (fault 

correction process) are available, NHPP and ANN models 

can be extended into paired NHPP models and combined 

ANN models, providing more accurate predictions. 

Generally speaking, data-driven approach is much less 

restrictive in assumptions compared to analytical approach. 

Generally, accurate predictions cannot be obtained in the 

early phase of testing through both approaches, as there are 

not enough data for parameter estimation or learning at this 

stage. However, early software reliability prediction is useful 

for timely software development process control. Early 

prediction [14] tried with Bayes framework with subjective 

or/and objective data from older projects. Hence practical 

approach [15] determined to develop early reliability 

prediction based on NHPP models. In that paper, NHPP 

models were adjusted to incorporate failure history 

information from a similar project by assuming the same 

failure rate. This approach has also been extended to paired 

NHPP models, taking both the testing and debugging 

environments as the same [16]. In addition, historical fault-

related data reuse is a practical approach for modern mature 

software manufacturers, as they have plenty of reusable 

information from previous releases or similar projects stored 

in their database. 

 

In this paper, we propose an artificial neural network-based 

approach for developing the model for software reliability 

estimation. We first explain the neural networks from the 

mathematical viewpoints of software reliability modeling. 

That is, we will show how to apply neural network to 

develop a model for the prediction of software reliability. 

The implementation of proposed model is shown with real 

software failure data sets. From simulation results, we can 

see that the proposed model significantly outperforms the 

traditional software reliability models.  

 

II. SOFTWARE RELIABILITY AND MODELING WITH 

NEURAL NETWORK 

 

There are various models for the estimation of prediction for 

software reliability but most of the software reliability 

models involve certain restrictions or assumptions. Therefore 

to select an appropriate model according to the 

characteristics of the software projects is challenging. In 

order to locate the suitable model, two approaches are 

adapted. The first one is to design a guideline, which could 

suggest fitting models for software projects. The other is to 

select the one with the highest confidence after various 

assessments. In the last few years many research studies has 

been carried out in the area of software reliability modeling. 

They included the application of neural networks, fuzzy logic 

models; Genetic algorithms (GA) based neural networks, 

recurrent neural networks, Bayesian neural networks, and 

support vector machine (SVM) based techniques, to name a 

few. For example, some kinds of neural network was 

applied[17] architecture to estimate the software reliability 

and used the execution time as input, cumulative the number 

of detected faults as desired output, and encoded the input 

and output into the binary bit string. The results showed that 

the neural network approach was good at identifying defect-

prone modules software failures. They ever used the neural 

network as a tool for predicting the number of faults in 

programs. They introduced an approach for static reliability 

modeling and concluded that the neural networks produce 

models with better quality of fit and predictive quality 

[18],[19]. In addition, they examined the effectiveness of the 

neural network approach in handling dynamic software 

reliability data overall and present several new findings. 

They found that the neural network approach is more 

appropriate for handling datasets with `smooth' trends than 

for handling datasets with large fluctuations and the training 

results are much better than the prediction results in general 

[20]. In this paper they made a comparative study of neural 

networks and parametric-recalibration models in software 

reliability prediction and found neural networks to be much 

simpler to use and also to be better predictors. Also, through 

empirical results it was shown that the neural network 

models are better trend predictors [19]. In this paper 

performed a comprehensive study of connectionist models 

and their applicability to software reliability prediction and 

found them to be better and more flexible than the traditional 

models. A comparative study was performed between their 

proposed modified Elman recurrent neural network, with the 

more popular feedforward neural network, the Jordan 

recurrent model, and some traditional software reliability 

growth models. Numerical results show that the proposed 

network architecture performed better than the other models 

in terms of predictions. Despite of the recent advancements 

in the software reliability growth models, it was observed 

that different models have different predictive capabilities 

and also no single model is suitable under all circumstances 

[11]. In this paper they proposed an on-line adaptive software 

reliability prediction model using evolutionary connectionist 

approach based on multiple-delayed-input single-output 

architecture. The proposed approach, as shown by their 

results, had a better performance with respect to next-step 

predictability compared to existing neural network model for 

failure time prediction [21]. In this paper they proposed an 

evolutionary neural network modeling approach for software 

cumulative failure time prediction. Their results were found 

to be better than the existing neural network models. It was 
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also shown that the neural network architecture has a great 

impact on the performance of the network [22]. In this paper 

Bayesian networks show a strong ability to adapt in problems 

involving complex variant factors. They developed a 

software prediction model based on Markov Bayesian 

networks, and a method to solve the network model was 

proposed [23]. They proposed an approach leading to a 

multi-technique knowledge extraction and development of a 

comprehensive meta-model prediction system in the area of 

corrective maintenance of software. The system was based 

on evidence theory and a number of fuzzy-based models. In 

addition they carried out a detailed case study for estimating 

the number of defects in a medical imaging system using the 

proposed approach [24]. They have applied support vector 

machine (SVM) for forecasting software reliability in which 

simulated annealing (SA) algorithm was used to select the 

parameters of the SVM model. The experimental results 

show that the proposed model gave better predictions than 

the other compared methods. They showed how to apply 

neural networks to predict software reliability. Further they 

made use of the neural network approach to build a dynamic 

weighted combinational model (DWCM) and experimental 

results show that the proposed model gave significantly 

better predictions [24]. Also recently, neural networks were 

applied for predicting faults in object-oriented software [25]. 

The study showed neural network models to be performing 

much better than the statistical methods. Application of 

intelligent techniques in place of the statistical techniques has 

increased by leaps and bounds in the recent years. 

Application of Neural network techniques in software 

reliability engineering has come up recently [26]. Despite the 

recent advancements in the software reliability growth 

models, it was observed that different models have different 

predictive capabilities and also no single model is suitable 

under all circumstances.  

 

III. MODELING OF NEURAL NETWORK 

 

A simple model of the neuron that shows inputs from other 

neurons and a corresponding output is depicted in figure 1. 

As can be seen in the figure, three neurons feed the single 

neuron, with one output emanating from the single neuron. 

 

 

 

 

 

 

Figure 1: Artificial neuron with inputs and a single output. 

 

Mathematically, the inputs and the corresponding weights are 

vectors which can be represented as 
 niii ..., 21  and 

 nwww ..., 21 . The total input signal is the dot, or inner, 

product of these two vectors. This simplistic summation 

function is found by multiplying each component of the i  

vector by the corresponding component of the w  vector and 

then adding up all the products. 111 *wiinput 
, 

222 *wiinput 
, etc., are added as 

ninputinputinput  ...21 .  

The result is a single number, not a multi-element vector. 

Geometrically, the inner product of two vectors can be 

considered a measure of their similarity. If the vectors point 

is in the same direction then the inner product will 

maximum. If the vectors point in opposite direction (180 

degrees out of phase), their inner product is minimum. The 

summation function can be more complex than just the 

simple input and weight sum of products. The input and 

weighting coefficients can be combined in many different 

ways before passing on to the transfer function. In addition to 

a simple product summing, the summation function can 

select the minimum, maximum, majority, product, or several 

normalizing algorithms. The specific algorithm for 

combining neural inputs is determined by the chosen network 

architecture and paradigm. 

 

The connection weight matrix W = [wij ], where wij denotes 

the connection weight from node i to node j, is used to 

describe the network architecture. When wij = 0, there is no 

connection from node i to node j. By setting the connection 

weights between nodes as zero, one can realize different 

network topologies. Basically, all artificial neural networks 

have a similar structure or topology as shown in figure 2. In 

that, structure some of the neurons interfaces to the real 

world to receive its inputs. Other neurons provide the real 

world with the network's outputs. This output might be the 

particular character that the network thinks that it has 

scanned or the particular image it thinks is being viewed. All 

the rest of the neurons are hidden from view. 

 

According to the architecture, neural networks can be grossly 

classified into feedforward neural networks (FNNs), 

recurrent neural networks (RNNs), and their combinations. 

Some popular network topologies include fully connected 

layered FNNs, RNNs, lattice networks, layered FNNs with 

lateral connections. The nonzero elements of W can be 

adapted by a learning algorithm. In an FNN, the connections 

between neurons are in a feedforward manner. 

Output 

In
p

u
ts
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Figure 2: A simple neural network diagram 

The network is usually arranged in the form of layers. In 

layered FNNs, there is no connection between the neurons 

within each layer, and no feedback between layers. A fully 

connected layered FNN is a network such that every node in 

any layer is connected to every node in its adjacent forward 

layer. When some of the connections are missing, it becomes 

a partially connected layered FNN. FNNs exhibit no dynamic 

properties and the networks are simply a nonlinear mapping. 

The popular MLP and RBFN are fully connected layered 

FNNs. In an RNN, there is at least one feedback connection 

that corresponds to an integration operation or unit delay. 

Thus, an RNN actually represents a nonlinear dynamic 

system.  

 

Most applications require networks that contain at least the 

three normal types of layers - input, hidden, and output. The 

layer of input neurons receives the data either from input 

files or directly from electronic sensors in real-time 

applications. The output layer sends information directly to 

the outside world, to a secondary computer process, or to 

other devices such as a mechanical control system. Between 

these two layers there can be many hidden layers. These 

internal layers contain many of the neurons in various 

interconnected structures. The inputs and outputs of each of 

these hidden neurons simply go to other neurons. In most 

networks, each neuron in a hidden layer receives the signals 

from all of the neurons in a layer above it, typically an input 

layer. After a neuron performs its function it passes its output 

to all of the neurons in the layer below it, providing a feed 

forward path to the output. The way that the neurons are 

connected to each other has a significant impact on the 

operation of the network.   

 

After finalizing the architecture of the neural network for a 

given application, the training or learning is required for 

getting the desired output from the network. Training or 

learning of a neural network is an optimization process that 

produces an output that is as close as possible to the desired 

output by adjusting network parameters. This kind of 

parameter estimation is also called learning or training 

algorithm. Neural networks are usually trained by epoch. An 

epoch is a complete run when all the training examples are 

presented to the network and are processed using the learning 

algorithm only once. After learning, a neural network 

represents a complex relationship, and possesses the ability 

for generalization. When a new input is presented to the 

trained neural network, a reasonable output is produced. 

Learning methods are conventionally divided into 

supervised, unsupervised, reinforcement, and evolutionary 

learning. Supervised learning is widely used in pattern 

recognition, approximation, control, modeling and 

identification, signal processing, and optimization. 

Reinforcement learning is usually used in control. 

Unsupervised learning schemes are mainly used for pattern 

recognition, clustering, vector quantization, signal coding, 

and data analysis. Evolutionary computation is a class of 

optimization techniques, which can be used to search for the 

global minima/maxima of an objective function. 

Evolutionary learning is used for adjusting neural network 

architecture and parameters using an evolutionary algorithm 

(EA), and can also be used to optimize the control 

parameters in a supervised or unsupervised learning 

algorithm. 

 

After finalizing the architecture of the neural network for a 

given application, the training or learning is required for 

getting the desired output from the network. Training or 

learning of a neural network is an optimization process that 

produces an output that is as close as possible to the desired 

output by adjusting network parameters. This kind of 

parameter estimation is also called learning or training 

algorithm. Neural networks are usually trained by epoch. An 

epoch is a complete run when all the training examples are 

presented to the network and are processed using the learning 

algorithm only once. After learning, a neural network 

represents a complex relationship, and possesses the ability 

for generalization. When a new input is presented to the 

trained neural network, a reasonable output is produced. 

Learning methods are conventionally divided into 

supervised, unsupervised, reinforcement, and evolutionary 

learning. Supervised learning is widely used in pattern 

recognition, approximation, control, modeling and 

identification, signal processing, and optimization. 

Reinforcement learning is usually used in control. 

Unsupervised learning schemes are mainly used for pattern 

recognition, clustering, vector quantization, signal coding, 

and data analysis. Evolutionary computation is a class of 

optimization techniques, which can be used to search for the 

global minima/maxima of an objective function. 

Evolutionary learning is used for adjusting neural network 

architecture and parameters using an evolutionary algorithm 

(EA), and can also be used to optimize the control 

parameters in a supervised or unsupervised learning 

algorithm. 

 

Supervised learning is based on a direct comparison between 

the actual network output and the desired output. Network 
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parameters (weights) are adjusted by a combination of the 

training pattern set and the corresponding errors between the 

desired output and the actual network response. The errors 

first calculated then propagated back through the system, 

causing the system to adjust the weights, which evolve the 

learning process. The pattern set, which enables the learning, 

is called the "training set." During the learning of a network 

the same set of data is processed many times as the 

connection weights are ever refined. So supervised learning 

can be defined as a closed-loop feedback system, where the 

error is the feedback signal. The trained network is used to 

emulate the system. To control a learning process, a criterion 

is needed to decide the time for terminating the process. For 

supervised learning, an error measure, which shows the 

difference between the network output and the output from 

the training samples, is used to guide the learning process. 

The error measure is usually defined by the mean squared 

error and calculated by the error function: 






N

p

pp zz
N

E

1

2
ˆ

1

   (2.1) 

Where the N is the total number of patterns pair from a 

sample training set, pz
is the actual output and pẑ

 is the 

output calculated by the network for p
th

 pair of sample of 

training set. This function is also known as the objective 

function to optimize the network. The error E is calculated a 

new after each epoch. This process of network training is 

terminated when E is sufficiently small or a failure criterion 

is met. To minimize the error up to the non-significant value, 

a gradient-descent procedure is usually applied.  The LMS 

[27] and back propagation algorithms [28] are two early, but 

most popular, supervised learning algorithms. Both of them 

are derived using a gradient-descent procedure. When 

finally, the system has been correctly learned, and no further 

learning is needed, the weights can, if desired, be "frozen." In 

some systems, this finalized network is then turned into 

hardware so that it can be fast. Other systems don't lock 

themselves in but continue to learn while in production use. 

Unsupervised learning involves no target values. It tries to 

auto associate information from the inputs to decide what 

features it will use to group the input data. Unsupervised 

learning is solely based on the correlations among the input 

data, and is used to find the significant patterns or features in 

the input data without any supervision. A criterion is needed 

to terminate the learning process. Without a termination 

criterion, a continuous learning process continues even when 

a pattern, which does not belong to the training patterns set, 

is presented to the network. The network is adapted 

according to a constantly changing environment. Hebbian 

learning [29], competitive learning [30], and Kohonen’s 

SOM [31],[32] are the three mostly used unsupervised 

learning approaches. In general the unsupervised learning is 

slow to settle into stable conditions. In Hebbian learning 

[29], learning is a purely local phenomenon, involving only 

two neurons and a synapse. The synaptic weight change is 

proportional to the correlation between the pre and 

postsynaptic signals. The C-means algorithm is a popular 

competitive learning-based clustering method [33]. By using 

the correlation of the input vectors, the learning rule changes 

the network weights to group the input vectors into clusters. 

The Boltzmann machine [34] uses a kind of stochastic 

training technique known as SA [35], which can been treated 

as a special type of unsupervised learning based on the 

inherent property of a physical system. Tuevo Kohonen, an 

electrical engineer at the Helsinki University of Technology 

developed a self-organizing network [36], sometimes called 

an auto-association that learns without the benefit of 

knowing the right answer. It is an unusual looking network in 

that it contains one single layer with many connections. The 

weights for those connections have to be initialized and the 

inputs have to be normalized. The neurons are set up to 

compete in a winner-take-all fashion. The other most 

common algorithm of unsupervised learning is the Hopfield 

neural network model [37], [38] of associative memory. 

Hopfield network is fully interconnected network with 

symmetric weights, no self-feedback and asynchronous 

update of the state of processing elements. 

 

Reinforcement learning [39] is a special case of supervised 

learning, where the exact desired output is unknown. It is 

based only on the information as to whether or not the actual 

output is close to the estimate. Explicit computation of 

derivatives is not required. This, however, presents a slower 

learning process. Reinforcement learning is a learning 

procedure that rewards the neural network for its good 

output result and punishes it for the bad output result. It is 

used in the case when the correct output for an input pattern 

is not available and there is need for developing a certain 

output. The evaluation of an output as good or bad depends 

on the specific problem and the environment. For a control 

system, if the controller still works properly after an input, 

the output is judged as good; otherwise, it is considered as 

bad. The evaluation of the output is binary, and is called 

external reinforcement. Thus, reinforcement learning is a 

kind of supervised learning with the external reinforcement 

as the error signal. Reinforcement learning can learn the 

system structure by trial-and-error, and is suitable for online 

learning [40], [41].  

 

Evolutionary learning approach is attractive since it can 

handle the global search problem better on a vast, complex, 

multimodal, and no differentiable surface. It is not dependent 

on the gradient information of the error (or fitness) function, 

and thus is particularly appealing when this information is 

unavailable or very costly to obtain or estimate. Evolutionary 

Algorithms can be used to search for the optimal control 

parameters in supervised as well as unsupervised learning by 

optimizing their respective objective functions. It can also be 
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used as an independent training method for network 

parameters by optimizing the error function. Evolutionary 

Algorithms are widely used for training neural networks and 

tuning fuzzy systems, and are generally much less sensitive 

to the initial conditions. They always search for a globally 

optimal solution, while supervised and unsupervised learning 

algorithms can only find a local optimum in a neighborhood 

of the initial solution [42]. 

 

The Backpropagation Learning Algorithm 

The backpropagation (BP) learning algorithm is currently the 

most popular supervised learning rule for performing pattern 

classification tasks [43]. It is not only used to train feed 

forward neural networks such as the multilayer perceptron, it 

has also been adapted to recurring neural networks. The BP 

algorithm is a generalization of the delta rule, known as the 

least mean square algorithm. Thus, it is also called the 

generalized delta rule. The BP overcomes the limitations of 

the perceptron learning enumerated by Minsky and Papert 

[44]. Due to the BP algorithm, the MLP can be extended to 

many layers. The BP algorithm propagates backward the 

error between the desired signal and the network output 

through the network. After providing an input pattern, the 

output of the network is then compared with a given target 

pattern and the error of each output unit calculated. This 

error signal is propagated backward, and a closed-loop 

control system is thus established. The weights can be 

adjusted by a gradient-descent-based algorithm. In order to 

implement the BP algorithm, a continuous, nonlinear, 

monotonically increasing, differentiable activation function 

is required. The two most-used activation functions are the 

logistic function and the hyperbolic tangent function, and 

both are sigmoid functions.  

We want to train a multi-layer feed forward network by 

gradient descent to approximate an unknown function, based 

on some training data consisting of pairs
  Szx ,

. The 

vector x represents a pattern of input to the network, and the 

vector z the corresponding desired output from the training 

set S. The objective function for optimization is defined as 

the error MSE can be calculated by equation (2.1). 

All the network parameters 
 1mW  and

m , m = 2 ・ ・ ・

M, can be combined and represented by the matrix
 ijwW 

. 

The error function E can be minimized by applying the 

gradient-descent procedure as:  

  W

E
W




 

   (2.2) 

Where 


is a learning rate or step size, provided that it is a 

sufficiently small positive number.  

Applying the chain rule, the equation (2.2) can express as 
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For the output unit m=M-1 

  

  jm
j

e
o

E





1

   (2.6) 

For the hidden units, m = 1,2,3………,M − 2, 

 
1

2
21

2




 
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   (2.7) 

Define the delta function by 

 
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p

m
j

u

E






     (2.8) 

for m = m = 2,3………,M. By substituting (1.78), (1.79), and 

(1.80) into (1.83), we finally obtain the following. 

For the output units, m = M − 1, 

      M
j

M
jj

M
j ue  

    (2.9) 

For hidden units, m = 1,……..,M − 2, 

         1
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Equations (1.84) and (1.85) provide a recursive method to 

solve 

 1m
j

 for the whole network. Thus, W can be adjusted 

by 
 

   m
i

m
jm

ij

o
E 1








    (2.11) 

For the activation functions, we have the following relations: 

For the logistic function 

      uuu   1
    (2.12) 

For the tanh function 

    uu 21  
    (2.13) 

The update for the biases can be in two ways. The biases in 

the (m+1)
th 

layer θ
(m+1)

 can be expressed as the expansion of 

the weight W
(m)

, that is, 

      m

J

mm

m 1,01,0
1 ..........,.........


 

. 

Accordingly, the output o(m) is expanded into 
      m

J

mm

m
ooo ....,,.........,1 1

. Another way is to use a 

gradient-descent method with regard to θ
(m)

, by following the 

above procedure. Since the biases can be treated as special 

weights, these are usually omitted in practical applications. 

The algorithm is convergent in the mean if max

2
0


 

 , where 

λmax is the largest eigenvalue of the autocorrelation of the 

vector x, denoted as C. When η is too small, the possibility 

of getting stuck at a local minimum of the error function is 

increased. In contrast, the possibility of falling into 

oscillatory traps is high when η is too large. By statistically 

preprocessing the input patterns, namely, de correlating the 

input patterns, the excessively large eigenvalues of C can be 

avoided and thus, increasing η can effectively speed up the 

convergence. PCA preconditioning speeds up the BP in most 

cases, except when the pattern set consists of sparse vectors. 

In practice, η is usually chosen to be 0 < η < 1 so that 

successive weight changes do not overshoot the minimum of 

the error surface. The BP algorithm can be improved by 

adding a momentum term: 

   1



 tW

W

E
tW 

   (2.14) 

Where α is the momentum factor, usually 0 < α ≤ 1. The 

typical value for α is 0.9. This method is usually called the 

BP with momentum (BPM) algorithm. 

 

The BP algorithm is a supervised gradient-descent technique, 

wherein the MSE between the actual output of the network 

and the desired output is minimized. It is prone to local 

minima in the cost function. The performance can be 

improved and the occurrence of local minima reduced by 

allowing extra hidden units, lowering the gain term, and by 

training with different initial random weights. 

 

IV. SOFTWARE RELIABILITY MODELING WITH 

ARTIFICIAL NEURAL NETWORK 

 

It has been seen from the previous section that the error 

function i.e. mean square error (MSE) works as the objective 

function for the convergence of neural network. This 

objective function can be considered as compound functions. 

In other words, if we can derive a form of compound 

functions from the conventional software reliability models, 

we can build a neural-network-based model for software 

reliability. Therefore to accomplish this we consider the 

logistic growth curve model [3]. This model simply fits the 

mean value function with a form of the logistic function. Its 

mean value function is given by:  

  (3.1) 

We can derive a form of compound functions from its mean 

value function by replacing with  as: 

  (3.2) 

Assume that: 

    (3.3) 

Therefore, we can get: 

    (3.4) 

This means that the mean value function of logistic growth 

curve model is composed of and . 

Subsequently, we derive the compound functions from the 

viewpoints of neural network. Consider the basic 

feedforward neural network as shown in figure 3. This 

network has only one neuron in each layer as and is the 

weight and ,  is the bias. When the input , at time  is 

fed to the input layer, we have the following expressions for 

the hidden layer and output layer respectively: 

   

     (3.5) 

         

       

  

Fig 3: Feed-Forward neural network architecture with 

single neuron in each layer 
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Now we consider the output signal function from the neuron 

as: 

    

    (3.6) 

Now after removing the bias term from the output layer we 

have: 

 (3.7) 

Therefore from the equation (2.21), we can see that it models 

the neural network as the logistic growth curve model. Hence 

with the same process we can derive the neural network into 

many other existing models. Let us consider a neural network 

with an output signal function as   in the hidden 

layer, and there is no bias in both hidden 

layer and output layer. Thus we have: 

  (3.8) 

Hence it is the Goel-Okumoto model [5] and this model has 

strongly influenced the development of other models. There 

is another example for confirming that the neural network 

can apply for software modeling. Now, if we consider a 

neural network with output signal function as  

 in the hidden layer,
 

 and 

output layer than we have: 

     (3.9) 

This can see that the equation 2.23 exhibits the Yamada 

Delay S-shaped model [7, 8]. The model describes the fault 

detection process as a learning process in which testing 

members become familiar with the test environment or 

testing tools. Thus, their testing skills gradually improved. 

We have mentioned that selecting a particular model is very 

important for the estimation of software reliability. But 

sometimes, software projects cannot fit the assumptions of a 

unique model. To overcome this problem, Lyu and Allen 

[52] have proposed a solution by combining the results of 

different software reliability models. This approach inspired 

us to use the neural-network-based approach to combine the 

models. Thus, we consider an application of proposed 

approach to each combinational model. We implement the 

neural network with single input single output but more than 

one neuron in the hidden layer. In this approach we consider 

the number of neurons in the hidden layer by the number of 

models which assumptions are partially suitable to the 

software project. We use different output signal functions in 

the hidden layer at the same time to achieve combinational 

models. Hence in order to implement the combinational 

model we consider the combination of GO model, the Delay-

S-shaped, and the logistic growth curve model. Now we 

consider the  

output signal functions in the hidden layer. The output of the 

network is defined as: 

  (3.10) 

Thus, this combinational model can adapt the characteristic 

of the given data set. Hence, this model itself can be 

considered as a general model for all software projects but 

this method differs from those proposed by Lyu et al., since 

their model only combined the results from various models 

based on assigned weights. This proposed approach 

automatically determines the weight of each model based on 

the characteristic of the given data set.  

 

V. EXPERIMENT AND IMPLEMENTATION DETAIL 

 

Here in this section we implement the proposed method and 

prepare the simulation for it. In this process the 

implementation of the proposed neural-network-based 

models is described. The following steps are required to 

apply our approach to model the prediction for software 

reliability. 

1. Analyze the assumptions of the software project and if 

there is a suitable model, select the model. If there is no 

suitable model, select those models which partially meet 

the assumptions of project.  

2. Construct the neural network of selected models by 

designing the activation functions and bias.  

3. Given n fault-detection time interval 

data , we accumulate the execution time 

and divide it into 100 time units  and 

then calculate the number of failures, . 

4. Feed the input output pattern pairs of to the 

network to train the network by the back-propagation 

algorithm.  

5. When the network trained, feed the future testing time to 

the network, and the network output is represented as the 

predicated number of faults in the future. 

Hence following these steps, we can use the neural-network-

based models to predict the reliability of the software from 

the prediction of total faults to be detected in the future. 

Hence to validate the performances of our proposed 

approach, we use the following real software failure data set 

as shown in table 1.  

 

Table 1: Data of Software failure in the given time 

Time 

(t) 

Observed failure in 

software (T) 

Time (t) Observed failure in 

software (T) 

0 5.7683 34 10.6301 

1 9.5743 35 8.333 

2 9.105 36 11.315 
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3 7.9655 37 9.4871 

4 8.6482 38 8.1391 

5 9.9887 39 8.6713 

6 10.1962 40 6.4615 

7 11.6399 41 6.4615 

8 11.6275 42 7.6955 

9 6.4922 43 4.7005 

10 7.901 44 10.0024 

11 10.2679 45 11.0129 

12 7.6839 46 10.8621 

13 8.8905 47 9.4372 

14 9.2933 48 6.6644 

15 8.3499 49 9.2294 

16 9.0431 50 8.9671 

17 9.6027 51 10.3534 

18 9.3736 52 10.0998 

19 8.5869 53 12.6078 

20 8.7877 54 7.1546 

21 8.7794 55 10.0033 

21 8.0469 56 9.8601 

22 8.0469 57 7.8675 

23 10.8459 58 10.5757 

24 8.7416 59 10.9294 

25 7.5443 60 10.6604 

26 8.5941 61 12.4972 

27 11.0399 62 11.3745 

28 10.1196 63 11.9158 

29 10.1786 64 9.575 

30 5.8944 65 10.4504 

31 9.546 66 10.5866 

32 9.6197 67 12.7201 

33 10.3852 68 12.5982 

Now first we analyze this data set by using Laplace trend test 

[45] because software reliability studies are usually based on 

the application of growth models to obtain various measures. 

Hence in this model, let us consider the time interval [0, t] be 

divided into k units of time, and let be the number of 

faults observed during time unit . The Laplace factor, , is 

given by: 

     (4.1) 

Since the negative value of indicates decreasing failure 

intensity, and thus reliability growth, while positive value 

indicates increasing failure intensity, and reliability decrease. 

Hence figure 4 show the Laplace trend test for the given data 

set. Thus we can find that the reliability of the system is 

growth. If the trend of the data set is shown as reliability 

growth, then this application of data set is suitable to use 

exponential type of model, for example, the GO model. If the 

trend of the data set is shown as reliability decay followed by 

growth, then the data set is suitable to use the S-Shaped 

model, for example, the Delay S-Shaped model or the 

Inflection S-Shaped model. 

 
Figure 4: Laplace trend for the given data set 

 

Here in this simulation design we consider the three criteria 

for the evaluation. These criteria’s are Root mean Square 

error (RMSE), Average Error (AE) and Average Bias (AB). 

Beside this we also consider the differences between 

predicted and observed failure behavior. The purpose of this 

difference is to determine whether the predictions are on 

average close to the true distributions or not. A common way 

to test the significant difference between predictions and 

actual values is Kolmogorov distance (KD). Thus we 

consider the KD to determine that whether the predictions 

are on average close to the true distributions or not.  

 

VI. EXPERIMENTAL RESULTS 

 

It has been discussed in simulation design that we consider 

two models of neural networks. The first model is NN-1 

which is neural network model with one neuron in hidden 

layer and the NN-3 means combinational model with three 

neurons in the hidden layer. Here our objective is to analyze 

the performances of our proposed neural-network-based 

models with three selected software reliability growth 

models i.e. the Goel-Okumoto model (GO), the Yamada 

Delay S-Shaped model (DS), and the Inflection S-Shaped 

model (IS). We use the least square estimation to solve the 

parameters of above model. Here we find that the NN models 

give the better fit than others on the basis of root mean 

square error (RMSE) criteria as shown in Table 2. It can 

observe from the table that the NN-2 model has significantly 

better performance for RMSE in comparison. The neural 

networks have been trained with different sizes of the 
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training set as shown in table 1, varied from 30% of the total 

testing time to 100% testing time. After training, we feed the 

t100 to predict the number of faults, M10 (t100). Then, we 

calculate the Prediction error (PR) between the actual 

number of faults and the predicated faults. Following the 

similar procedures, we can calculate the R20, …, R100. Table 3 

gives the relative error in fault predictions for each model. 

This result shows that the endpoint predicted value of the 

neural networks models can be much closed to the actual 

value. That implies the neural-network-based models have 

better fault predictions than others. This comparison can also 

observe from the graph of figure 5. 

 

 

Table 2: Comparisons of RMSE, AE, AB and KD 

 Neural 

Networ

k with 

Single 

Neuron 

(NN-1) 

Neural 

Network as 

Combinatio

nal Model 

(NN-2)  

GO 

Model 

DS 

Model 

IS 

Mo

del 

RMSE 3.47 1.17 5.74 11.27 3.98 

AE 17.68 14.81 16.29 23.90 8.70 

AB -17.68 -14.81 -16.29 -23.90 -

8.70 

KD 0.118 0.083 0.091 0.263 0.85 

 

 

Table 3: Relative error in Fault Predictions  
R Neural 

Networ

k with 

Single 

Neuron 

(NN-1) 

Neural 

Network 

as 

Combina

tional 

Model 

(NN-2)  

GO 

Model 

DS 

Model 

IS Model 

R20 -0.388 -0.386 -0.296 -0.416 -0.133 

R30 -0.382 -0.372 -0.285 -0.406 -0.127 

R40 -0.319 -0.302 -0.274 -0.350 -0.155 

R50 -0.287 -0.185 -0.242 -0.309 -0.145 

R60 -0.228 -0.165 -0.194 -0.263 -0.116 

R70 -0.065 -0.084 -0.131 -0.208 -0.071 

R80 -0.084 -0.033 -0.083 -0.159 -0.039 

R90 -0.033 -0.027 -0.056 -0.122 -0.025 

R100 -0.017 -0.014 -0.039 -0.094 -0.018 

 

 

Figure 5: Comparison Chart of relative error 

for the different models 

 

Conclusion 
 

In this proposed approach we applied neural network 

modeling for the prediction of reliability in any given 

software. It has been shown that the neural network modeling 

is applied to represent the existing software growth models in 

detail. Further the neural-network-based modeling is used to 

achieve a dynamic weighted combinational model. To 

validate proposed models, we use a numerical example of 

real software failure data set. We have compared the 

performances of the neural network models with some 

conventional software growth models from point of view of 

goodness of fit and prediction ability for the faults. The 

relative error in the prediction is also calculated on the basis 

of root mean square error. It has been confirmed from the 

experimental results that the neural network models are 

workable and have more accuracy with both goodness of fit 

and the prediction ability of faults compared to existing 

conventional models. 
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