
© 2018, IJCSE All Rights Reserved                                                                                                                                        524 

International Journal of Computer Sciences and Engineering    Open Access 

Review Paper                                                 Vol.-6, Issue-10, Oct  2018                              E-ISSN: 2347-2693 

                 

Analysis and Performance of Cache Using Persisted Java Topics 
 

Ankush Sharma
1* 

, Vishal Gupta
2 

 

1,2
M.C.A, Model Institute of Engineering And Technology, Jammu, India 

 
*Corresponding Author: Ankush.mca@mietjammu.in, 

 

Available online at: www.ijcseonline.org  

Accepted: 15/Oct/2018, Published: 31/Oct/2018 
Abstract: In most of the applications in today’s world, data is fetched from the secondary storage i.e. hard disk. The user 

connects directly to the database for fetching the data. In current approach of cache management and loading, data is loaded 

from the secondary storage i.e. from the database to the primary storage i.e. cache. In case of any cache failure, entire data has 

to be reloaded from the database which consumes a lot of time in case the volume of data runs into millions. In the proposed 

design, data will be fetched from cached data and will be displayed to the end user. In this design of the cache reload we will 

be persisting the cached objects in some persistent storage as jms topics or flat files. The cache will be rebuilt again from these 

objects rather than from the database in case of any cache failures. In addition to it, analysis and performance of cache has been 

shown in this paper considering various parameters. 

 

Keywords: Coherence cache, hard drive, secondary storage 

 

I. INTRODUCTION 

 

In the Present software applications design, there are 

various requests made to the Database from several 

applications like ADF, SOA etc. These database calls 

make resources busy between applications and data 

base. Frequently database call makes 

system/Applications slow. In present scenario, we are 

dealing with large applications with loads of read and 

write tasks and every call made to the data base will 

cost more from the performance point of view. As a 

workaround, we will provide solutions cache, a cache is 

a component that transparently stores data so that future 

request for that data can be served faster. There are 

many cache management/No SQL products such as 

Couch base, Hazelcast, and Coherence etc. available in 

the market. In our study we will be using Oracle 

Coherence. 

 

Now as the cache is not persistent therefore in case of 

any problem with the cache such as Cache invalidation, 

Cache server failure etc. we will be again required to 

build the cache from Database which will be a time 

taking process in case the data we are loading in the 

cache store is highly de-normalized and millions of 

records required to be loaded in the cache. So in our 

study we will try to find a solution to persistent the 

cached java objects in persistent storage such as flat file 

or JMS topic so that in case a rebuild of cache required 

it can then be done with each from this storage rather 

than going for the DB calls. 

 
 

 A.   Coherence Cache 

Coherence is the industry prominent in memory data lattice 

that permits to certainly balance the assignment critical 

applications by providing the fast admittance to data .As 

data sizes are growing day by day in the whole world, 

performance and scalability becomes the key for an 

applications success or failure. Oracle coherence provides 

the capability to store the data in primary memory as shown 

in fig 1.1 as named caches. Each cache can contain the de-

normalized data from multiple tables so as to have easy 

access to same in different named caches. The named 

caches can be maintained on logical or functional division 

of the application whichever applicable. 

 

Below fig shows data to be loaded from Secondary storage 

i.e. database to primary storage i.e. cache. Then data from 

this cache is accessed by the application. 



  International Journal of Computer Sciences and Engineering                                      Vol.6(10), Oct 2018, E-ISSN: 2347-2693    

© 2018, IJCSE All Rights Reserved                                                                                                                                        525 

 
Fig. 2 

 

 II. CURRENT APPROACH 

 

In most of the applications in today’s world, data is 

fetched from the secondary storage i.e. hard disk  and 

user connects directly to the database for fetching the 

data . Below sequence diagram shows the conventional 

dataflow in most of the applications today. 

 
Fig. 3 

  

        III. PROPOSED APPROACH 

 

In the new design, data will be fetched from cached data 

and will be displayed to the end user. Below is the 

sequence diagram for the same.  

 

 
Fig. 4 

 

IV. CURRENT APPROACH OF CACHE LOADING AND  

MANAGEMENT 

 

In current approach of cache management and loading, 

data is loaded from the secondary storage i.e. from the 

database to the primary storage i.e. cache .Below 

diagram shows the process. 

 
Fig.5 

 

However in case of any cache failure, data has again to be 

loaded from the database all over again which is a painful 

area again in case the volume of data runs into millions and 

if no of tables involved are say 3-40 then amount of time 

required to load this data all over again to the cache is very 

costly and time taking process which can even sometimes 

take upto 24 hours. Thus making the application 

unavailable for use for the said period . In second part of 

our study we will be trying to find a solution to enable the 

faster reloading of the cache in case of its failure. Next 

section explains the same  

 

    V. PROPOSED DESIGN OF CACHE RELOAD  

 

In proposed design of the cache reload we will be persisting 

the cached objects in some persistent storage as jms topics 

or flat files and in case of cache failures,the cache will be 

rebuild again from these objects rather than from the 

database.  

 
Fig. 6 

 

             VI. LITERATURE REVIEW 

 

Kuber Vikram Singh et al. [1] proposed, applications like 

ADF saves lot of time as these applications don’t fetches 

the data from secondary memory. They  proposed batch 

process schedule for transferring data from secondary 

memory to primary memory. For their research they used 

java Regex for pattern generation and matching the 

suspicious attack signatures 

 

Tamura et al. [2] proposed, several designs that load and 

lock cache via hardware techniques in order to load every 

single block. The main disadvantage is that it demands  

variations both in cache memory and main memory 

organisations 

 

Dr. Vivek Chaplot et al., [3] evaluated performance of 

cache memory   by using various factors like cache access 



  International Journal of Computer Sciences and Engineering                                      Vol.6(10), Oct 2018, E-ISSN: 2347-2693    

© 2018, IJCSE All Rights Reserved                                                                                                                                        526 

time, miss rate and miss penalty. The performance of 

cache memory is much better as compare to RAM as it 

has faster access time. The main disadvantage of cache 

memory is the on-chip energy consumption 

 

Sharon Mathew et al., [4] proposed, a unified 

approach for process scheduling and L2 cache 

partitioning  in order to increase the performance of 

embedded applications. 

 

Ronak Patel et al., [5] observed that SRAM and STT-

RAM are about equally fast for performing read 

operations, however STT-RAM takes longer to perform 

write operations and therefore also consumes more 

energy for write operations. SRAM and STT-RAM 

were found as very common designs used for building 

cache memory. However, there are several companies 

and organizations doing research on how to improve 

write performance and efficiency on the STT-RAM. 

Response analyzer and Modifier module deals with the 

data to be returned the client, it modifies the malicious 

response to harmless data. Attack Recorder and 

Response Rejecter Module records the malicious 

Request/Response for future use. Java Regex has been 

used for pattern generation and matching the malicious 

attack signatures. 

 

Dimple et al. [6] proposed an ant based framework to 

balance the load. In their research, the author proposed 

an active ant at both client side and the server side. The 

client ant is responsible for the user request whereas the 

server ant is responsible for replying the request. The 

authors improved the server performance in their 

research.  

 

Sandeep et al., [7] presented the performance analysis 

of static and dynamic load balancing algorithms. 

Comparison is done on the number of parameters such 

as overload rejection, fault tolerance, accuracy and 

stability etc. Load balancing algorithm is selected on the 

basis of situation in which work load is assigned i.e. at 

run time or compile time. Dynamic load balancing 

algorithms are proved to be less stable as compare to 

static algorithms.  

 

Joseph et al., [8] examined that client-side caching is 

complementary to data scheduling in improving the 

performance of real time information dispatch systems. 

An effective caching mechanism retains data items that 

are most likely to be accessed by clients and reduces the 

number of requests submitted to the server over the 

wireless communication channel. This saves the narrow 

bandwidth and reduces the workload on the server; also 

it helps in reducing access latency by serving requests 

locally with data cached at the clients. 

Hossam et al., [9] Web caching is a popular technique to 

improve the performance and scalability of the Web by 

increasing document availability and enabling download 

sharing. Using cache cooperation, a mechanism for sharing 

documents among caches can improve performance of the 

system. Further, it can improve performance by providing a 

shared cache to a large user population.  

 

Liu et al., [10] proposed that an adaptive technique is used 

for reducing Web traffic and to access the Web sites 

efficiently. The proposed algorithms at client side and 

server side are efficient to reduce the Web traffic in 

adaptive manner. Since it is a hybrid technique, latency is 

reduced to 20 – 60 % and cache hit ratio is increased 40 – 

82 %. 

 

     VII. RESEARCH METHODOLOGY 

 

Tools and servers installed and configured for this research  

A.       Oracle 

Installed oracle 11g express edition .Now the installed 

oracle database server is running on machine as service. 

Created table employee required  for this research using 

oracle sql commands. 

Below is the SQL statement used to create this table 

CREATE TABLE "HR"."EMPLOYEES" 

( "EMPLOYEE_ID" NUMBER(6,0), 

"FIRST_NAME" VARCHAR2(20 BYTE), 

"LAST_NAME" VARCHAR2(25 BYTE) 

CONSTRAINT "EMP_LAST_NAME_NN" NOT 

NULL ENABLE, 

"EMAIL" VARCHAR2(25 BYTE) 

CONSTRAINT "EMP_EMAIL_NN" NOT NULL 

ENABLE, 

"PHONE_NUMBER" VARCHAR2(20 BYTE), 

"HIRE_DATE" DATE CONSTRAINT 

"EMP_HIRE_DATE_NN" NOT NULL ENABLE, 

"JOB_ID" VARCHAR2(10 BYTE) 

CONSTRAINT "EMP_JOB_NN" NOT NULL 

ENABLE, 

"SALARY" NUMBER(8,2), 

"COMMISSION_PCT" NUMBER(2,2), 

"MANAGER_ID" NUMBER(6,0), 

"DEPARTMENT_ID" NUMBER(4,0), 

CONSTRAINT "EMP_SALARY_MIN" CHECK 

(salary > 0) ENABLE, 

CONSTRAINT "EMP_EMAIL_UK" UNIQUE 

("EMAIL") 

USING INDEX PCTFREE 10 INITRANS 2 

MAXTRANS 255 COMPUTE STATISTICS 

STORAGE(INITIAL 65536 NEXT 1048576 

MINEXTENTS 1 MAXEXTENTS 2147483645 

PCTINCREASE 0 FREELISTS 1 FREELIST 

GROUPS 1 BUFFER_POOL DEFAULT 

FLASH_CACHE DEFAULT 

CELL_FLASH_CACHE DEFAULT) 



  International Journal of Computer Sciences and Engineering                                      Vol.6(10), Oct 2018, E-ISSN: 2347-2693    

© 2018, IJCSE All Rights Reserved                                                                                                                                        527 

TABLESPACE "USERS"  ENABLE, 

CONSTRAINT "EMP_EMP_ID_PK" 

PRIMARY KEY ("EMPLOYEE_ID") 

USING INDEX PCTFREE 10 INITRANS 2 

MAXTRANS 255 COMPUTE STATISTICS 

STORAGE(INITIAL 65536 NEXT 1048576 

MINEXTENTS 1 MAXEXTENTS 

2147483645 

PCTINCREASE 0 FREELISTS 1 FREELIST 

GROUPS 1 BUFFER_POOL DEFAULT 

FLASH_CACHE DEFAULT 

CELL_FLASH_CACHE DEFAULT) 

TABLESPACE "USERS"  ENABLE, 

CONSTRAINT "EMP_DEPT_FK" FOREIGN 

KEY ("DEPARTMENT_ID") 

REFERENCES "HR"."DEPARTMENTS" 

("DEPARTMENT_ID") ENABLE, 

CONSTRAINT "EMP_JOB_FK" FOREIGN 

KEY ("JOB_ID") 

REFERENCES "HR"."JOBS" ("JOB_ID") 

ENABLE, 

CONSTRAINT "EMP_MANAGER_FK" 

FOREIGN KEY ("MANAGER_ID") 

REFERENCES "HR"."EMPLOYEES" 

("EMPLOYEE_ID") ENABLE 

) 

 

 

Entered data in this table required for this research 

using below sql queries  

 

Insert into EMPLOYEES 

(EMPLOYEE_ID,FIRST_NAME,LAST_NA

ME,EMAIL,PHONE_NUMBER,HIRE_DAT

E,JOB_ID,SALARY,COMMISSION_PCT,M

ANAGER_ID,DEPARTMENT_ID) values 

(100,'Steven','King','SKING','515.123.4567',to

_date('17-06-03','DD-MM-

RR'),'AD_PRES',24000,null,null,90); 

Insert into EMPLOYEES 

(EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMA

IL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALAR

Y,COMMISSION_PCT,MANAGER_ID,DEPARTME

NT_ID) values 

(101,'Neena','Kochhar','NKOCHHAR','515.123.4568',to

_date('21-09-05','DD-MM-

RR'),'AD_VP',17000,null,100,90); 

 

Created a java  class to load data from database and 

create a array of objects of the same data.The objects 

created will be of java class . In this, we have used the 

following class 

 

 package com.model; 

 

import java.io.Serializable; 

 

public class Employee implements Serializable{ 

  

 String empid; 

 public String getEmpid() { 

  return empid; 

 } 

 public void setEmpid(String empid) { 

  this.empid = empid; 

 } 

 public String getName() { 

  return name; 

 } 

 public void setName(String name) { 

  this.name = name; 

 } 

 public int getAge() { 

  return age; 

 } 

 public void setAge(int age) { 

  this.age = age; 

 } 

 String name; 

 int age; 

 

} 

Below is the code which fetch from database and maps to 

the object of the above mentioned class  

 

public  HashMap getCachemap(Connection con) throws 

SQLException { 

  Statement st=con.createStatement(); 

  ResultSet rs=st.executeQuery("Select * 

from employees"); 

  HashMap cachemap=new HashMap(); 

  List ls=new ArrayList(); 

  while(rs.next()) 

  { 

   ls.add(rs.getString(1)); 

   Employee empl=new 

Employee(); 

   empl.setEmpid(rs.getString(1)); 

   empl.setName(rs.getString(2)); 

   cachemap.put(rs.getString(1), 

empl); 

   System.out.println("Employee 

name is "+empl.getName()); 

  } 

  st=null; 

  return cachemap; 

 } 

 

B. WebLogic Server 

Installed WebLogic server 12c and configured the same. 

 In this module we have created one connection factory and 

one jms durable topic. 



  International Journal of Computer Sciences and Engineering                                      Vol.6(10), Oct 2018, E-ISSN: 2347-2693    

© 2018, IJCSE All Rights Reserved                                                                                                                                        528 

C.     Connection Factory 

JMS Connection factories can configure properties of 

the connections returned to the JMS client, and also 

provide configurable options for default delivery, 

transaction, and message flow control parameters. 

 

D.   JMS TOPIC 

Characterizes a publish/subscribe end type, which are 

utilized to non-concurrent companion interchanges.  A 

message delivered to a topic is distributed to all topic 

consumers. Several aspects of a topic's behaviour can be 

configured, including thresholds, logging, delivery 

overrides, delivery failure, and multicasting parameters. 

Created a program which will publish the objects onto 

the above mentioned jms topics .These are the same 

objects which are read from the database as mentioned 

above .Now these objects are published to the created 

JMS durable topic which is created in the above step . 

 

E.  Coherence Cache server 

Coherence cache server will be used to build cache 

store. The cache server will have named cache which is 

nothing but a hash map. In this named cache the java 

objects will be store in key value pair. The object will 

be read using key and the other CRUD operations will 

be done using key .First the cache in this cache server 

will be loaded from oracle RDBMS .the a client is 

develop to connect to this cache and read from cache so 

as to demonstrate the application performance 

improvements by using cache. Second, this cache server 

will be restarted.  Once restarted all the cache in this 

cache server will be lost. Then a code is developed 

which will load cache into this cache server from the 

persisted objects on jms topics .In this step we will also 

demonstrate the loading performance improvement 

when done from jms topic.  
 

VIII. RESULTS 
 

The volume of data with which we have tested when we 

load data from database, it took about 104(ms) and 

when done from java objects persisted on java topics, it 

took about 62(ms).Search speed also gets increased 

when searching is done from persisted java topics as 

compared to when done from database. It took around 

79(ms) when done from JMS topics and 122(ms) when 

done from database named Employee. Results shown in 

table  (I). 
TABLE I.        COMPARISON TABLE OF PROPOSED 

TECHNIQUE 

Characteristics Cache reload 

from database 

named 

Employees 

Cache reload from 

persisted java 

topic 

Performances Good Best 

Search Speed(ms) 122ms 79ms 

Time(ms) to reload 

cache 

104ms 62ms 

TABLE II  :COMPARISON TABLE OF PROPOSED TECHNIQUE 

Characteristics Cache reload from 

database named 

Employees 

Cache reload 

from persisted 

java topic 

Performance Good Best 

Search Speed(ms) 122ms 79ms 

Time(ms) to reload cache 104ms 62ms 

 

TABLE III: Performance parameter for database named Employees (Speed 

and Time) 

Volume Of data Search speed (mS ) Time  to reload 

cache ( mS ) 

1.0GB 122 104 

1.5GB 141 112 

2.0GB 177 128 

2.5GB 185 132 

3.0GB 210 149 

 
TABLE IV:   Performance parameter For Persisted java Topics (Speed and 

Time) 

Volume Of data Search speed(ms) Time to reload cache 

(ms) 

1.0GB 79 62 

1.5GB 85 69 

2.0GB 93 78 

2.5GB 115 89 

3.0GB 129 98 

 

 
Fig 6.1: Comparison Analysis for Existing and Proposed Technique 

(Search Speed vs Size of database) 

 

 
Fig 6.2: Comparison Analysis for Existing and Proposed Technique (Time 

to reload vs Size of database) 



  International Journal of Computer Sciences and Engineering                                      Vol.6(10), Oct 2018, E-ISSN: 2347-2693    

© 2018, IJCSE All Rights Reserved                                                                                                                                        529 

TABLE V:   Performance parameter For database (Speed and Time) 

Number Of Records Search Speed (ms) Time to reload 

Cache 

100 122 104 

200 133 106 

300 141 107 

400 153 109 

500 166 111 

 

TABLE VI:   Performance parameter For Persisted java Topics 
(Speed and Time) 

Number Of Records Search Speed (ms) Time to reload 

Cache 

100 79 62 

200 85 64 

300 91 65 

400 97 68 

500 104 71 

 
 

 
Fig 6.3: Comparison Analysis for Existing and Proposed Technique 

(Search Speed vs No. of records) 

 

 
Fig 6.4: Comparison Analysis for Existing and Proposed Technique 

(Time to reload cache vs No. of records) 

 

 

 

IX   Conclusion 

 

Hence from above analysis, it is proved that loading java 

objects from persisted java topics, we get better results as 

compared to loading data    from database. It is a significant 

technique to load cache from persisted java topics rather 

than loading cache from database. 

 

References 

 
[1] Kuber Vikram Singh and Inderjeet Yadav, “Improving Data 

Access Performance Using Coherence Caching in SOA and ADF 

Application." International Journal on Recent and Innovation 

Trends in Computing and Communication ISSN: 2321-8169 

Volume: 3 Issue: 5 (2015) 

[2] Tamura, E., et al. "High performance memory architectures with 

dynamic locking cache for real-time systems." Proceedings of the 

16th Euromicro Conference on Real-Time Systems, Italy. 2004. 

[3] Chaplot, Vivek. "Cache Memory: An Analysis on Performance 

Issues." International Journal 4, no. 7 (2016). 

[4] Mathew, Sharon, and D. M. Jagadeeswari. "Task scheduling and 

memory partitioning for multiprocessor system-on-chip using low-

power L2 cache architecture." Int J Emerg Trends Eng Dev 2, no. 

3 (2013): 95-105. 

[5] Patel, Ronak. "Implementation of Cache Designs and Efficiency of 

Cache Memory." 

[6] Dimple Juneja and Atul Garg, “Collective Intelligence based 

framework for load balancing of Web servers”, IJICT, Vol 3 No-1 

Jan-2012 

[7] Sandeep Sharma, S.Singh and Meenakshi,    “Performance analysis 

of load balancing algorithms”, World academy of science, 2008 

[8] Jospeh Kee Yin Ng and Chui Ying Hui, “ Client-Side caching 

strategies and On demand broadcast Algorithms for Real Time 

Information”, IEEE , March 2008. 

[9] Hossam Hassanein, Zhengang Liang and Patrick Martin, 

“Performance Comparison of Alternative Web Caching 

Techniques”, Procceedings of the seventh International 

Symposium on Computers and Communications, IEEE, 2002. 

[10] M. Liu, F. Wang, D. Zeng and L.Yang, “An Overview of world 

wide Web Caching”, International conference on Systems Man 

and Cybernetics, IEEE, 2001, pp.3045-3050. 

 


