

 © 2019, IJCSE All Rights Reserved 521

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693

Continuous Integration and end-to-end Automation Framework

Deployment using Docker

Sanskruti Shrawane

1*
, Medha Shah

2

1,2

Computer Science and Engineering, Walchand College of Engineering, Sangli, India

Corresponding Author: sanskruti.shrawane@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i5.521525 | Available online at: www.ijcseonline.org

Accepted: 18/May/2019, Published: 31/May/2019

Abstract— Docker is a platform for building, deploying and managing various application containers, which are virtualized, on

a common operating system. Docker has been widely adopted in every sector. Also, it can be used for the distribution and

management of Docker images. Images are nothing but the iso images ie. images of operating systems and enterprise

applications. Docker registry is a container which can be used to store images of operating system and enterprise applications.

This paper proposes building a private centralized registry for employees of any organization. It includes generating Docker

images for Linux platforms and automating image creation with Dockerfiles that will work across platforms. The paper also

proposes the development of effective search logic for searching Docker images to get faster and easier outcomes. Also

integrating this framework with the existing framework of any organization to improve their work efficiency.

Keywords—Docker, Docker images, Dockerfile, Docker registry, Continuous integration.

I. INTRODUCTION

The Docker is basically a computer program, which

performs containerization i.e. operating system level

virtualization. The first release of docker came out in 2013

and is developed by Docker, Inc. Docker is an open platform

which is used to develop, ship and run any application.

Docker allows its users to separate their applications from

their infrastructure, so software delivery becomes faster. The

working of Docker depends on containers. The containers are

grouped together, considering their own tools, libraries,

configuration files, etc. Properly defined channels are used as

media for their internal communication. All these containers

can be run by a single operating system kernel and these are

more lightweight than virtual machines. Images are created

by the combination and modification of different images

from repositories. Fig. 1 shows an overview of the

architecture of Docker.

The Docker is basically a computer program, which

performs containerization i.e. operating system level

virtualization. The first release of docker came out in 2013

and is developed by Docker, Inc. Docker is an open platform

which is used to develop, ship and run any application.

Docker allows its users to separate their applications from

their infrastructure, so software delivery becomes faster. The

working of Docker depends on containers. The containers are

grouped together, considering their own tools, libraries,

configuration files, etc. Properly defined channels are used as

media for their internal communication. All these containers

can be run by a single operating system kernel and these are

more lightweight than virtual machines. Images are created

by the combination and modification of different images

from repositories. Fig. 1 shows an overview of the

architecture of Docker.

Fig. 1. Docker Architecture

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 522

As shown in Fig. 1, Docker Architecture contains

infrastructure, host operating system, and Docker containers.

Docker is a platform to develop, ship and run applications.

Docker gives the provisions to sort the applications from the

infrastructure so that the software can be delivered fast. First,

it needs to pull the image from the public repository and then

it can able to spawn a container out of that image. Also, from

one image we can spawn many containers. A container is a

runnable instance of an image and can be used to perform the

tasks which the user wants to do.

An image is a template with a set of read-only instructions

to create a Docker container. Generally, the images are

dependent on each other by little or more customization. It is

possible to create your own images by using the base image

or you can use those already created images by others and

published in an accessible registry. A Dockerfile must be

created, in order to create your own image, which includes

all the detailed commands needed to create an image and run

it. While building an image using Dockerfile, it creates many

containers at every intermediate step. But, at last, it creates

only one container for an image using all those intermediate

containers.

II. RELATED WORK

Antonio Brogi et.al. [5] introduced DOCKERFINDER for

the enhancement in discovering the Docker images. They

proposed the attribute-based way of searching the Docker

images. The various attributes are the name and size of the

image, distribution of supported software, etc. They also

explained the working of DOCKERFINDER i.e., dragging

remote Docker registry stored images. The local registry is

used to stores the analyzed images and multi-attribute

descriptions, which resulted from the analysis carried out by

DOCKERFINDER.

Wang Kangjin Yang Yong et. al [6] explained the idea of

Faster Image Distribution (FID). It is basically an image

distribution system on a large scale, based on P2P. This is so

helpful in increasing the Docker images distribution speed.

And for the same, it uses the full bandwidth of Docker

registry as well as the cluster nodes. Generally, FID reduces

network traffic and distribution time up in a considerable

amount.

Christopher B. Hauser et. al. [7] presented the concept that

describes the images as a virtual environment. This concept

consists of architecture and a metadata field set. The

execution environment runs the virtual environment using

declarative and deployable image registry.

Senthil Nathan et. al. [8] emphasized on a system which is

used for management of various Docker images in between

the different node sets. The system is known as CoMICon. It

has come up with several features, by using which, they

managed the images and made provisions for the

management of applications related to distributed

microservices.

Jeeva Chelladhurai et. al. [9] introduced various issues

related to the Docker containers security. They also told the

security matter related to different work. They worked on

different algorithms and methods for security. The tests and

experimentation carried out are very useful.

Qiang Liu, Wei Zheng et. al. [10], illustrated the uses

Docker system, method of containerization for various

lightweight software platforms. They pushed and pulled

images to the docker repository and scaled it out. The

deployment is also possible on various cloud services

automatically.

Abdulrahman Azab [11], presented a security wrapper

called as Socker. It is used to execute Docker containers on

various queuing systems. They explained the difference

between Docker and Socker applications. Socker can use

Docker engine without replacements. Socker system has

tested for different tasks on linked clusters.

Bin Xie et. al. [12] illustrated the use of network mode.

Different network modes can be used for different

applications. Authors used a specific application and

explained the use of network modes. They also focused on

the study of different modes and concluded the best mode

out of all available.

Orest Lavriv et. al. [13] studied the process of continuous

integration (CI) for various services related to the user. The

CI is based on free modern software. They explained the

various parameters by which the CI pipeline is comprised of.

To handle the security and quality of the services CI is

important. They proposed the infrastructure design and

pipeline design for CI in this paper. Also, they used the

server for local repository and Docker for deploying services.

Enrico Bacis et. al. [14] emphasized on adoption and

retrieval of Docker images sticking to the security issues.

The Docker has different security facilities for the Linux

kernel. They illustrated the extension to the Dockerfile

formats for reasons of security. The motive of the research

was to enhance docker container security, by adopting

different ways.

III. PROPOSED WORK

Docker is a very emerging technology now-a-days. It tries

to acquire almost all the market of virtual machines. It is an

open platform for building, deploying and managing

virtualized application containers on a common operating

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 523

system. Today, it has been used on a large scale, in a higher

level environment. It is provided with different services like

storage, distribution, and management of Docker images.

These services are important to execute Docker containers. A

Docker image is a file which consists of multiple layers, used

for the execution of code in a Docker container. And a

Docker registry is a centralized repository which can store

images of operating system and enterprise applications.

Fig. 2. Block Diagram

In the current scenario, the time consumption for

installation of any operating system on any platform takes

hours to install and run it properly. Also, users need to spend

hours of their work in just installing the applications. But the

Docker containers takes only a few seconds to install the

operating system on any platform. So, it is more convenient

to use Docker containers instead of the traditional way of

installing any operating system or any application. Also, the

existing system does not have the facility of automatic

creation of images in Dockerfiles. But, through Docker, it's

very easy to create Dockerfiles to automate the installation

process. Also, an effective search logic for searching Docker

images helps a lot in finding the correct images from the

repository. And finally, all this work is integrated with the

existing python automation framework for better utilization.

Fig. 2 illustrates the overall process of development. The

Docker Registry or Repository is a stateless, highly scalable

server-side application that stores and lets user to distribute

Docker images. Docker Engine is a Client-Server

application. The 3 main components of Docker engine are;

Server (daemon), Rest API (Interface), CLI (Client).

The first aim is to build a private centralized repository for

employees of any organization. This goal plays a very

important role in my project. In this step, the author proposes

to build a private centralized repository for internal use of

any organization. Sometimes, we don’t want to publish our

images publicly. So, in such cases, this Docker private

registry can help you to keep your images safe at a single

place called repository or registry and these images can be

used by only the people of that organization only.

Here, three CentOS virtual machines were used for the

registry, push, pull as a server, client1, client2, respectively.

As shown in Fig. 3, the block at the root level shows the

Sever for Docker repository. And the below blocks are the

clients which able to perform the pull and push operations on

the repository. Also, the TLS certificates are created at every

machine for security purpose. And Authentication is done at

the server for the user. If the user is authorized, then and only

then one can pull or push the images to the repository.

Fig. 3. Block diagram for Docker repository

Then generate Docker images for various platforms and

automate image creation with Dockerfiles that works across

platforms. The images are generated automatically by using

just a single command. This magic happens due to

Dockerfiles. Dockerfiles contains all the necessary

commands which are required for the creation and

installation on any image.

Fig. 4 Block Diagram for Dockerfile

Then the last aim is to develop effective search logic for

searching Docker images and, going to find some new

searching tool for better results. As the search logic plays a

vital role in any search engine, here also good search logic is

very import for getting better results of searching. So, here

the author is going to find a good search logic which will be

helpful for getting better search results. The author also

proposes to build a new tool for searching.

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 524

IV. METHODOLOGY

A. Building of Private Centralized Repository

The following are the steps to create a centralized repository

for the employees of any organization:

1) Creating a registry container on a private registry server

virtual machine.

2) Edited /etc/hostname and /etc/hosts file with a

combination of host name and domain name.

3) See whether all machines are pingable to each other or

not.

4) Create a Docker private registry on the main server where

we install registry container in first step.

5) Edit /usr/lib/systemd/system/docker.service file

6) Pull the image from Docker hub.

7) Tag the image to a private repository.

8) Push the image to a private repository.

9) Pull the image from the private repository.

10) Create TLS certificates on both sides client as well as

sever.

11) While the creation of the certificates does not forget to

give your CN (i.e. Common Name) as your registry URL.

12) Save TLS certificates and keys as a secret.

13) Update the node where you want to run the registry.

14) Create service, granting it access to the two secrets and

constraining it to only run on nodes with the label.

15) Login to your registry through root login.

16) Able to pull and push images to the private registry.

17) These images created on one VM can be pulled to

another VM also.

In this way, the creation of the private registry is done

and solved the issue of login to the private repository.

B. Generating Docker images for enterprise applications

for Linux platforms

The below steps are showing the creation of Docker image

using Dockerfile for NetBackup on RedHat0 7.4:

1) Created client VM of Rhel7.2

2) mkdir/mnt/aedepot

3) mount the desired point from domain box

4) Unzip tar.gz file using; tar xvzf filename.tar.gz at /tmp.

5) Created script for installation on NBU.

6) Created Linux question answer yaml file which contains

all the questions step by step which is required for

installation.

7) Call the existing Linux question answer yaml in the above

script.

8) Made the changes in nbu Linux yaml file as per my client

details like name, IP, pwd.

9) At the client side, created a group using; groupadd

nbwebgrp

10) Change the semaphore tuning value.

11) Run the script All the above steps are done in the

Dockerfile and when you do the Docker build command the

image will be created automatically with all the above

requirements needed for installation. And for the usage of

this image users just need to spawn a container using Docker

run command.

C. Development of an effective Search logic for Searching

Docker images

The next aim is to develop effective search logic for

searching Docker images. So, here the good search logic

which will be helpful for getting better search results is very

important. So, it's very easy for users to search a particular

image with its version from a large number of images in the

repository. The following is the algorithm for search logic:

1) Checks for the format of the URL i.e. http or https.

2) Check the input format i.e. it should be in the proper

format, otherwise, it will give the error as Cannot connect to

Registry.

3) Check the command line argument i.e. search or list.

4) Parse the command line argument i.e. search or list.

5) Get a registry catalog request.

6) Get a registry tag request.

7) Extract URL: Check the delimiters, if none delimiter is

present then show an error. Else, return it.

8) Get the list of all repos/images using repo array and parse

functions.

9) Search for repo/images with the name or tag of the image

using repo array and parse functions.

10) Get tags for the repo and get all the repo dictionary to get

the final result.

11) Print the all available options.

Input: python search.py reponame.hostname.com:5000

search/list imagename

Output: Available options:

Name: imagename

Tag: imageversion n image found!

D. Enable existing framework automation on Docker images

In this step, the exiting framework of automation has been

enabled using Dockerfiles. For this, the existing framework

is enabled by adding deploy.sh, file which contains all the

test cases, pytest module and all the files required in

Dockerfile. The framework is enabled by using some of the

commands in Dockerfile like RUN, ADD, COPY, etc

E. End to end integration of Docker module with existing

automation framework: continuous integration

The work done around the Docker is integrated with the

existing framework of automation by adding it to their

 International Journal of Computer Sciences and Engineering Vol. 7(5), May 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 525

framework and allow it to the users for their use. The scripts

for installing NetBackup and search logic is added to the

existing framework. And the Docker repository is also added

to the framework so that the employees of the organization

can store their images securely in the repository.

V. CONCLUSION

This paper gives us the brief idea about how to use Docker

in an efficient way to generate the Docker images for various

platforms and to make a private centralized repository which

can help the people of any organization to keep their images

in a safe place. These images can be used by the people of

that organization only. Also, good search logic helps them to

search a particular image very quickly and easily. Also, the

integration will help them to improve their work efficiency.

In the future, it is also possible to develop a better search

tool for finding docker images. Also creating Dockerfiles for

various application made easy for the individuals to install

and use the application more efficiently.

REFERENCES

[1] “Docker Hub” https://hub.docker.com/

[2] “Docker documentation” https://docs.docker.com/

[3] “Docker Registry” https://docs.docker.com/registry/

[4] “Dockerfiles”

https://docs.docker.com/engine/reference/builder/#usage

[5] Antonio Brogi; Davide Neri; Jacopo Soldani: Docker Finder:

Multi-attribute Search of Docker Images. In: IEEE

International Conference on Cloud Engineering (IC2E),

Canada, pp. 273 – 278. (2017).

[6] Wang Kangjin, Yang Yong; Li Ying; Luo Hanmei, Ma Lin:

FID: A Faster Image Distribution System for Docker Platform.

In: 2017 IEEE 2nd International Workshops on Foundations

and Applications of Self* Systems (FAS*W), Tucson, AZ,

USA, pp. 191-198. (2017)

[7] Christopher B. Hauser; Jörg Domaschka: ViCE Registry: An

image Registry for virtual Collaborative Environment. In: 2017

IEEE 9th International Conference on Cloud Computing

Technology and Science, Hong-kong, China, pp. 82 – 89.

(2017)

[8] Senthil Nathan; Rahul Ghosh; Tridib Mukherjee;

Krishnaprasad Narayanan. CoMICon: A Co-operative

Management System for Docker Container Images. In: 2017

IEEE International Conference on Cloud Engineering,

Vancouver, BC, Canada, pp. 116 – 126. (2017)

[9] Jeeva Chelladhurai; Pethuru Raj Chelliah; Sathish

Alampalayam Kumar. Securing Docker Containers from

Denial of Service (DoS) Attacks. In: 2016 IEEE International

Conference on Services Computing, San Francisco, CA, USA,

pp. 856 – 859. (2016)

[10] Qiang Liu; Wei Zheng; Ming Zhang; Yuxing Wang; Kexun

Yu. In: Docker-based Automatic Deployment for Nuclear

Fusion Experimental Data Archive Cluster. IEEE Transactions

On Plasma Science. pp. 1281 – 1284. (2018)

[11] Abdulrahman Azab. Enabling Docker Containers for High-

Performance and Many-Task Computing. In: 2017 IEEE

International Conference on Cloud Engineering, Vancouver,

BC, Canada, pp. 279 – 285. (2017)

[12] Bin Xie, Guanyi Sun, Guo Ma. Docker Based Overlay

Network Performance Evaluation in Large Scale Streaming

System. In: 2016 IEEE Advanced Information Management,

Communicates, Electronic and Automation Control

Conference (IMCEC), Xi'an, China, pp. 366 – 369. (2016)

[13] Orest Lavriv, Bohdan Buhyl, Mykhailo Klymash, Ganna

Grynkevych. Services continuous integration based on modern

free infrastructure. In: 2nd International Conference on

Advanced Information and Communication Technologies

(AICT), Ukraine, pp. 150 – 153. (2017)

[14] Enrico Bacis, Simone Mutti, Steven Capelli, Stefano

Paraboschi. DockerPolicyModules: Mandatory Access Control

for Docker containers. In: IEEE Conference on

Communications and Network Security (CNS), Italy, pp. 749-

750. (2015)

Authors Profile

Miss. Sanskruti M. Shrawane pursued a

Bachelor of Engineering in Computer

Engineering from Bapurao Deshmukh College

of Engineering, Wardha in 2017. She is

currently pursuing a Master of Technology in

Computer Science and Engineering from

Walchand College of Engineering, Sangli.

Mrs. Medha A. Shah pursued a Bachelor of

Technology from Walchand College of

Engineering Sangli in 1997. She has

completed her Masters in Computer

Engineering from Walchand College of

Engineering Sangli in 2008. Currently, she is working as a

professor in the same college as well as pursuing her Ph.D.

