
 © 2018, IJCSE All Rights Reserved 508

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Effective Road Networks Using Clue Based Route Search

Shaik Sharmila
1*

, U. Mohan Srinivas
2

1
Computer Science and engineering, Qis College of Engineering and Technology, Ongole

2
Computer Science and Engineering, Qis College of Engineering and Technology, Ongole

*Corresponding Author: shakeelasharru786@gmail.com

Available online at: www.ijcseonline.org

Accepted: 06/Jul/2018, Published: 31/July/2018

Abstract— With the advances in geo-positioning technologies and location-based services, it is nowadays quite common for

road networks to have textual contents on the vertices. Previous work on identifying an optimal route that covers a sequence of

query keywords has been studied in recent years. However, in many practical scenarios, an optimal route might not always be

desirable. For example, a personalized route query is issued by providing some clues that describe the spatial context between

Pose along the route, where the result can be far from the optimal one. Therefore, in this paper, we investigate the problem of

clue-based route search (CRS), which allows a user to provide clues on keywords and spatial relationships. First, we propose a

greedy algorithm and a dynamic programming algorithm as baselines. To improve efficiency, we develop a branch-and-bound

algorithm that prunes unnecessary vertices in query processing. In order to quickly locate candidate, we propose an AB-tree

that stores both the distance and keyword information in tree structure. To further reduce the index size, we construct a PB-tree

by utilizing the virtue of 2-hop label index to pinpoint the candidate. Extensive experiments are conducted and verify the

superiority of our algorithms and index structures.

Keywords—Spatial keyword queries, clue, Point-of-Interest, travel route search, query processing

 I. INTRODUCTION

With the rapid development of location-based services and

geo positioning technologies, there is a clear trend that an

increasing amount of geo-textual objects are available in

many applications. For example, the location information

as well as concise textual descriptions of some businesses

(e.g., restaurants, hotels) can be easily found in online

local search services (e.g., yellow pages). To provide

better user experience, various keyword related spatial

query models and techniques have emerged such that the

geotextual objects can be efficiently retrieved. It is

common to search a Point-of-Interest (PoI) by providing

exact address or distinguishable keyword (i.e., only few

PoIs contain the keyword) in a region which can uniquely

pinpoint the location. For example, we type the address

“73 Mary St, Brisbane” or the name “Kadoya” on Google

Maps to find a Japanese restaurant in the CBD area. Some

existing work [8], [15], [26], [31], [33], [35] extends such

query to more sophisticated settings, such as retrieving a

group of geo-textual objects (usually more than 2) or a

trajectory covering multiple keywords. However, it is not

uncommon that a user aims to find a PoI with less

distinguishable keyword such as “restaurant”, but she can

only provide more or less spatio-textual context

information around the PoI. Liu et al. [25] formalize such

context information as clues and use them to identify the

most promising PoIs. Different with their work, we aim to

find a feasible route on road networks by using clues.

Particularly, in this paper, we investigate a novel query

type, namely clue-based route search (CRS), which allows

a user to provide clues on textual and spatial context along

the route such that a best matching route w.r.t. the clues is

returned. More specifically, a CRS query is defined over a

road network G, and the input of the query consists of a

source vertex vq and a sequence of clues, where each clue

contains a query keyword and a user expected network

distance. A vertex contains a clue keyword is considered

as a match vertex. The query returns a path P in G starting

at vq, such that (i.) P passes through a sequence of match

vertices (PoIs) w.r.t. the clues and (ii.) the network

distances between two contagious matched vertices are

close to the corresponding user specified distance such that

the user’s search intention is satisfied.

1.1 Application Scenarios

The existing solutions (e.g., [6], [22], [28]) for trip

planning or route search problem are dealing with the

scenarios when a user wants to visit a sequence of PoIs,

each of which contains a user specified keyword. Different

optimization constraints are proposed, and the goal is to

find an optimal route with minimum cost. In general, the

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 509

cost can be of various different types, such as travel

distance, time or budget. However, to the best of our

knowledge, none of the existing solutions (e.g., [6], [22],

[28]) on trip planning or route search can be applicable for

solving CRS queries since the optimization needs to be

conducted based on the clues. As an extension of

traditional route search queries, CRS query can also be

useful in many real scenarios.

 Modeling Imprecise User Intention. The clue is

typically based on observations that 1) the keywords of

PoIs in the clue may be interchangeable or inexact terms

(e.g., a user may think of a PoI being canteen whereas it

may be referred to as a restaurant); 2) the spatial

relationships between PoIs are approximate, which is a

natural phenomenon for human to estimate distance. For

example, if the distance between two PoIs in the clue is

about 100 meters, the actual distance may be noticeably

greater than or less than 100 meters. Consider a scenario in

our daily life: a user wants to find a restaurant in a city

visited many years ago. She cannot remember the exact

name and address but she still recalls that on the way

driving to the restaurant from her home, she passed a cafe

at about 1km away, and drove about another 2km to reach

the restaurant. The information given above usually cannot

precisely locate a PoI, but intuitively it provides clues to

identify the most likely PoIs along the route.

 Increased Flexibility in Trip Planning. As

mentioned before, most existing work aims to find an

optimal route with minimum travel distance. However, in

many real scenarios, such an optimal route might not

always be desirable. For instance, a user may have some

personalized requirements on the distances between PoIs

when planning a trip. Consider such a scenario, a user

wants to find a buffet restaurant and a nearby cinema only

in walking distance, say 3km, thus he can watch a movie

after dinner. Therefore, after having delicious food, he can

walk to the cinema in order to maintain a healthy lifestyle.

These personalized requirements make the route search

become distance-sensitive and more flexible such that the

distance between PoIs along the route should be as close as

possible to the user specified distance.

 Clue-based Route Navigation. Given a description

including textual and distance information on an expected

route, it is still not direct-viewing enough for users to

obtain the exact route. This is usually the case when a user

wants to know the way for a specific place and asks the

others for help, she may still not be able to exactly figure

out the route after obtaining the answers from them, where

the answer usually comes in the form, for example, “go

straight on the way for about 100 meters, you will see a

cafe, and turn right, you will arrive the Japanese restaurant

after about 150 meters walk”. Therefore, a novel type of

route search which automatically interprets the clues

contained in such answers becomes necessary. By

augmenting it on current navigation services, a better user

experience can be provided.

1.2 Challenge

 In order to process the CRS query efficiently, we need to

overcome several challenges. The first challenge is

concerned with the large amount of possible routes for

validation. Basically, the CRS requires candidate vertices

that contain query keywords in the route to comply a

specific order defined in query. As a feasible path is

supposed to cover all the query keywords, the number of

feasible paths increases exponentially with the amount of

clues. Therefore, a greedy approach to solve our query is

proposed, which continuously finds the next candidate

vertex with minimum matching distance. Unfortunately,

the optimal result can be substantially different from what

the greedy algorithm suggests. Then, we propose a

dynamic programming algorithm to answer CRS query

exactly, but it requires quadratic time and is not scalable

especially for more frequent keywords. To avoid

unnecessary route search, we develop a branch-and-bound

algorithm which adopts filter-and-refine paradigm, thus

much fewer feasible paths are considered.

 The second challenge is how to quickly locate

candidate vertices in road networks. Given a query vertex

u, the matching distance between u and its next candidate v

is supposed to be smaller or equal to a threshold. The

network expansion approach can be applied here, but it is

inefficient due to excessive network traversals. Therefore,

we propose a novel index structure, called AB-tree, which

stores both keyword and distance information in each

node. On top of it, the candidate w.r.t. a query clue can be

quickly retrieved. The third challenge is how to reduce the

index construction time and space. As AB-tree involves an

all-pair matrix computation and has a space cost of O(|V |

2), we propose a PB-tree to further improve the

performance. Inspired by the 2-hop label [1], [3], which

answers distance queries with a small label index, we

modify the structure of original label index to construct a

binary tree on each pivot. In addition, we propose a semi-

dynamic mechanism for PB-tree to support the index

updating.

1.3 Contribution

The principal contributions of this paper can be

summarized as follows.

• We propose a greedy clue search algorithm (GCS) to

answer the CRS query approximately with no index

involved. In GCS, we adopt the network expansion

approach to greedily select the current best candidate at

each step to construct feasible paths.

 • We also develop a clue-based dynamic programming

algorithm (CDP) that attempts to enumerate all feasible

paths and finally returns the optimal result. In CDP,

distance oracle is used to compute the network distance

between candidates.

 • We further propose a branch-and-bound algorithm

(BAB) by applying filter-and-refine paradigm such that

only a small portion of vertices are visited, hence improves

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 510

the search efficiency. In order to quickly locate the

candidate vertices, we develop AB-tree and PB-tree

structures to speed up the tree traversal, as well as a semi-

dynamic index updating mechanism to keep the index

maintainable when growing bigger.

 • Our experimental evaluation demonstrates the efficiency

of our algorithms and index structures for processing the

CRS queries on real-world datasets. We show the

superiority of our algorithms in answering CRS when

compared with the baseline algorithms.

 The remainder of this paper is organized as follows.

We first formulate the problem of clue-based route search

CRS in Section 2. Then we propose a greedy algorithm

GCS in Section 3 to answer CRS approximately. Section 4

presents a clue-based dynamic programming algorithm

CDP to return exact answer to CRS query. Efficient

branch-and-bound algorithm BAB is introduced in Section

5, as well as two index structures ABtree and PB-tree.

Section 6 presents a semi-dynamic mechanism for

proposed index structure. Section 7 reports the

experimental observations, and Section 8 reviews the

related work. Finally, Section 9 concludes the paper.

II. PROBLEM STATEMENT

We model a road network as a weighted undirected graph

G = (V, E), where V is the set of vertices and E is the set

of edges. Each vertex v ∈ V contains a set of keywords,

denoted as Φ(v). Each edge (u, v) ∈ E has a positive

weight, i.e., length or travelling time on the edge, denoted

as e(u, v). Given a path between vertices u and v, denoted

as P(u, . . . , v), the length is the sum of weights of all

edges along the path. For any two vertices u and v, the

network distance between u and v on G, denoted as dG(u,

v), is the length of the shortest path SP(u, v) between u and

v. The notations used in this work is summarized in Table

1.

2.1 Problem Definition
Definition 1 (Clue). A clue is defined as µ(w, d,), where

w is a query keyword, d is a user defined distance, and ∈

[0, 1] is a confidence factor.

Definition 2 (Match). Given a source vertex u and a clue

µ(w, d,), we say that the vertex pair σ(u → v) is a match

w.r.t. clue µ, if the vertex v contains clue keyword w and

the network distance between u and v is in [d(1−), d(1+)],

i.e., w ∈ Φ(v) and dG(u, v) ∈ [d(1 −), d(1 +)].

Definition 3 (Feasible Path). We define a clue-based route

query Q = (vq, C) where C is a sequence of clues denoted

as C = {µ1(w1, d1, 1), . . . , µk(wk, dk, k)}. Given a query

Q, if we find

(i) a sequence of vertices v0, v1, . . . , vk where v0 = vq

and σ(vi−1 → vi) is a match w.r.t. µi for i ∈ [1, k]; (ii) a

path P starts from v0 and passes v1, . . . , vk one by one;

(iii) Each subpath P(vi−1, . . . , vi) of P is the shortest path

SP(vi−1, vi) for i ∈ [1, k].

We call such P a feasible path, denoted as FP(vq, v1, . . . ,

vk).

Definition 4 (Matching Distance). The matching distance

between a clue µ(w, d,) and its match σ(u → v) in G,

denoted as dm(µ, σ), is computed by d and the network

distance dG(u, v), such that

 dm(µ, σ) = |dG(u, v) − d| · d (1)

It is worth noting that any monotonic increasing function

that normalizes the matching distance into [0, 1] can be

applied here.

The matching distance between C and its feasible path FP

is defined as the maximum matching distance between all

clues µ ∈ C and their corresponding matches σ ∈ FP, that

is

 dm(C, FP) = max µi∈C,σi∈FP dm(µi , σi) (2)

 The motivation of using Equation 2 is that the

maximum matching distance of all the clues naturally

controls the overall matching quality of the feasible path,

which is a widely adopted w1 w2 w3 w4 w5 3 3 4 4 5 3 2

2 3 4 4 5 3 2 2 1 v1 v2 v3 v4 v5 v7 v8 v9 v6

method for the problem optimizing an objective score

contributed by several components [15], [31].

 Clue-based Route Search (CRS). Given a clue-based

route search (CRS) Q = (vq, C), it aims to find a feasible

path FP(vq, v1, . . . , vk), such that dm(C, FP) is

minimized.

 The clues in CRS implies that we are supposed to

find a feasible path whose distances between two match

vertices are as close as possible to user specified distance

such that the user’s search intention is satisfied. It is worth

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 511

noting that the CRS query can be easily extended to have a

destination by assuming that the query keyword contained

in destination is unique within G. In addition, for

simplicity, we only discuss the optimal feasible path in this

paper, but the algorithms introduced can be easily

extended to find top-k feasible paths.

Example 1. Given Q = (v1, {(w2, 5, 0.5),(w1, 4, 0.5),(w3,

6, 0.5)}), thus both FP1(v1, v3, v6, v7) and FP2(v1, v3, v4,

v7) are feasible paths with dm(C, FP1) = 0.4 and dm(C,

FP2) = 0.5 respectively. Therefore, FP1 is reported as the

result of CRS.

2.2 Preliminary: Distance Oracle

We adopt the idea of distance oracle DO to calculate the

network distance between two input vertices. Given a

source-target pair of vertices, DO returns the shortest

network distance between them. As we know, the

algorithms and data structures on DO have been

extensively studied by existing works, which can be

roughly summarized into two categories, expansion-based

methods and lookup-based methods. The most famous

expansion-based method for DO is Dijkstra’s algorithm

[14], which, given a s-t pair in road network G, traverses

the vertices in G from s to t. However, the problem of

using Dijkstra’s algorithm is that it must visit every vertex

that is closer to s, and the number of such unneeded

vertices can be enormous when s and t are far apart, which

incurs redundant network traversal. Besides, the lookup-

based methods usually have to store some precomputed

results. For example, allpair method is space inefficient

that we have to precompute and store a distance matrix,

which requires O(n 2) space for a road network G with n

vertices. To the best of our knowledge, one of the most

notable recent developments is the emergence of practical

2-hop labeling methods [1]–[3], [18] for DO on large

networks. It constructs labels for vertices such that a

distance query for any vertex pair u and v can be answered

by only looking up the common labels of u and v. For each

vertex v, we precompute a label, denoted as L(v), which is

a set of label entries and each label entry is a pair (o, ηv,o),

where o ∈ V and ηv,o = dG(v, o) is the distance between v

and o. We say that o is a pivot in label entry if (o, ηv,o) ∈

L(v). Given two vertices u and v, we can find a common

pivot o that (o, ηu,o) ∈ L(u) and (o, ηv,o) ∈ L(v): dG(u, v)

= min{ηu,o + ηv,o} (3) We say that the pair (u, v) is

covered by o and the distance query dG(u, v) is answered

by o with smallest ηu,o + ηv,o. Therefore, we can compute

dG(u, v) in O(|L(u)| + |L(v)|) time by using a merge-join

like algorithm.

III. GREEDY CLUE SEARCH ALGORITHM

We develop a greedy algorithm as a baseline for answering

the CRS query, which is called Greedy Clue Search (GCS)

algorithm. Given a query Q = (vq, C), we first add vq into

a candidate path. Then we use the Procedure findNextMin

() to determine the next match vertex v1 that the matching

distance between µ1 and σ1(vq → v1), i.e., dm(µ1, σ1), is

minimized. Afterwards, we insert v1 into the candidate

path, and continue to find its contagious candidate by

findNextMin (). This process is repeated until all the match

vertices are determined, thus the candidate path forms a

feasible path, denoted as FPvq If we assume Procedure

findNextMin() costs time f, then the time complexity of

GCS is O(k · f).

 In Procedure findNextMin(), we utilize the network

expansion algorithm [16] to find the nearby vertices that

contain the query keywords and the network distances are

in the confidence intervals. The algorithm details are

shown in Algorithm 1. Given the source u, and the clue

µ(w, d,), we aim to find a match vertex v such that the

difference between dG(u, v) and d is minimized. In the

network traversal starting from u, we check every visited

vertex to see if it is a match vertex that contains w and

locates in the interval [d(1 −), d(1 +)]. If v is the first

visited match vertex and dG(u, v) > d, then we stop and

return v since the difference incurred by the remaining

unvisited vertices cannot be less than dG(u, v) − d.

Otherwise, we continue to find the next match vertex v 0 .

If v 0 is found, then

 (i) If dG(u, v0) ≤ d, we update v by v 0 since v 0 renders

a smaller difference than v;

(ii) Otherwise, we compare d − dG(u, v) with dG(u, v0) −

d and return the smaller one as the result.

Example 2. In running example Figure 1, we are given

CRS query Q = (v1, {(w2, 5, 0.5),(w1, 4, 0.5),(w3, 6,

0.5)}). First, we fetch v1 into the candidate path, and call

findNextMin(v1, w2, 5, 0.5) and return v3 with dm = 0.4.

Therefore, we repeat the process and finally obtain FPv1 =

(v1, v3, v4, v7) with dm(C, FPv1) = 0.4. Therefore, we

have FPgcs = FPv1 and dm(C, FPgcs) = 0.4.

IV. CLUE-BASED DYNAMIC PROGRAMMING

ALGORITHM

As we know, even though GCS has a short response time,

the accuracy of the answer cannot be guaranteed. To

achieve better accuracy, we propose an exact algorithm,

called Clue-based Dynamic Programming (CDP), to

answer the CRS query. Generally, it is challenging to

develop an efficient exact algorithm for CRS queries, since

we cannot avoid exhaustive search for PoIs in road

networks. For instance, the number of vertices that contain

keyword wi ∈ C is denoted as |Vwi |, thus the time

complexity of the

 Algorithm 1: Procedure find Next Min ()

Input: Source vertex u and clue µ(w, d,)

Output: min {dm (µ, σ)} and match vertex v

 1 From u, do network traversal;

2 if a match vertex v is found then

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 512

3 dG ← the network distance between u and v;

4 while true do

5 Find next v 0 contains w, thus obtain d 0 G;

6 if dG < d and d 0 G > d then

7 break;

8 else

9 v ← v 0 and dG ← d 0 G;

10 return min{dm(µ, σ)} and v;

brute-force approach, which attempts all possible

combinations, is O(Q wi∈C |Vwi |). In CDP, we construct

a keyword posting list for each keyword w, which is a list

of vertices that contain w. When a CRS query is issued, we

sort the posting lists according to the keyword order of wi

∈ C. Note that the order of the vertices within each posting

list does not matter and can be arbitrary, hence are sorted

by vertex id for simplicity. It is easy to see that these

posting lists actually construct a k-bipartite graph G0 ,

which in fact shows all feasible paths for a given C. The

weight of each edge in G0 is computed as the matching

distance. Specifically, for each u ∈ Vwi , we define D(wi ,

u) to denote the minimum matching distance one can

achieve with a walk that passes the keywords from w1 to

wi consistent with the order in C and stops at u. In other

words, the weight of vertex u ∈ G0 is computed by D(wi ,

u), which is the minimum matching distance of all partial

feasible paths end at u. Then we compute D(wi , u) by the

following recursive formula:

(i) i = 1: for match vertices u ∈ Vw1 , we have D(wi

, u) = dm(µi(wi , di), σ(vq → u))

(ii) i > 1: for match vertices v ∈ Vwi−1 and u ∈ Vwi ,

we have D(wi , u) = min v∈Vwi−1

{max{D(wi−1, v), dm(µi , σ(v → u))}} (4)

(iii) For each iteration, we have at most |Vwi−1 | ·

|Vwi | combinations, thus the time required is O(Pk i=2

|Vwi−1 | · |Vwi |). The details of CDP are shown in

Algorithm 2. In order to compute D(wi , u), we have to

access the posting list of wi−1. For each vertex v in this

list, we first check if σ(v → u) is a match w.r.t. µi and then

compute dm(µi , σ(v → u)). Then we compare it with

D(wi−1, v), and keep the greater one as intermediate value.

Finally, we find the minimum one as D(wi , u) from these

|Vwi−1 | intermediate values. After we recursively process

all the keywords, we finally find the minimum D(wk, u)

and back trace the corresponding vertices that construct FP

cdp. In each iteration, we have a clue µi(wi , di), therefore

we have to compute dG(u, v) between each u ∈ Vwi and

its precedents v ∈ Vwi−1 as prerequisites for determining

dm(µi , σ(v → u)). Here we adopt the distance oracle

introduced in Section 2.2 to compute dG(u, v).

 Example 3.

As shown in Figure 2, given CRS query Q = (v1, {(w2, 5,

0.5),(w1, 4, 0.5),(w3, 6, 0.5)}). To compute D(w3, v7), we

first compare D(w1, v4) = 0.4 with dm(µ3, σ(v4 → v7)) =

0, and obtain intermediate

Likewise, we have D(w1, v6) = 0.5 and dm(µ3, σ(v6 →

v7)) = 0.33, thus the intermediate value is 0.5. Therefore,

CDP returns FPcdp = (v1, v3, v4, v7) with dm(C, FPcdp)

= 0.4.

Algorithm 2: Clue-based Dynamic Programming CDP

Input: Q = (vq, C = {(w1, d1), . . . ,(wk, dk)}) Output:

FPcdp with dm(C, FPcdp)

1 for each u ∈ Vw1 do

2 Initial D(w1, u);

3 for 1 < i ≤ k do

4 for each u ∈ Vwi do

5 Initial intermediate vector iv(u);

6 for each v ∈ Vwi−1 do

7 if dm(µi, σ(v → u)) < D(wi−1, v) then

8 iv(u) insert D(wi−1, v);

9 else

 10 iv(u) insert dm(µi, σ(v → u));

11 D(wi, u) ← min{iv(u)}

12 Find min{D(wk, u)};

13 return FPcdp and dm(C, FPcdp) ← min{D(wk, u)};

V. BRANCH AND BOUND ALGORITHM

Although CDP provides an exact solution, the search

efficiency cannot be maintained. For instance, consider the

worst case, we assume that all vertices contain query

keywords, then the time is O(k · |V | 2). To propose a

more efficient algorithm, we assume there is an artificial

directed graph G0 , which is similar to the k-bipartite

graph in CDP that formed by all candidate vertices

containing keywords in C, where the edge of G0 is a match

of one clue and in the meantime its direction complies the

keyword order of the clue. Note that, G0 is organized into

k levels, and each level i corresponds to each keyword wi .

Based on G0 , we develop a Branch-and-Bound (BAB)

algorithm to search G0 in a depth-first manner by applying

the filter-and-refine paradigm, which only visits a small

portion of vertices in G0 . Fortunately, we can use the

result of GCS to speed up the search process since it can

serve as an initial upper bound.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 513

5.1 Algorithm Outline

We start the searching from level 1 to k to obtain a feasible

path FP, if the matching distance dm(C, FP) is greater than

the current upper bound, we continue to search for the next

candidate feasible path, otherwise we update the upper

bound. It is worth noting that it is not necessary to go

through every candidate feasible path. If the matching

distance at intermediate level already exceeds the upper

bound, it can be removed. This process terminates when

the matching distance next to be processed at level 1 can

be filtered, since it is impossible to find a feasible path

with smaller match distance.

 Candidate feasible path updating. Initially, we

keep a stack to store the partial candidate path, which

contains a sequence of vertices and corresponding

matching distances. First, we fetch vq into the stack, then

we continue to find next candidate at level 1. Basically, the

key component of this algorithm is to quickly locate the

next best match vertex, and the details of Procedure

findNext () will be introduced later. Given a partial

candidate path FP (vq, v1, vi) obtained at level i, we apply

findNext () to find the next candidate vi+1 at level i+ 1.

Once vi+1 is found, we compute d i+1 m (vi+1) which

denotes the matching distance at level i + 1 resulted by

vi+1, and compare it with current UB. Note that, vi+1 is

accepted as a candidate and inserted into the stack if and

only if its matching distance d i+1 m (vi+1) is smaller than

UB. Otherwise, vi is removed from the stack as well as d i

m(vi). In other words, vi is not valid that the path FP(vq,

v1, . . . , vi−1) cannot survive by passing vi , then we have

to find an alternative v 0 i . As we know vi is the current

best candidate at level i, therefore we have to relax the

matching distance by finding v 0 i where d i m(vi) ≤ d i

m(v 0 i) and d i m(v 0 i) is minimum among all the rest

vertices untouched at level i. Afterwards, if v 0 i is valid,

we continue to apply findNext() on it.

 Upper bound updating. Specifically, after we obtain a

feasible path FP(vq, v1, . . . , vk−1) at level k − 1, if vk is

returned by findNext(), then we check if d k m(vk) exceeds

UB. If vk is not valid, we prune vk and simply repeat the

above process. Otherwise, we insert vk into the stack, and

a complete feasible path is determined. Hence, FP(vq, v1, .

. . , vk) is regarded as a temporary result, and UB is

updated by the minimum matching distance among all d i

m(vi)s. It is easy to see that, we cannot find a better

feasible path by alternating vk with v 0 k at level k, since

no further level is available to make up the relaxation

caused by v 0 k . Therefore, in addition to remove vk, we

continue to remove vk−1 from the stack and repeat the

above process. In general, the pruning happens from the

lower levels to the higher levels, i.e., from level k to level

1. In the end, at level 1, if the matching distance induced

by the next candidate vertex is greater than UB, it is

impossible to find another feasible path, thus the stack

becomes empty after the last vertex vq is removed, and this

process terminates.

Example 4. In the running example, given query Q = (v7,

{(w1, 6, 0.5),(w2, 4, 0.5),(w4, 5, 0.5)}). First we fetch v7

into the stack, and findNext() returns v4 with d 1 m(v4) =

0. Then we insert v4 into stack and continue to find next

candidate vertex, and v3 is obtained with d 2 m(v3) = 0.

The process continues and then we have v1 with d 3 m(v1)

= 0.4. As the size of stack is same as the number of query

keywords, a feasible path FP = (v7, v4, v3, v1) with dm(C,

FP) = 0.4 is obtained, and UB is updated by 0.4. Next, we

remove v1 and v3 from the stack, and continue to find next

candidate of v4. As d 2 m(v3) = 0, we relax the matching

distance and call findNext() which returns v8 with d 2

m(v8) = 0.5. Then we have to remove v4 from the stack

since d 2 m(v8) already exceeds current upper bound UB.

Now we move on to apply findNext() on v7 and returns v6

with d 1 m(v6) = 0.33. However, the next candidate v3 has

d 2 m(v3) = 0.5 greater than UB, thus we remove v6 and

v7 from stack. Therefore, the algorithm terminates since

no other feasible path exists. We have FPbab = (v7, v4, v3,

v1) with dm(C, FPbab) = 0.4.

Algorithm 3: Branch and Bound BAB

Input: Q = (vq, C)

Output: FPbab with dm(C, FPbab)

1 Initialize stackV, stackD, and search threshold θ;

2 Push vq into stackV;

3 while stackV is not empty do

 4 i ← stackV.size();

5 if findNext(vi−1, di, wi, θ) = true then

6 Obtain vi and d i m(vi);

7 θ ← 0.0;

8 Push vi into stackV and d i m(vi) into stackD;

9 if i equals to k then

10 if max{stackD} <= UB then

11 Update UB by max{stackD};

12 Update FPbab by stackV;

13 Update θ by top of stackD;

14 Update stackV and StackD;

15 else 16 Update θ by top of stackD;

17 Update stackV and StackD;

18 return FPbab and dm(C, FPbab) ← UB;

 5.2 All-Pair Distance Approach

 In BAB, the Procedure findNext() is applied on vi−1 to

find the next candidate vertex vi . We can simply use

Procedure findNextMin() in GCS to locate the next

candidate, but it is inefficient due to redundant network

traversal especially when di ∈ µi is large. Moreover, when

we prune vi and attempt to find alternative v 0 i , it is easy

to see findNextMin() cannot be directly applied. Therefore,

we propose an All-pair Binary tree (AB-tree) index to

improve the search efficiency.

5.2.1 All-Pair Binary Tree

Given a vertex u, we aim to find a vertex v containing

keyword w such that the matching distance between σ(u →

v) and query clue µ is slightly greater than and closest to a

threshold θ among all vertices containing w in G. Note

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 514

that, the threshold θ is settled by previous filtered

candidate at the same level with v, and it is 0 at initial

stage. In other words, we are supposed to find the vertex v

that the difference between dG (u, v) and d ∈ µ is close to

θ · d. To this end, we construct AB-tree as follows.

 For each v ∈ V, we construct a binary tree BT (v) that

contains the information of network distances and

keywords. After the all-pair distance matrix is obtained,

for each v, we have a list of vertices sorted in ascending

order of network distance to v. By utilizing the tree

structure, the vertices in the list are divided into fragments

that the network distances w.r.t. v of the vertices in the

same fragment are close to each other, which speeds up the

looking up for vertices by network distance. In addition,

the keyword information within each fragment is also

stored in BT(v) such that the vertices containing query

keyword in a fragment can be efficiently retrieved.

 We utilize a hash function H that maps keywords and

vertices to a binary code with h bits. For each keyword w,

one of its h bits in H(w) is set to 1. Hence, the binary code

of a vertex v is

the superimposition of H(v) that v ∈ S. It is worth to note

that a non-zero value of H(w) ∧ H(S) indicates that there

may exist a vertex v ∈ S containing w, and H(w) ∧ H(S) =

0 means w is definitely not contained by any v ∈ S. BT(v)

is actually a B+- tree with fanout f = 2. Each leaf node

contains the information of a vertex u with both the

network distance dG(u, v) and binary code H(u) stored.

For a non-leaf node, it also keeps a routing element, which

equals the maximum network distance of its left subtree.

Therefore, BT(v) is constructed recursively in bottom-up

manner as shown in Figure 3(a).

 Storing BT(v) in an array. As we know, storing the

tree structure as an array enables a better performance than

storing pointers. Therefore, we propose a scheme to

sequentially store all nodes of BT(v) in an array from

nodes on height 0 to the root, as shown in Figure 3(b). In

addition to this array, we also keep an auxiliary array that

indicates the number of nodes in each level of BT(v), by

which we can quickly determine the indices of the

subnodes of a non-leaf node, or the index of its parent

node, in the array. For example, if we want to find the left

and right subnodes of node 16 in BT(v4), we know there

are two nodes on its left side by 16− 14 = 2 where 14 is the

start index of nodes at height 2, so the index of its left

subnode is 9 + 2 ∗ 2 = 13 and the right is 9 + 2 ∗ 2 + 1 =

14. However, we notice 14 is actually at height 2, then we

figure out node 16 does not have a right subnode.

Lemma 1. Given G = (V, E), the space cost of AB-tree is

O(|V | 2 · h).

Proof. For each v ∈ V , we have |V | elements in distance

matrix, thus each BT(v) has an index size O(|V | · h). It is

easy to see the size of AB-tree is O(|V | 2 · h).

5.2.2 Predecessor and Successor Queries on AB-tree
After the construction of AB-tree, we discuss how to use it

so that the next vertex in candidate path can be quickly

located. Initially, if there is no previous vertices accessed

at the next level of vi−1, network distance dG(vi−1, vi)

between vi−1 and next candidate vi is supposed to be

smaller or equal to lD = di , or greater or equal to rD = di ,

where di ∈ µi . Additionally, consider the

aforementioned scenario, we have FP(vq, v1, . . . , vi), but

vi+1 returned at level i+ 1 exceeds UB. Then we have to

remove vi from the stack and turn to find v 0 i as

alternative, where d i m(vi) ≤ d i m(v 0 i). It is easy to see

the difference between dG(vi−1, v0 i) and di must be

greater or equal to d i m(vi) · di . In other words, the

network distance dG (vi−1, v0 i) is smaller or equal to lD

or greater or equal to rD, where

 lD = di − d i m(vi) · di ,

 rD = di + d i m(vi) · di ,

 we have dG(vi−1, v0 i) ≤ lD or dG(vi−1, v0 i) ≥ rD.

(5) Therefore, the predecessor and successor queries can

be issued on BT(vi−1) to retrieve next candidate with two

boundary network distances lD and rD, respectively.

 Predecessor query. Given BT(u), a query keyword w

and network distance lD, we aim to find vertex v that

contains w and dG(u, v) is smaller or equal to and closest

to lD. First, we compute binary code H(w) for query

keyword w. Then we start the process of searching BT(u)

recursively from top to bottom. For a non-leaf node o, if

H(w) ∧ H(o) is non-zero, we continue to search its

subtrees. If lD is smaller than the routing element of o,

only its left subtree needs to be considered. Otherwise, we

first check if we could find v in its right subtree (if exists),

if not, we turn to search its left subtree. For a leaf node v,

we directly check if v contains w and dG(u, v) is smaller or

equal to lD, therefore, false positives can be avoid. Finally,

v is obtained. For example, a predecessor query on BT(v4)

with keyword w2 and lD = 4. First, we have H(w2) =

00010. The search starts from root, and as lD equals to the

routing element 4, thus we first search its right subtree.

After checking H(w2) with binary code of Node 18, we

find it does not contain w2 and we turn to search Node 17.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 515

As the routing element of Node 17 is smaller than lD, we

move to search Node 15. Then we check H(w2) with the

binary code in Node 12, and find Node 12 does not contain

w2. After checking with Node 11, we have v3 as result of

the predecessor query.

 Successor query. Likewise, we have BT(u), a

query keyword w and network distance rid, the goal is to

find vertex v that contains w and dG(u, v) is greater or

equal to and closest to rD. For a non-leaf node o, if H(w) ∧

H(o) is non-zero, the subtrees of o need to be considered.

If rD is smaller or equal to the routing element of o, we

search the left subtree to see if v could be found, if not, we

turn to search the right subtree (if exists). Otherwise, we

simply search the right subtree (if exists) to locate v. For a

leaf node v, if v contains w and dG(u, v) is greater or equal

to rD, v is reported as result. For example, a successor

query on BT(v4) with keyword w2 and rD = 4. We first

check the root with H(w2) = 00010, and rD equals to the

routing element, which means we first search Node 17 to

see if it contains w2, then search Node 18. As the routing

element of Node 17 is smaller than rD, we only need to

check Node 15. Then, since the routing element of Node

15 is same as rD, we turn to search Node 11. Finally, we

obtain v3 as result of the successor query.

 As mentioned before, we process a predecessor and

a successor queries on BT(vi−1) with lD and rD

respectively to locate candidate at level i. If both

predecessor and successor queries find candidate vertices,

we compare their matching distance and report the smaller

one as result. If only one of them finds candidate vertex,

we directly report it. Otherwise, no candidate is found.

Note that, in the process to replace vi with v 0 i , we must

skip vi in the tree traversal to avoid infinite loop caused by

the special case d i m(vi) = d i m(v 0 i).

Lemma 2. The expected number of nodes visited in a

predecessor or successor query on AB-tree is O(log |V

|·|W|·|Φ(V)| |V |·h·|Vwk |).

 Proof. Assume W is the keyword set of G and the

keywords are evenly distributed. The hash function maps

each keyword w ∈ W to a binary code with h bits based on

its modulus, which might lead to false positives. We

denote the average number of conflicting keywords as |W|

h and the average keyword frequency as favg = |Φ(V)| |V |

. Therefore, the probability of false positive can be

computed as p = 1 − |V |·h·|Vwk | |W|·|Φ(V)| . When

encountering a false positive at the leaf node, the

predecessor query traces back from the right subtree and

continues to search the left subtree to find another leaf

node. In this case, O(log |V |) tree nodes will be visited for

each trace back at the worst case. The algorithm terminates

when it reaches a true positive. Hence, the expected

number of trace backs is equivalent to the expected

number of false positives before a true positive, which is 1

1−p = |W|·|Φ(V)| |V |·h·|Vwk | . In total, the expected

number of tree nodes visited in a predecessor query is O(

log |V |·|W|·|Φ(V)| |V |·h·|Vwk |). Assume the time cost

for ∧ operation on two h length hash codes is O(h), thus

the time of searching ABtree is O(log |V |·|W|·|Φ(V)| |V

|·h·|Vwk |) · O(h).

Example 5. In the running example, given query Q = (v7,

{(w1, 6, 0.5),(w2, 4, 0.5),(w4, 5, 0.5)}), assume we already

have stack (v7, v4, v3). At level 2, we intend to remove v3

and find an alternative. Given d 2 m(v3) = 0, we apply a

predecessor and successor queries on BT(v4). For the

predecessor query, we take (w2, 4, 0.5) and 0.0 as input.

As v3 is previous result, we skip it and return v8. For the

successor query, no vertex is found. Therefore, we report

v8 as our next candidate with d 2 m(v8) = 0.5. 5.3

5.3 Keyword-based Label Approach

Even though AB-tree is able to answer findNext() query

fast, the index space cost is still high and could only be

stored in disk, which results in undesired I/O consumption.

In this section, we introduce a main memory based index

structure, namely Pivot reverse Binary tree (PB-tree), to

deal with findNext() query.

5.3.1 Pivot Reverse Binary Tree

As introduced in Section 2.2, we know 2-hop label

possesses the nature to process distance queries between

any two vertices in network with fast response time, whilst

keeping the size of the generated label index as small as

possible. The problem of reducing label size is orthogonal

to our work, thus we fully utilize the stateof-the-art results

to build a small index in this work. As we know, in 2-hop

label, the distance between any vertex pair (u, v) can be

computed correctly through a common pivot o, in other

words, each vertex u can reach any other vertex v in

network through a pivot o. Therefore, based on this

intuition, we modify the structure of original 2-hop label to

construct a pivot reverse index, i.e., P R index [34] which

stores all label entries (o, ηv,o) ∈ S v∈V L(v) regarding

vertex o as pivot into the P R label of vertex o, i.e., (v,

ηv,o) ∈ P R(o). In P R(o), we assume that all the label

entries (v, ηv,o) are sorted in ascending order of distance.

Algorithm 4: Procedure findNext() with AB-tree Input:

Query vertex vi−1, clue wi and di, threshold θ Output:

Next candidate vi with d i m(vi)

1 Obtain BT(vi−1);

2 lD ← di − di · θ; rD ← di + di · θ;

3 vp and dp ← BT(vi−1).predecessor(lD, wi) ;

4 vs and ds ← BT(vi−1).successor(rD, wi) ;

 5 if di − dp ≤ ds − di then 6 return vp with dm(vp); 7 else

8 return vs with dm(vs); Procedure Predecessor(lD, w,

Node) 1 if Node is a leaf node then 2 Obtain vp and dp of

current node; 3 if vp contains w and dp ≤ lD then 4 return

vp and dp; 5 else 6 return false; 7 else 8 Generate H(w);

9 if H(w) ∧ H(Node) = 0 then 10 return false;

11 if lD < Node.routing then

 12 lNode ← index of its left subnode;

13 return Predecessor(lD, w, lNode);

14 else

15 rNode ← index of its right subnode;

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 516

16 lNode ← index of its left subnode;

17 if rNode exists then

18 if Predecessor(lD, w, rNode);

 19 then

20 return vp and dp

 21 else

22 return Predecessor(lD, w, l Node);

23 return Predecessor(lD, w, l Node); example, we have

(v3, 0) ∈ L(v3) and (v3, 4) ∈ L(v1). Through the

transformation, we have P R(v3) = {(v3, 0),(v1, 4)}. In

order to find vertex by keyword and distance information,

each P R(o) is organized as same as the binary tree

mentioned before, thus forms P B(o). The structure is

shown in Figure 4, it is worth to note that any network

distance dG(u, v) is divided into two parts, the first part

dG(u, o) between u and its pivot o can be found in L(u),

and the other part dG(o, v) between pivot o and target v

can be found in P B(o). Therefore, combined with original

label index whose label entries are also sorted in ascending

order by network distance, PB-tree could be used to

answer predecessor and successor queries more efficiently

than AB-tree with a much smaller size.

Lemma 3. Given G = (V, E) and label index L(v) for all v

∈ V , the space cost of PB-tree is O(|L| · h). Proof. For

each v ∈ V , we have |L(v)| label entries, thus each P B(v)

has an index size O(|L(v)| · h). It is easy to see the size of

PB-tree is O(|L| · h) where |L| is the size of label index.

5.3.2 Predecessor and Successor Queries on PB-tree

With the construction of PB-tree, we discuss the

predecessor and successor queries on top of it. Given P

B(vi−1), we aim to find candidate vi that contains wi and

dG(vi−1, vi) is smaller or equal to lD, or greater or equal

to rD. As we know, dG(vi−1, vi) can

be divided into two parts dG(vi−1, o) and dG(o, vi).

Therefore, straightforwardly, we can apply predecessor

and successor queries on P B(o) for each pivot o ∈ L(vi−1)

with two bound network distances lDo and rDo,

respectively. Therefore, for dG(o, vi), lDo = lD −

dG(vi−1, o),

rDo = rD − dG(vi−1, o),

we have dG(o, vi) ≤ lDo or dG(o, vi) ≥ rDo. (6)

 For each P B(o), we are supposed to obtain a temporary

candidate. Through comparison, we can finally find the

next candidate vertex vi .

 Fortunately, it is worth to note that we are not

necessarily to access all P B(o)s to process predecessor and

successor queries. Basically, we know d i m(vi) must not

exceed upper bound matching distance, therefore current

UB can be utilized to prune the search space. That is to

say, vi could only be found if dG(vi−1, vi) is greater or

equal to lB, or is smaller or equal to rB.

lB = di − di ∗ UB,

rB = di + di ∗ UB,

we have dG(vi−1, vi) ≥ lB or dG(vi−1, vi) ≤ rB. (7)

Particularly, for each P B(o), the bound distances can be

computed as

lBo = lB − dG(vi−1, o),

 rBo = rB − dG(vi−1, o). (8)

Therefore, the search space can be narrowed down into

[lBo, lDo] and [rDo, rBo]. For current pivot o being

processed, if we have rB < dG(vi−1, o), we are impossible

to find a candidate in P B(o) since rBo is negative. In other

words, the network distance between vi−1 and any vertex

in P B(o) is definitely greater than rB thus is not qualified.

As we know, the pivots in L(vi−1) are sorted in ascending

order of network distance, the rest pivots o 0 after o do not

need to be considered since they have even greater

network distances to vi−1 than o. Therefore, the process

terminates.

 Predecessor and successor queries. Given P B(o), a

query keyword w and two network distance bound ranges

[lBo, lDo] and [rDo, rBo], we aim to find a temporary

candidate vertex in P B(o). In particular, the difference

between AB-tree and PBtree is that, given a query vertex

u, any target v only shows up once in AB(u), but it might

appear in multiple P B(o)s. Moreover, if we find a

candidate v in P B(o), dG(u, o)+dG(o, v) is not necessarily

equal to dG(u, v) since the network distance can only be

calculated by the pivot with minimum distance summation.

Therefore, we use original label index to check if P(u, . . . ,

o, . . . , v) is the shortest path SP(u, v). As mentioned

before, if rB ≥ dG(vi−1, o), we first apply a successor

query on P B(o). After we obtain a temporary vertex vtmp

locates in [rDo, rBo], we check if o is on the shortest path

SP(vi−1, vtmp) by comparing dG(vi−1, vtmp) with

dG(vi−1, o) + dG(o, vtmp). If so, vtmp is reported as a

temporary successor result on P B(o). Otherwise, we

update rDo by dG(o, vtmp) and continue to apply a new

successor query. This process is repeated until we find a

result. After successor query, we compare dG(vi−1, o)

with lD to determine if we need to apply a predecessor

query on P B(o). Based on the same intuition, if lD ≥

dG(vi−1, o), the predecessor query is applied in a similar

approach as successor query. Finally, we compare the

results of predecessor and successor queries, and obtain the

temporary candidate found in P B(o). It is worth to note

that we can further narrow down the search space by

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 517

updating lB and rB. That is, after processing pivot o, if we

find a temporary candidate vtmp, lB can be updated by

dG(vi−1, vtmp) and rB by 2 ∗ di − lB, which benefits the

processing of rest o 0 .

Lemma 4. The expected number of nodes visited in a

predecessor or successor query on PB-tree is O(log |L| |V |

· |W|·|Φ(V)| |V |·h·|Vwk |).

Proof. According to the proof in Lemma 2, the expected

number of false positives before a true positive is 1 1−p =

|W|·|Φ(V)| |V |·h·|Vwk | . As we know, the height of each

PB-tree is log |L| |V | . Therefore, expected number of

nodes visited in a predecessor or successor query on PB-

tree is O(log |L| |V | · |W|·|Φ(V)| |V |·h·|Vwk |). Given

that ∧ operation on two h length hash codes costs O(h),

thus the time of searching PB-tree is O(log |L| |V | ·

|W|·|Φ(V)| |V |·h·|Vwk |) · O(h).

 Example 6. In the running example, given query Q = (v7,

{(w1, 6, 0.5),(w2, 4, 0.5),(w4, 5, 0.5)}), assume we already

have stack (v7, v4, v3). At level 2, we intend to find the

next candidate. Initially, θ is set as 0.0, therefore we have

lD = rD = 5. As current UB = 0.4, we have lB = 4 and rB =

6. As shown in Figure 4, we first check P B(v3) with

dG(v3, v3) = 0. Then we have lDv3 = rDv3 = 5, lBv3 = 4

and rBv3 = 6. A successor query is applied and no vertex

is found, and a predecessor query returns v1. As dG(v3,

v1) = 4 does not exceed lBv3 , v1 is taken as the temporary

result for pivot v3. Then we continue to search P B(v4)

with lDv4 = rDv4 = 1, lBv4 = 0 and rBv4 = 2 but no vertex

is found, neither in P B(v6). Finally, we report v1 with d 3

m(v1) = 0.4.

VI. DYNAMIC MAINTENANCE

In this section, we discuss how to maintain the PB-tree for

road network updating. To avoid recomputing the index

structure from scratch, we propose a semi-dynamic

mechanism to adjust the PBtree with a low overhead. As

we know, PB-tree is built based on label index, thus the

updating is divided into two phases, the updating of label

index and the updating of PB-tree. Instead of recomputing

a new label index, [4] introduces a dynamic label index

scheme for distance queries on time-evolving graphs, and

we adopt the algorithm for the first phase label index

updating.

Algorithm 5: Procedure findNext() with PB-tree Input:

Query vertex vi−1, clue wi and di, threshold θ Output:

Next candidate vi with d i m(vi)

1 lD ← di − di · θ; rD ← di + di · θ;

2 lB ← di − di · UB; rB ← di + di · UB;

3 for each pivot o ∈ L(vi−1) do

4 Obtain P B(vi−1), lDo, rDo, lBo and rBo;

5 if dG(vi−1, o) > rB then

6 break;

7 else

8 rDo ← rD − dG(vi−1, o);

9 while P B(vi−1).suck(rDo, wi) and dG(o, vtmp r) ≤ rBo

do

10 Obtain vtmp r;

11 if dG(vi−1, vtmp r) 6= dG(vi−1, o) + dG(o, vtmp r)

then

12 rDo ← dG(o, vtmp r);

13 else

14 Obtain temp suc result on P B(o);

15 break;

16 if dG(vi−1) < lD then

17 lDo ← lD − dG(vi−1, o);

18 while P B(vi−1).pred(lDo, wi) and dG(o, vtmp l) ≥ lBo

do

19 Obtain vtmp l;

20 if dG(vi−1, vtmp l) 6= dG(vi−1, o) + dG(o, vtmp l) then

21 lDo ← dG(o, vtmp l);

22 else

23 Obtain temp pre result on P B(o);

24 break;

25 if di −dG(vi−1, vtmp l) ≤ dG(vi−1, vtmp r)−di then

26 lB ← dG(vi−1, vtmp l); rB ← 2 ∗ di − lB;

 27 vi ← vtmp l;

28 else

29 rB ← dG(vi−1, vtmp r); lB ← 2 ∗ di − rB;

 30 vi ← vtmp r; 31 return vi with d i m(vi); 6.1

Semi-Dynamic Index Structure

Basically, we have 4 operations to update the network:

insert a new vertex with an edge connecting to an existing

vertex, delete a vertex with only one edge, insert an edge

and delete an edge. As the deletion operation is much

harder than insertion, and it seems impossible to find an

efficient approach to support deletion in label generation.

Moreover, it is rare to see deletion happens in road

networks, thus we only take insertion into consideration.

As the newly updated vertex is isolated, its label can be

viewed as an empty set. Inserting a new vertex can be

easily done by inserting an edge connecting to it, thus we

only need to focus on edge insertion. As keyword updating

is easy to implement, thus we omit it here.

 Label index updating. Assume we insert an

edge (a, b) into G, some shortest paths in old network may

change by passing (a, b). Based on the label generation

algorithm, we do not have to remove outdated distances in

label but resume BFSs of affected vertices and add new

label entries into index. It is worth to note that only the

pivots in L(a) and L(b) are affected by network updating,

and it suffices to conduct resumed BFSs originally rooted

at pivot vk if vk ∈ L(a) ∪ L(b). Different with previous

pruning method, a prefixal pruning method is proposed to

apply in BFS with a new parameter k, where k is the vertex

ordering of vk. The prefixal method is to answer the

distance query between vk and u from the pivots in

L(vk)∩L(u) whose vertex orderings are at most k.

Interested readers can refer to [4] for algorithm details.

 Pivot-based forest. To propose a semi-dynamic

index structure, we present a general framework to convert

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 518

PB-tree into pivot-based forest (PF), which is inspired by

the logarithmic method [5]. Given P B(o) with m label

entries, we divide it into l = blog mc + 1 partitions P0, . . .

Pl−1. Each partition Pi either has 2 i label entries or is

empty. We first compute a l-bit binary value of m.

Interestingly, whether Pi is empty or not is determined by

the ith bit, if ith bit is 0 then Pi is empty. For non-empty Pi

, we follow the method introduced in Section 5.2.1 to

construct a binary tree P F(o)i on these 2 i label entries.

Finally, all these binary trees together form the pivot-based

forest structure.

 PF index updating. After label index updating, we

add new label entries or rewrite distances of existing label

entries. Assume we add a new label entry (v, dG(o, v)) into

P B(o), we first find the smallest i such that P F(o)i is

empty. If i equals to 0, we simply build P F(o)0 with only

one label entry (v, dG(o, v)). Otherwise, we union all label

entries of P F(o)o, . . . , P F(o)i−1, together with (v, dG(o,

v)), into P F(o)i . It is worth to note that P F(o)i now has 2

i elements and P F(o)o, . . . , P F(o)i−1 become empty. As

we know, the label entries in original P B(o) are sorted in

ascending order of distance. In P F(o), we do not consider

the global distance order but instead consider a local order

in each P F(o)i when we rebuild the index. To rewrite

distances of existing label entries, we only need to update

the P F(o)i they belong to.

 Query processing on PF index. Given

query vertex vi−1 and a clue µ(wi , di), we introduce how

to answer findNext() on PF index. As we know, both the

predecessor and successor queries are decomposable.

Therefore, we simply apply the predecessor and successor

queries on all non-empty P F(o)i . Fortunately, it is not

necessary to process queries on all P F(o)is. If the query

distance is smaller than the minimum network distance

stored in P F(o)i , the predecessor query is not required,

where the similar case holds for successor query. Finally,

we merge these intermediate results to obtain the result.

VII. EXPERIMENTS

In this section, we conduct extensive experiments on real

road network datasets to study the performance of the

proposed index structures and algorithms.

7.1 Experimental Settings All these algorithms

introduced in this paper were implemented in GNU C++

on Linux and run on an Intel(R) CPU i7-4770@3.4GHz

and 32G RAM.

 Datasets. We use two real datasets, the road network

datasets of Beijing and New York City from the 9th

DIMACS Implementation Challenge1 . Each dataset

contains an undirected weighted graph that represents a

part of the road network. The weight of each edge in a

graph represents the distance between two endpoints of the

edge. We obtain the keywords of vertices from the

OpenStreetMap2 . As shown in Table 2, for D1 in Beijing,

we have 168,535 vertices and 196,307 edges. We also

have 88,910

1.http://www.dis.uniroma1.it/challenge9/download.shtml

2.https://www.openstreetmap.org

distinct keywords contained by vertices with the total

occurrence 1,445,824. For D2 in New York, we have more

vertices and edges than D1 in road network with almost

twice the size of D1, and the number of keywords

contained is larger than D1 as well.

Algorithms. We evaluate the performance of three

algorithms, greedy clue search algorithm (GCS), clue-

based dynamic programming algorithm (CDP) and branch-

and-bound algorithm (BAB). In CDP, we use two different

distance oracles DO to compute network distance, i.e., all-

pair and 2-hop label. In BAB, we evaluate the

performances of three index structures, i.e., ABtree, PB-

tree and PF.

Parameter settings. We randomly generate 100 queries

for each set of experiment and measure their performance

by average. To evaluate the algorithms under various

settings, we vary the value of some parameters in the query

to study the performance, as shown in Table 3. For default

settings, we choose 16K for dataset cardinality (the

number of vertices), 4 for the number of clues in query,

and 64 for hash code length.

 We assume a keyword at most shows up once in a

vertex, thus the frequency of a keyword w is the number of

vertices that contain w, i.e., |Vw|. The statistics of keyword

frequency are shown in Table 4, which demonstrates the

percentages of keywords with different frequencies. In the

query, the keyword frequencies, the average distances and

the confidence factors in clues are randomly generated.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 519

More specifically, assume the average keyword frequency

for evaluation is |Vw|, thus the keyword frequencies we

chose in a clue are in the range [0.9 ∗ |Vw|, 1.1 ∗ |Vw|],

which is the similar case with average distance and

average.

7.2 Performance Evaluation
Table 5 shows the performance comparison of proposed

algorithms and index structures on query time, index size

and index construction time. The construction time of all-

pair and 2-hop label, which have been studies by existing

works, are excluded

in our performance comparison. For the query time

evaluation, it is easy to see that BAB well outperforms

GCS and CDP. Besides, applying all-pair in CDP has a

shorter response time but a larger space cost than utilizing

2-hop label, and using PB-tree in BAB has a better

performance than using AB-tree and PF. For index size

and construction time, label based approaches have a much

smaller size and less time than all-pair based approaches.

As NY has a larger size than BJ, more time and space costs

are required. For the rest experiments, we only

demonstrate the performance on BJ due to the space limit,

where the performance on NY is similar to that on BJ.

7.2.1 Accuracy Measurement of GCS

 Figure 5 shows the accuracy measurement of GCS by

varying the parameters in the query, such as the number of

clues, average keyword frequencies, expected distances

and . We study the accuracy by two criteria: the matching

ratio Amatch and hitting ratio Ahit. Amatch = dm(C,

FPgcs) optimal matching distance dmopt Amatch is the

ratio of estimated matching distance of GCS on the

optimal matching distance. A smaller Amatch means a

better accuracy.

Ahit = |FPgcs ∩ FPopt| |C| Ahit focuses on the percentage

of match vertices in FPgcs contained by the optimal

feasible path FPopt. A greater Ahit means a better

accuracy. As we can see in Figure 5, when we enlarge the

parameters, Amatch increases as the result of GCS

becomes more inaccurate; and Ahit decreases, as less

match vertices in optimal feasible path are hit. Both these

two criteria becomes less sensitive when the keyword

frequency gets larger than 500 in Figure 5(b). Moreover,

Ahit keeps steady in Figure 5(c) and 5(d) since GCS is not

sensitive to average distance and .

7.2.2 Query Efficiency Measurement

Effect of the keyword hash code length h. In this set of

experiments, we study the effect of keyword hash code

length h on performance of AB-tree, PB-tree and PF index

structures. As shown in Figure 7, the pivot-based indices

well outperform AB-tree on index construction time, index

size and query time. The space of AB-tree is O(|V | 2 · h)

and PB-tree is O(|L| · h). When we enlarge h, both the

index size and construction time linearly increase. For

query time, there are more false positives in tree traversal

when h is small, however, the bit operation costs less time

than larger h, which is the case when h is set to 64

comparing with higher values. When we set h to 32, even

though we have less bit operation costs, the number of

false positives increases such that the query time increases.

Effect of the dataset cardinality. Let us take Beijing

dataset for example, we randomly extract 5 subgraphs with

equal number of vertices from the original Beijing road

network where the performance is measured by average

for each experiment. For each subgraph, the connectivity

and keyword information of each vertex are kept the same

as the original road network. In this set of experiments, we

vary the size of these subgraphs to study the performance

of proposed algorithms and index structures, as shown in

Figure 8. Obviously, the index size and construction time

increase when we enlarge the size of datasets. It is worth to

note that the size of AB-tree increases exponentially with

the number of vertices, and the sizes of PB-tree and PF

increase gently especially when the size is enlarged from

120K to 160K due to the property of 2-hop label. For the

query time, the BAB algorithm outperforms CDP by a

large margin.

 Effect of the number of clues. In this set of experiments,

Figure 6(a) shows the performance of algorithms by

increasing the number of clues in CRS query. Not

surprisingly, the response time increases when we enlarge

the number of clues of all proposed algorithms. For GCS,

the response time increases gently since only more rounds

of network expansion are induced. For CDP, when we

enlarge the number of clues, more iterations are triggered

for the computation. For BAB, the number of candidate

vertices and feasible paths increase thus takes more

computation time.

Effect of the average frequency of keywords. In this set

of experiments, we study the performance of algorithms by

varying the frequency of query keywords, as shown in

Figure 6(b). It suffices to say that for low frequency

keywords, say the frequency less than 500, it is more

efficient if we adopt CDP with all-pair, and for high

frequency keywords, BAB with PB-tree has a much better

performance on both response time and index size. This is

because, for CDP, there are not too many combinations to

consider if the frequency is low, but when we enlarge the

frequency, the response time increases exponentially to the

frequency. For BAB, there are lots of false positives if the

frequency is low, and when we enlarge the frequency, the

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 520

performance becomes much better since we can quickly

locate the candidate by using PB-tree.

Effect of the average expected distance. In this set of

experiments, we study the effect of average expected

distance on the performance of proposed algorithms, as

shown in Figure 6(c). As we know, we apply the network

expansion algorithm in GCS, which makes it sensitive to

the expected distance. When the distance increases, more

vertices are involved that results in more computation cost.

For CDP with all-pair or label index, they both have a

small dependency on the query distance. Therefore, the

computation time of CDP keeps almost steady as the

distance increases. For BAB, the effect is still not obvious

but if the distance is small, we are supposed to find the

next candidate more quickly since there are only a small

portion of vertices after filtered by distance.

Effect of the average . In this set of experiments, we study

the effect of average on the performance of proposed

algorithms, as shown in Figure 6(d). When we enlarge the

average , more match vertices are considered as

candidates, thus the time costs of CDP and BAB increase.

For GCS, we can do less network traversal to find the

current best match vertex, so the query time reduces when

we enlarge .

Evaluation of index updating. Here we evaluate the cost

of index

keyword hash code 101 102 103 Query time (ms) AB-tree

PB-tree PF 32 64 128 256 512 Length of keyword hash

code 100 101 102 103 104 Index size (GB) AB-tree PB-

tree PF Fig. 7. Effect of the keyword hash code length h

TABLE 6 Evaluation of index updating Dataset Update

time Updated pivots Beijing 78 ms 3.6 NY 127 ms 5.7

updating. It is easy to observe that the average update time

cost is much smaller than reconstruction the index from

scratch. The cost comes from two parts, the updating of

label index and updating of PF. For each update, we only

have to update a very small number of pivot forest

structures, that is, the semi-dynamic update is done

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 521

VIII. RELATED WORK

In this section, we introduce two lines of related work, top-

k spatial keyword search and travel route search.

 8.1 Top-k Spatial Keyword Search

 Searching geo-textual objects with query location and

keywords has gained increasing attention recently due to

the popularity of location-based services. In Euclidean

space, queries. IR-tree [12] is an R-tree augmented with

inverted files that supports the ranking of objects based on

a score function of spatial distance and text relevancy. Cao

et al. [7] proposes a location-aware top-k prestige-based

text retrieval (LkPT) query, to retrieve the top-k spatial

web objects ranked according to both prestige-based text

relevance (PR) and location proximity. [10] provides an

all-round survey of 12 state-of-art geo-textual indices and

proposes a benchmark that enables the comparison of the

spatial keyword query performance. Zhang et al. [31], [32]

proposes the m closet keyword query (mCK query) which

aims to find the closest objects that match the query

keywords and their distance diameter is minimized.

Recently, Guo et al. [15] propose approximation

algorithms to solve the mCK query with a ratio of (√ 2 3 +

). Cao et al. [8] propose a collective spatial keyword query,

in which a different semantics is taken such that the group

of objects in the result covers the query keywords and has

the lowest cost. Li et al. [23] studies the problem of

directionaware spatial keyword search, which aims at

finding the k nearest neighbours to the query that contain

all input keywords and satisfy the direction constraint.

Rocha et al. [27] address the problem of processing top-k

spatial keyword queries on road networks where the

distance between the query location and the spatial object

is the length of shortest path. ROAD [21] organizes the

road network as a hierarchy of subgraphs, and connects

them by adding shortcuts. For each subgraph, an object

abstract is generated for keyword checking. By using

network expansion, the subgraphs without intended object

are pruned out. G-tree [36] adopts a graph partitioning

approach to form a hierarchy. Within each subgraph, a

distance matrix is kept, and for any two subgraphs, the

distances between all borders of them are stored as well.

Based on these distances, it efficiently computes the

distance between query vertex and target vertices or tree

nodes. Jiang et al. [17] adopt 2-hop label for handling the

distance query for kNN problem on large networks, and

facilitates KT index to handle the performance issue of

frequent keywords. Liu et al. [25] formalize the spatio-

textual context information of the querying POI as clues

and use them to identify the most promising PoIs, which is

closely related to our CRS problem. Different with their

work, we aim to find a feasible route on road networks by

using clues. In addition, the spatial distance considered in

our work is network distance so that the algorithms in [25]

can not be applied.

8.2 Travel Route Search
The travel route search problem has been substantially

studied for decades. Traveling Salesman Problem (TSP)

[11] is the most classic problem in route planning. TSP

aims to find the round trip that has the minimum cost from

a source point to a set of targets. Li et al. [22] study the

problem of Trip Planning Query (TPQ) in spatial

databases, where each object is associated with a location

and a category. With a starting point S, a destination E and

a set of categories C, TPQ retrieves the best trip that starts

at S passes through at least one point from each category,

and ends at E. TPQ can be considered as a generalization

of Travelling Salesman Problem (TSP), thus two

approximation algorithms are proposed. [28] studies the

problem of optimal sequenced route (OSR), which aims to

find a route of minimum length starting from a source

point and passing through a number of typed locations in a

specific sequence imposed on the types of the locations.

They propose a LORD and R-LORD algorithms to filter

out the locations that cannot be in the optimal route, thus

improves the search efficiency. [9] studies the problem of

multi-rule partial sequence route (MRPSR), which aims to

find an optimal route with minimum distance under some

partial category order rules defined in the query. They

propose three heuristic algorithms to search for near-

optimal solutions for the MRPSR query. [20] proposes a

greedy algorithm to find a route whose length is smaller

than a specified threshold while the total text relevance of

this route is maximized. [19] studies the problem of

finding a route that visits at least one satisfying entity of

each type in an interactive approach. In each step, a

candidate is given to user to provide a feedback specifying

whether the entity satisfies her. [29] studies the problem of

multi-approximate-keyword routing query, which

complements the standard shortest path search with

multiple keywords and an approximate string similarity

function. For each keyword, the matching point is

supposed to have an edit distance smaller than a given

threshold. [6] defines the problem of keyword-aware

optimal route query, which is to find an optimal route such

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 522

that it covers a set of user-specified keywords, a specific

budget constraint is satisfied, and the objective score of the

route is optimized. [24] Proposes two different solutions,

namely backward search and forward search, to deal with

the general optimal route query without a total order. [30]

Proposes the problem of personalized trip

recommendation, which aims to find the optimal trip that

maximizes users’ experiences for a given time budget

constraint and also takes the uncertain traveling time into

consideration.

IX. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the problem of CRS on road

networks, which aims to find an optimal route such that it

covers a set of query keywords in a given specific order,

and the matching distance is minimized. To answer the

CRS query, we first propose a greedy clue-based algorithm

GCS with no index where the network expansion approach

is adopted to greedily select the current best candidates to

construct feasible paths. Then, we devise an exact

algorithm, namely clue-based dynamic programming CDP,

to answer the query that enumerates all feasible paths and

finally returns the optimal result. To further reduce the

computational overhead, we propose a branch-and-bound

algorithm BAB by applying filter-and-refine paradigm

such that only a small portion of vertices are visited, thus

improves the search efficiency. In order to quickly locate

the candidate vertices, we develop AB-tree and PB-tree

structures to speed up the tree traversal, as well as a semi

dynamic index updating mechanism. Results of empirical

studies show that all the proposed algorithms are capable

of answering CRS query efficiently, while the BAB

algorithm runs much faster, and the index size of PB-tree

is much smaller than AB-tree. Several directions for future

research are promising. First, users may prefer a more

generic preference model, which combines PoI rating, PoI

average menu price, etc, in the query clue. Second, it is of

interest to take temporal information into account and

further extend the CRS query. Each PoI is assigned with a

opening hours time interval [To, Tc], and each clue

contains a visiting time t, where the resulting query aims to

find a path such that the time interval of each matched PoI

covers the visiting time. Third, requiring users to provide

exact keyword match is difficult sometimes as they are just

providing “clue”, which may be inaccurate in nature. Thus,

it is of interest to extend our model to support the

approximate keyword match. Hence, the matching distance

can be modified by incorporating both spatial distance and

textual distance together through a linear combination.

REFERENCES

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck.

Hierarchical hub labelings for shortest paths. In ESA, pages 24–35.

Springer, 2012.

[2] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata. Fast

shortestpath distance queries on road networks by pruned highway

labeling. In ALENEX, pages 147–154. SIAM, 2014.

[3] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In

SIGMOD, pages 349–360. ACM, 2013.

[4] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and historical

shortestpath distance queries on large evolving networks by pruned

landmark labeling. In WWW, pages 237–248. ACM, 2014.

[5] J. L. Bentley and J. B. Saxe. Decomposable searching problems i.

staticto-dynamic transformation. Journal of Algorithms, 1(4):301–

358, 1980.

[6] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware optimal

route search. PVLDB, 5(11):1136–1147, 2012.

[7] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based

relevant spatial web objects. PVLDB, 2010.

[8] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial

keyword querying. In SIGMOD, pages 373–384. ACM, 2011.

 [9] H. Chen, W.-S. Ku, M.-T. Sun, and R. Zimmermann. The multi-

rule partial sequenced route query. In SIGSPATIAL, page 10. ACM,

2008.

 [10] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword

query processing: an experimental evaluation. PVLDB, 2013.

[11] N. Christofides. Worst-case analysis of a new heuristic for the

travelling salesman problem. Technical report, DTIC Document,

1976.

[12] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k

most relevant spatial web objects. PVLDB, 2009.

[13] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial

databases. In ICDE, 2008. [14] E. W. Dijkstra. A note on two

problems in connexion with graphs. Numerische mathematik,

1(1):269–271, 1959.

 [15] T. Guo, X. Cao, and G. Cong. Efficient algorithms for answering

the m-closest keywords query. In SIGMOD, pages 405–418. ACM,

2015. [16] C. S. Jensen, J. Kola´ˇrvr, T. B. Pedersen, and I. Timko.

Nearest neighbor queries in road networks. In GIS, pages 1–8. ACM,

2003.

 [17] M. Jiang, A. W.-C. Fu, and R. C.-W. Wong. Exact top-k nearest

keyword search in large networks. In SIGMOD, pages 393–404.

ACM, 2015. [18] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu.

Hop doubling label indexing for point-to-point distance querying on

scale-free networks. PVLDB, 7(12):1203–1214, 2014.

[19] Y. Kanza, R. Levin, E. Safra, and Y. Sagiv. Interactive route search

in the presence of order constraints. PVLDB, 3(1-2):117–128, 2010.

[20] Y. Kanza, E. Safra, Y. Sagiv, and Y. Doytsher. Heuristic

algorithms for route-search queries over geographical data. In

SIGSPATIAL, page 11. ACM, 2008.

[21] K. C. Lee, W.-C. Lee, and B. Zheng. Fast object search on road

networks. In EDBT, 2009.

[22] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng.

On trip planning queries in spatial databases. In SSTD, pages 273–

290. Springer, 2005.

[23] G. Li, J. Feng, and J. Xu. Desks: Direction-aware spatial keyword

search. In ICDE, 2012.

[24] J. Li, Y. D. Yang, and N. Mamoulis. Optimal route queries with

arbitrary order constraints. TKDE, 25(5):1097–1110, 2013.

[25] J. Liu, K. Deng, H. Sun, Y. Ge, X. Zhou, and C. S. Jensen. Clue-

based spatio-textual query. PVLDB, 10(5), 2017.

[26] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective

spatial keyword queries: a distance owner-driven approach. In

SIGMOD, pages 689–700. ACM, 2013.

[27] J. B. Rocha-Junior and K. Nørvag. Top-k spatial keyword queries

on ˚ road networks. In EDBT, pages 168–179. ACM, 2012.

[28] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The optimal

sequenced route query. VLDBJ, 17(4):765–787, 2008.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 523

[29] B. Yao, M. Tang, and F. Li. Multi-approximate-keyword routing in

gis data. In SIGSPATIAL, pages 201–210. ACM, 2011.

[30] C. Zhang, H. Liang, K. Wang, and J. Sun. Personalized trip

recommendation with poi availability and uncertain traveling time. In

CIKM, pages 911–920. ACM, 2015.

[31] D. Zhang, Y. M. Chee, A. Mondal, A. K. Tung, and M.

Kitsuregawa. Keyword search in spatial databases: Towards

searching by document. In ICDE, pages 688–699. IEEE, 2009.

[32] D. Zhang, B. C. Ooi, and A. K. Tung. Locating mapped resources

in web 2.0. In ICDE, pages 521–532. IEEE, 2010.

[33] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. Sadiq, and X. Zhou.

Approximate keyword search in semantic trajectory database. In

ICDE, pages 975–986. IEEE, 2015.

[34] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li.

Keyword-aware continuous knn query on road networks. In ICDE,

pages 871–882. IEEE, 2016.

[35] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient

search for activity trajectories. In ICDE, pages 230–241. IEEE, 2013.

[36] R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient

index for knn search on road networks. In CIKM, 2013.

Authors Profile

Shaik Sharmila pursing M.Tech 2
nd

 year

in Qis College and Engineering and

Technology in Department of Computer

Science and Technology, Ongole.

U. Srinivas Mohan is currently working as

an Associate Professor in Department of

Computer and Science and Engineering in

QIS college of Engineering & Technology

with the Qualification M.Tech.

