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Abstract— With the advances in geo-positioning technologies and location-based services, it is nowadays quite common for 

road networks to have textual contents on the vertices. Previous work on identifying an optimal route that covers a sequence of 

query keywords has been studied in recent years. However, in many practical scenarios, an optimal route might not always be 

desirable. For example, a personalized route query is issued by providing some clues that describe the spatial context between 

Pose along the route, where the result can be far from the optimal one. Therefore, in this paper, we investigate the problem of 

clue-based route search (CRS), which allows a user to provide clues on keywords and spatial relationships. First, we propose a 

greedy algorithm and a dynamic programming algorithm as baselines. To improve efficiency, we develop a branch-and-bound 

algorithm that prunes unnecessary vertices in query processing. In order to quickly locate candidate, we propose an AB-tree 

that stores both the distance and keyword information in tree structure. To further reduce the index size, we construct a PB-tree 

by utilizing the virtue of 2-hop label index to pinpoint the candidate. Extensive experiments are conducted and verify the 

superiority of our algorithms and index structures.  
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                        I. INTRODUCTION 

  

With the rapid development of location-based services and 

geo positioning technologies, there is a clear trend that an 

increasing amount of geo-textual objects are available in 

many applications. For example, the location information 

as well as concise textual descriptions of some businesses 

(e.g., restaurants, hotels) can be easily found in online 

local search services (e.g., yellow pages). To provide 

better user experience, various keyword related spatial 

query models and techniques have emerged such that the 

geotextual objects can be efficiently retrieved. It is 

common to search a Point-of-Interest (PoI) by providing 

exact address or distinguishable keyword (i.e., only few 

PoIs contain the keyword) in a region which can uniquely 

pinpoint the location. For example, we type the address 

“73 Mary St, Brisbane” or the name “Kadoya” on Google 

Maps to find a Japanese restaurant in the CBD area. Some 

existing work [8], [15], [26], [31], [33], [35] extends such 

query to more sophisticated settings, such as retrieving a 

group of geo-textual objects (usually more than 2) or a 

trajectory covering multiple keywords. However, it is not 

uncommon that a user aims to find a PoI with less 

distinguishable keyword such as “restaurant”, but she can 

only provide more or less spatio-textual context 

information around the PoI. Liu et al. [25] formalize such 

context information as clues and use them to identify the 

most promising PoIs. Different with their work, we aim to 

find a feasible route on road networks by using clues. 

Particularly, in this paper, we investigate a novel query 

type, namely clue-based route search (CRS), which allows 

a user to provide clues on textual and spatial context along 

the route such that a best matching route w.r.t. the clues is 

returned. More specifically, a CRS query is defined over a 

road network G, and the input of the query consists of a 

source vertex vq and a sequence of clues, where each clue 

contains a query keyword and a user expected network 

distance. A vertex contains a clue keyword is considered 

as a match vertex. The query returns a path P in G starting 

at vq, such that (i.) P passes through a sequence of match 

vertices (PoIs) w.r.t. the clues and (ii.) the network 

distances between two contagious matched vertices are 

close to the corresponding user specified distance such that 

the user’s search intention is satisfied.  

 

1.1 Application Scenarios  

The existing solutions (e.g., [6], [22], [28]) for trip 

planning or route search problem are dealing with the 

scenarios when a user wants to visit a sequence of PoIs, 

each of which contains a user specified keyword. Different 

optimization constraints are proposed, and the goal is to 

find an optimal route with minimum cost. In general, the 
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cost can be of various different types, such as travel 

distance, time or budget. However, to the best of our 

knowledge, none of the existing solutions (e.g., [6], [22], 

[28]) on trip planning or route search can be applicable for 

solving CRS queries since the optimization needs to be 

conducted based on the clues. As an extension of 

traditional route search queries, CRS query can also be 

useful in many real scenarios.  

   Modeling Imprecise User Intention. The clue is 

typically based on observations that 1) the keywords of 

PoIs in the clue may be interchangeable or inexact terms 

(e.g., a user may think of a PoI being canteen whereas it 

may be referred to as a restaurant); 2) the spatial 

relationships between PoIs are approximate, which is a 

natural phenomenon for human to estimate distance. For 

example, if the distance between two PoIs in the clue is 

about 100 meters, the actual distance may be noticeably 

greater than or less than 100 meters. Consider a scenario in 

our daily life: a user wants to find a restaurant in a city 

visited many years ago. She cannot remember the exact 

name and address but she still recalls that on the way 

driving to the restaurant from her home, she passed a cafe 

at about 1km away, and drove about another 2km to reach 

the restaurant. The information given above usually cannot 

precisely locate a PoI, but intuitively it provides clues to 

identify the most likely PoIs along the route. 

        Increased Flexibility in Trip Planning. As 

mentioned before, most existing work aims to find an 

optimal route with minimum travel distance. However, in 

many real scenarios, such an optimal route might not 

always be desirable. For instance, a user may have some 

personalized requirements on the distances between PoIs 

when planning a trip. Consider such a scenario, a user 

wants to find a buffet restaurant and a nearby cinema only 

in walking distance, say 3km, thus he can watch a movie 

after dinner. Therefore, after having delicious food, he can 

walk to the cinema in order to maintain a healthy lifestyle. 

These personalized requirements make the route search 

become distance-sensitive and more flexible such that the 

distance between PoIs along the route should be as close as 

possible to the user specified distance.  

         Clue-based Route Navigation. Given a description 

including textual and distance information on an expected 

route, it is still not direct-viewing enough for users to 

obtain the exact route. This is usually the case when a user 

wants to know the way for a specific place and asks the 

others for help, she may still not be able to exactly figure 

out the route after obtaining the answers from them, where 

the answer usually comes in the form, for example, “go 

straight on the way for about 100 meters, you will see a 

cafe, and turn right, you will arrive the Japanese restaurant 

after about 150 meters walk”. Therefore, a novel type of 

route search which automatically interprets the clues 

contained in such answers becomes necessary. By 

augmenting it on current navigation services, a better user 

experience can be provided.  

1.2 Challenge 

 In order to process the CRS query efficiently, we need to 

overcome several challenges. The first challenge is 

concerned with the large amount of possible routes for 

validation. Basically, the CRS requires candidate vertices 

that contain query keywords in the route to comply a 

specific order defined in query. As a feasible path is 

supposed to cover all the query keywords, the number of 

feasible paths increases exponentially with the amount of 

clues. Therefore, a greedy approach to solve our query is 

proposed, which continuously finds the next candidate 

vertex with minimum matching distance. Unfortunately, 

the optimal result can be substantially different from what 

the greedy algorithm suggests. Then, we propose a 

dynamic programming algorithm to answer CRS query 

exactly, but it requires quadratic time and is not scalable 

especially for more frequent keywords. To avoid 

unnecessary route search, we develop a branch-and-bound 

algorithm which adopts filter-and-refine paradigm, thus 

much fewer feasible paths are considered. 

           The second challenge is how to quickly locate 

candidate vertices in road networks. Given a query vertex 

u, the matching distance between u and its next candidate v 

is supposed to be smaller or equal to a threshold. The 

network expansion approach can be applied here, but it is 

inefficient due to excessive network traversals. Therefore, 

we propose a novel index structure, called AB-tree, which 

stores both keyword and distance information in each 

node. On top of it, the candidate w.r.t. a query clue can be 

quickly retrieved. The third challenge is how to reduce the 

index construction time and space. As AB-tree involves an 

all-pair matrix computation and has a space cost of O(|V | 

2 ), we propose a PB-tree to further improve the 

performance. Inspired by the 2-hop label [1], [3], which 

answers distance queries with a small label index, we 

modify the structure of original label index to construct a 

binary tree on each pivot. In addition, we propose a semi-

dynamic mechanism for PB-tree to support the index 

updating.  

 

1.3 Contribution  

The principal contributions of this paper can be 

summarized as follows.  

• We propose a greedy clue search algorithm (GCS) to 

answer the CRS query approximately with no index 

involved. In GCS, we adopt the network expansion 

approach to greedily select the current best candidate at 

each step to construct feasible paths. 

 • We also develop a clue-based dynamic programming 

algorithm (CDP) that attempts to enumerate all feasible 

paths and finally returns the optimal result. In CDP, 

distance oracle is used to compute the network distance 

between candidates. 

 • We further propose a branch-and-bound algorithm 

(BAB) by applying filter-and-refine paradigm such that 

only a small portion of vertices are visited, hence improves 
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the search efficiency. In order to quickly locate the 

candidate vertices, we develop AB-tree and PB-tree 

structures to speed up the tree traversal, as well as a semi-

dynamic index updating mechanism to keep the index 

maintainable when growing bigger. 

 • Our experimental evaluation demonstrates the efficiency 

of our algorithms and index structures for processing the 

CRS queries on real-world datasets. We show the 

superiority of our algorithms in answering CRS when 

compared with the baseline algorithms.  

       The remainder of this paper is organized as follows. 

We first formulate the problem of clue-based route search 

CRS in Section 2. Then we propose a greedy algorithm 

GCS in Section 3 to answer CRS approximately. Section 4 

presents a clue-based dynamic programming algorithm 

CDP to return exact answer to CRS query. Efficient 

branch-and-bound algorithm BAB is introduced in Section 

5, as well as two index structures ABtree and PB-tree. 

Section 6 presents a semi-dynamic mechanism for 

proposed index structure. Section 7 reports the 

experimental observations, and Section 8 reviews the 

related work. Finally, Section 9 concludes the paper.  

 

II.  PROBLEM STATEMENT 

 

We model a road network as a weighted undirected graph 

G = (V, E), where V is the set of vertices and E is the set 

of edges. Each vertex v ∈ V contains a set of keywords, 

denoted as Φ(v). Each edge (u, v) ∈ E has a positive 

weight, i.e., length or travelling time on the edge, denoted 

as e(u, v). Given a path between vertices u and v, denoted 

as P(u, . . . , v), the length is  the sum of weights of all 

edges along the path. For any two vertices u and v, the 

network distance between u and v on G, denoted as dG(u, 

v), is the length of the shortest path SP(u, v) between u and 

v. The notations used in this work is summarized in Table 

1.  

 

2.1 Problem Definition  
Definition 1 (Clue). A clue is defined as µ(w, d, ), where 

w is a query keyword, d is a user defined distance, and  ∈ 

[0, 1] is a confidence factor.  

Definition 2 (Match). Given a source vertex u and a clue 

µ(w, d, ), we say that the vertex pair σ(u → v) is a match 

w.r.t. clue µ, if the vertex v contains clue keyword w and 

the network distance between u and v is in [d(1−), d(1+)], 

i.e., w ∈ Φ(v) and dG(u, v) ∈ [d(1 − ), d(1 + )].  

Definition 3 (Feasible Path). We define a clue-based route 

query Q = (vq, C) where C is a sequence of clues denoted 

as C = {µ1(w1, d1, 1), . . . , µk(wk, dk, k)}. Given a query 

Q, if we find  

(i) a sequence of vertices v0, v1, . . . , vk where v0 = vq 

and σ(vi−1 → vi) is a match w.r.t. µi for i ∈ [1, k]; (ii) a 

path P starts from v0 and passes v1, . . . , vk one by one;  

(iii) Each subpath P(vi−1, . . . , vi) of P is the shortest path 

SP(vi−1, vi) for i ∈ [1, k].  

We call such P a feasible path, denoted as FP(vq, v1, . . . , 

vk).  

Definition 4 (Matching Distance). The matching distance 

between a clue µ(w, d, ) and its match σ(u → v) in G, 

denoted as dm(µ, σ), is computed by d and the network 

distance dG(u, v), such that  

          dm(µ, σ) = |dG(u, v) − d|  · d (1)  

It is worth noting that any monotonic increasing function 

that normalizes the matching distance into [0, 1] can be 

applied here.  

The matching distance between C and its feasible path FP 

is defined as the maximum matching distance between all 

clues µ ∈ C and their corresponding matches σ ∈ FP, that 

is  

          dm(C, FP) = max µi∈C,σi∈FP dm(µi , σi) (2)  

        The motivation of using Equation 2 is that the 

maximum matching distance of all the clues naturally 

controls the overall matching quality of the feasible path, 

which is a widely adopted w1 w2 w3 w4 w5 3 3 4 4 5 3 2 

2 3 4 4 5 3 2 2 1 v1 v2 v3 v4 v5 v7 v8 v9 v6 

 
method for the problem optimizing an objective score 

contributed by several components [15], [31].  

        Clue-based Route Search (CRS). Given a clue-based 

route search (CRS) Q = (vq, C), it aims to find a feasible 

path FP(vq, v1, . . . , vk), such that dm(C, FP) is 

minimized.  

            The clues in CRS implies that we are supposed to 

find a feasible path whose distances between two match 

vertices are as close as possible to user specified distance 

such that the user’s search intention is satisfied. It is worth 
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noting that the CRS query can be easily extended to have a 

destination by assuming that the query keyword contained 

in destination is unique within G. In addition, for 

simplicity, we only discuss the optimal feasible path in this 

paper, but the algorithms introduced can be easily 

extended to find top-k feasible paths.  

Example 1. Given Q = (v1, {(w2, 5, 0.5),(w1, 4, 0.5),(w3, 

6, 0.5)}), thus both FP1(v1, v3, v6, v7) and FP2(v1, v3, v4, 

v7) are feasible paths with dm(C, FP1) = 0.4 and dm(C, 

FP2) = 0.5 respectively. Therefore, FP1 is reported as the 

result of CRS.  

 

2.2 Preliminary: Distance Oracle  

We adopt the idea of distance oracle DO to calculate the 

network distance between two input vertices. Given a 

source-target pair of vertices, DO returns the shortest 

network distance between them. As we know, the 

algorithms and data structures on DO have been 

extensively studied by existing works, which can be 

roughly summarized into two categories, expansion-based 

methods and lookup-based methods. The most famous 

expansion-based method for DO is Dijkstra’s algorithm 

[14], which, given a s-t pair in road network G, traverses 

the vertices in G from s to t. However, the problem of 

using Dijkstra’s algorithm is that it must visit every vertex 

that is closer to s, and the number of such unneeded 

vertices can be enormous when s and t are far apart, which 

incurs redundant network traversal. Besides, the lookup-

based methods usually have to store some precomputed 

results. For example, allpair method is space inefficient 

that we have to precompute and store a distance matrix, 

which requires O(n 2 ) space for a road network G with n 

vertices. To the best of our knowledge, one of the most 

notable recent developments is the emergence of practical 

2-hop labeling methods [1]–[3], [18] for DO on large 

networks. It constructs labels for vertices such that a 

distance query for any vertex pair u and v can be answered 

by only looking up the common labels of u and v. For each 

vertex v, we precompute a label, denoted as L(v), which is 

a set of label entries and each label entry is a pair (o, ηv,o), 

where o ∈ V and ηv,o = dG(v, o) is the distance between v 

and o. We say that o is a pivot in label  entry if (o, ηv,o) ∈ 

L(v). Given two vertices u and v, we can find a common 

pivot o that (o, ηu,o) ∈ L(u) and (o, ηv,o) ∈ L(v): dG(u, v) 

= min{ηu,o + ηv,o} (3) We say that the pair (u, v) is 

covered by o and the distance query dG(u, v) is answered 

by o with smallest ηu,o + ηv,o. Therefore, we can compute 

dG(u, v) in O(|L(u)| + |L(v)|) time by using a merge-join 

like algorithm.  

 

III. GREEDY CLUE SEARCH ALGORITHM 

 

We develop a greedy algorithm as a baseline for answering 

the CRS query, which is called Greedy Clue Search (GCS) 

algorithm. Given a query Q = (vq, C), we first add vq into 

a candidate path. Then we use the Procedure findNextMin 

() to determine the next match vertex v1 that the matching 

distance between µ1 and σ1(vq → v1), i.e., dm(µ1, σ1), is 

minimized. Afterwards, we insert v1 into the candidate 

path, and continue to find its contagious candidate by 

findNextMin (). This process is repeated until all the match 

vertices are determined, thus the candidate path forms a 

feasible path, denoted as FPvq If we assume Procedure 

findNextMin() costs time f, then the time complexity of 

GCS is O(k · f).  

      In Procedure findNextMin(), we utilize the network 

expansion algorithm [16] to find the nearby vertices that 

contain the query keywords and the network distances are 

in the confidence intervals. The algorithm details are 

shown in Algorithm 1.  Given the source u, and the clue 

µ(w, d, ), we aim to find a match vertex v such that the 

difference between dG(u, v) and d is minimized. In the 

network traversal starting from u, we check every visited 

vertex to see if it is a match vertex that contains w and 

locates in the interval [d(1 − ), d(1 + )]. If v is the first 

visited match vertex and dG(u, v) > d, then we stop and 

return v since the difference incurred by the remaining 

unvisited vertices cannot be less than dG(u, v) − d. 

Otherwise, we continue to find the next match vertex v 0 . 

If v 0 is found, then 

  (i) If dG(u, v0 ) ≤ d, we update v by v 0 since v 0 renders 

a smaller difference than v;  

(ii) Otherwise, we compare d − dG(u, v) with dG(u, v0 ) − 

d and return the smaller one as the result.  

Example 2. In running example Figure 1, we are given 

CRS query Q = (v1, {(w2, 5, 0.5),(w1, 4, 0.5),(w3, 6, 

0.5)}). First, we fetch v1 into the candidate path, and call 

findNextMin(v1, w2, 5, 0.5) and return v3 with dm = 0.4. 

Therefore, we repeat the process and finally obtain FPv1 = 

(v1, v3, v4, v7) with dm(C, FPv1 ) = 0.4. Therefore, we 

have FPgcs = FPv1 and dm(C, FPgcs) = 0.4.  

 

IV. CLUE-BASED DYNAMIC PROGRAMMING 

ALGORITHM 

 

As we know, even though GCS has a short response time, 

the accuracy of the answer cannot be guaranteed. To 

achieve better accuracy, we propose an exact algorithm, 

called Clue-based Dynamic Programming (CDP), to 

answer the CRS query. Generally, it is challenging to 

develop an efficient exact algorithm for CRS queries, since 

we cannot avoid exhaustive search for PoIs in road 

networks. For instance, the number of vertices that contain 

keyword wi ∈ C is denoted as |Vwi |, thus the time 

complexity of the 

 
 Algorithm 1: Procedure find Next Min ()  

 
Input: Source vertex u and clue µ(w, d, )  

Output: min {dm (µ, σ)} and match vertex v 

 1 From u, do network traversal;  

2 if a match vertex v is found then  
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3 dG ← the network distance between u and v;  

4 while true do  

5 Find next v 0 contains w, thus obtain d 0 G;  

6 if dG < d and d 0 G > d then  

7 break;  

8 else  

9 v ← v 0 and dG ← d 0 G;  

10 return min{dm(µ, σ)} and v;  

brute-force approach, which attempts all possible 

combinations, is O( Q wi∈C |Vwi |). In CDP, we construct 

a keyword posting list for each keyword w, which is a list 

of vertices that contain w. When a CRS query is issued, we 

sort the posting lists according to the keyword order of wi 

∈ C. Note that the order of the vertices within each posting 

list does not matter and can be arbitrary, hence are sorted 

by vertex id for simplicity. It is easy to see that these 

posting lists actually construct a k-bipartite graph G0 , 

which in fact shows all feasible paths for a given C. The 

weight of each edge in G0 is computed as the matching 

distance. Specifically, for each u ∈ Vwi , we define D(wi , 

u) to denote the minimum matching distance one can 

achieve with a walk that passes the keywords from w1 to 

wi consistent with the order in C and stops at u. In other 

words, the weight of vertex u ∈ G0 is computed by D(wi , 

u), which is the minimum matching distance of all partial 

feasible paths end at u. Then we compute D(wi , u) by the 

following recursive formula:  

(i) i = 1: for match vertices u ∈ Vw1 , we have D(wi 

, u) = dm(µi(wi , di), σ(vq → u))  

(ii) i > 1: for match vertices v ∈ Vwi−1 and u ∈ Vwi , 

we have D(wi , u) = min v∈Vwi−1 

{max{D(wi−1, v), dm(µi , σ(v → u))}} (4)  

(iii) For each iteration, we have at most |Vwi−1 | · 

|Vwi | combinations, thus the time required is O( Pk i=2 

|Vwi−1 | · |Vwi |). The details of CDP are shown in 

Algorithm 2. In order to compute D(wi , u), we have to 

access the posting list of wi−1. For each vertex v in this 

list, we first check if σ(v → u) is a match w.r.t. µi and then 

compute dm(µi , σ(v → u)). Then we compare it with 

D(wi−1, v), and keep the greater one as intermediate value. 

Finally, we find the minimum one as D(wi , u) from these 

|Vwi−1 | intermediate values. After we recursively process 

all the keywords, we finally find the minimum D(wk, u) 

and back trace the corresponding vertices that construct FP 

cdp. In each iteration, we have a clue µi(wi , di), therefore 

we have to compute dG(u, v) between each u ∈ Vwi and 

its precedents v ∈ Vwi−1 as prerequisites for determining 

dm(µi , σ(v → u)). Here we adopt the distance oracle 

introduced in Section 2.2 to compute dG(u, v).  

 

               Example 3.  

As shown in Figure 2, given CRS query Q = (v1, {(w2, 5, 

0.5),(w1, 4, 0.5),(w3, 6, 0.5)}). To compute D(w3, v7), we 

first compare D(w1, v4) = 0.4 with dm(µ3, σ(v4 → v7)) = 

0, and obtain intermediate    

 
Likewise, we have D(w1, v6) = 0.5 and dm(µ3, σ(v6 → 

v7)) = 0.33, thus the intermediate value is 0.5. Therefore, 

CDP returns FPcdp = (v1, v3, v4, v7) with dm(C, FPcdp) 

= 0.4.  

 
Algorithm 2: Clue-based Dynamic Programming CDP 

Input: Q = (vq, C = {(w1, d1), . . . ,(wk, dk)}) Output: 

FPcdp with dm(C, FPcdp)  

 
1 for each u ∈ Vw1 do  

2 Initial D(w1, u);  

3 for 1 < i ≤ k do  

4 for each u ∈ Vwi do  

5 Initial intermediate vector iv(u);  

6 for each v ∈ Vwi−1 do  

7 if dm(µi, σ(v → u)) < D(wi−1, v) then  

8 iv(u) insert D(wi−1, v);  

9 else 

 10 iv(u) insert dm(µi, σ(v → u));  

11 D(wi, u) ← min{iv(u)}  

12 Find min{D(wk, u)};  

13 return FPcdp and dm(C, FPcdp) ← min{D(wk, u)};  

 

V. BRANCH AND BOUND ALGORITHM 

 

Although CDP provides an exact solution, the search 

efficiency cannot be maintained. For instance, consider the 

worst case, we assume that all vertices contain query 

keywords, then the time is O(k · |V | 2 ). To propose a 

more efficient algorithm, we assume there is an artificial 

directed graph G0 , which is similar to the k-bipartite 

graph in CDP that formed by all candidate vertices 

containing keywords in C, where the edge of G0 is a match 

of one clue and in the meantime its direction complies the 

keyword order of the clue. Note that, G0 is organized into 

k levels, and each level i corresponds to each keyword wi . 

Based on G0 , we develop a Branch-and-Bound (BAB) 

algorithm to search G0 in a depth-first manner by applying 

the filter-and-refine paradigm, which only visits a small 

portion of vertices in G0 . Fortunately, we can use the 

result of GCS to speed up the search process since it can 

serve as an initial upper bound.  
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5.1 Algorithm Outline  

We start the searching from level 1 to k to obtain a feasible 

path FP, if the matching distance dm(C, FP) is greater than 

the current upper bound, we continue to search for the next 

candidate feasible path, otherwise we update the upper 

bound. It is worth noting that it is not necessary to go 

through every candidate feasible path. If the matching 

distance at intermediate level already exceeds the upper 

bound, it can be removed. This process terminates when 

the matching distance next to be processed at level 1 can 

be filtered, since it is impossible to find a feasible path 

with smaller match distance.  

           Candidate feasible path updating. Initially, we 

keep a stack to store the partial candidate path, which 

contains a sequence of vertices and corresponding 

matching distances. First, we fetch vq into the stack, then 

we continue to find next candidate at level 1. Basically, the 

key component of this algorithm is to quickly locate the 

next best match vertex, and the details of Procedure 

findNext () will be introduced later. Given a partial 

candidate path FP (vq, v1, vi) obtained at level i, we apply 

findNext () to find the next candidate vi+1 at level i+ 1. 

Once vi+1 is found, we compute d i+1 m (vi+1) which 

denotes the matching distance at level i + 1 resulted by 

vi+1, and compare it with current UB. Note that, vi+1 is 

accepted as a candidate and inserted into the stack if and 

only if its matching distance d i+1 m (vi+1) is smaller than 

UB. Otherwise, vi is removed from the stack as well as d i 

m(vi). In other words, vi is not valid that the path FP(vq, 

v1, . . . , vi−1) cannot survive by passing vi , then we have 

to find an alternative v 0 i . As we know vi is the current 

best candidate at level i, therefore we have to relax the 

matching distance by finding v 0 i where d i m(vi) ≤ d i 

m(v 0 i ) and d i m(v 0 i ) is minimum among all the rest 

vertices untouched at level i. Afterwards, if v 0 i is valid, 

we continue to apply findNext() on it.  

      Upper bound updating. Specifically, after we obtain a 

feasible path FP(vq, v1, . . . , vk−1) at level k − 1, if vk is 

returned by findNext(), then we check if d k m(vk) exceeds 

UB. If vk is not valid, we prune vk and simply repeat the 

above process. Otherwise, we insert vk into the stack, and 

a complete feasible path is determined. Hence, FP(vq, v1, . 

. . , vk) is regarded as a temporary result, and UB is 

updated by the minimum matching distance among all d i 

m(vi)s. It is easy to see that, we cannot find a better 

feasible path by alternating vk with v 0 k at level k, since 

no further level is available to make up the relaxation 

caused by v 0 k . Therefore, in addition to remove vk, we 

continue to remove vk−1 from the stack and repeat the 

above process. In general, the pruning happens from the 

lower levels to the higher levels, i.e., from level k to level 

1. In the end, at level 1, if the matching distance induced 

by the next candidate vertex is greater than UB, it is 

impossible to find another feasible path, thus the stack 

becomes empty after the last vertex vq is removed, and this 

process terminates.  

Example 4. In the running example, given query Q = (v7, 

{(w1, 6, 0.5),(w2, 4, 0.5),(w4, 5, 0.5)}). First we fetch v7 

into the stack, and findNext() returns v4 with d 1 m(v4) = 

0. Then we insert v4 into stack and continue to find next 

candidate vertex, and v3 is obtained with d 2 m(v3) = 0. 

The process continues and then we have v1 with d 3 m(v1) 

= 0.4. As the size of stack is same as the number of query 

keywords, a feasible path FP = (v7, v4, v3, v1) with dm(C, 

FP) = 0.4 is obtained, and UB is updated by 0.4. Next, we 

remove v1 and v3 from the stack, and continue to find next 

candidate of v4. As d 2 m(v3) = 0, we relax the matching 

distance and call findNext() which returns v8 with d 2 

m(v8) = 0.5. Then we have to remove v4 from the stack 

since d 2 m(v8) already exceeds current upper bound UB. 

Now we move on to apply findNext() on v7 and returns v6 

with d 1 m(v6) = 0.33. However, the next candidate v3 has 

d 2 m(v3) = 0.5 greater than UB, thus we remove v6 and 

v7 from stack. Therefore, the algorithm terminates since 

no other feasible path exists. We have FPbab = (v7, v4, v3, 

v1) with dm(C, FPbab) = 0.4.  

Algorithm 3: Branch and Bound BAB  

Input: Q = (vq, C)  

Output: FPbab with dm(C, FPbab)  

1 Initialize stackV, stackD, and search threshold θ;  

2 Push vq into stackV;  

3 while stackV is not empty do 

 4 i ← stackV.size();  

5 if findNext(vi−1, di, wi, θ) = true then  

6 Obtain vi and d i m(vi);  

7 θ ← 0.0;  

8 Push vi into stackV and d i m(vi) into stackD;  

9 if i equals to k then  

10 if max{stackD} <= UB then  

11 Update UB by max{stackD};  

12 Update FPbab by stackV;  

13 Update θ by top of stackD;  

14 Update stackV and StackD;  

15 else 16 Update θ by top of stackD;  

17 Update stackV and StackD;  

18 return FPbab and dm(C, FPbab) ← UB; 

 5.2 All-Pair Distance Approach 

 In BAB, the Procedure findNext() is applied on vi−1 to 

find the next candidate vertex vi . We can simply use 

Procedure findNextMin() in GCS to locate the next 

candidate, but it is inefficient due to redundant network 

traversal especially when di ∈ µi is large. Moreover, when 

we prune vi and attempt to find alternative v 0 i , it is easy 

to see findNextMin() cannot be directly applied. Therefore, 

we propose an All-pair Binary tree (AB-tree) index to 

improve the search efficiency.  

 

5.2.1 All-Pair Binary Tree  

Given a vertex u, we aim to find a vertex v containing 

keyword w such that the matching distance between σ(u → 

v) and query clue µ is slightly greater than and closest to a 

threshold θ among all vertices containing w in G. Note 
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that, the threshold θ is settled by previous filtered 

candidate at the same level with v, and it is 0 at initial 

stage. In other words, we are supposed to find the vertex v 

that the difference between dG (u, v) and d ∈ µ is close to 

θ · d. To this end, we construct AB-tree as follows.           

        For each v ∈ V, we construct a binary tree BT (v) that 

contains the information of network distances and 

keywords. After the all-pair distance matrix is obtained, 

for each v, we have a list of vertices sorted in ascending 

order of network distance to v. By utilizing the tree 

structure, the vertices in the list are divided into fragments 

that the network distances w.r.t. v of the vertices in the 

same fragment are close to each other, which speeds up the 

looking up for vertices by network distance. In addition, 

the keyword information within each fragment is also 

stored in BT(v) such that the vertices containing query 

keyword in a fragment can be efficiently retrieved. 

         We utilize a hash function H that maps keywords and 

vertices to a binary code with h bits. For each keyword w, 

one of its h bits in H(w) is set to 1. Hence, the binary code 

of a vertex v is 

 
the superimposition of H(v) that v ∈ S. It is worth to note 

that a non-zero value of H(w) ∧ H(S) indicates that there 

may exist a vertex v ∈ S containing w, and H(w) ∧ H(S) = 

0 means w is definitely not contained by any v ∈ S. BT(v) 

is actually a B+- tree with fanout f = 2. Each leaf node 

contains the information of a vertex u with both the 

network distance dG(u, v) and binary code H(u) stored. 

For a non-leaf node, it also keeps a routing element, which 

equals the maximum network distance of its left subtree. 

Therefore, BT(v) is constructed recursively in bottom-up 

manner as shown in Figure 3(a).  

        Storing BT(v) in an array. As we know, storing the 

tree structure as an array enables a better performance than 

storing pointers. Therefore, we propose a scheme to 

sequentially store all nodes of BT(v) in an array from 

nodes on height 0 to the root, as shown in Figure 3(b). In 

addition to this array, we also keep an auxiliary array that 

indicates the number of nodes in each level of BT(v), by 

which we can quickly determine the indices of the 

subnodes of a non-leaf node, or the index of its parent 

node, in the array. For example, if we want to find the left 

and right subnodes of node 16 in BT(v4), we know there 

are two nodes on its left side by 16− 14 = 2 where 14 is the 

start index of nodes at height 2, so the index of its left 

subnode is 9 + 2 ∗ 2 = 13 and the right is 9 + 2 ∗ 2 + 1 = 

14. However, we notice 14 is actually at height 2, then we 

figure out node 16 does not have a right subnode.  

Lemma 1. Given G = (V, E), the space cost of AB-tree is 

O(|V | 2 · h).  

Proof. For each v ∈ V , we have |V | elements in distance 

matrix, thus each BT(v) has an index size O(|V | · h). It is 

easy to see the size of AB-tree is O(|V | 2 · h).  

 

5.2.2 Predecessor and Successor Queries on AB-tree 
After the construction of AB-tree, we discuss how to use it 

so that the next vertex in candidate path can be quickly 

located. Initially, if there is no previous vertices accessed 

at the next level of vi−1, network distance dG(vi−1, vi) 

between vi−1 and next candidate vi is supposed to be 

smaller or equal to lD = di , or greater or equal to rD = di , 

where di ∈ µi .             Additionally, consider the 

aforementioned scenario, we have FP(vq, v1, . . . , vi), but 

vi+1 returned at level i+ 1 exceeds UB. Then we have to 

remove vi from the stack and turn to find v 0 i as 

alternative, where d i m(vi) ≤ d i m(v 0 i ). It is easy to see 

the difference between dG(vi−1, v0 i ) and di must be 

greater or equal to d i m(vi) · di . In other words, the 

network distance dG (vi−1, v0 i) is smaller or equal to lD 

or greater or equal to rD, where 

          lD = di − d i m(vi) · di , 

          rD = di + d i m(vi) · di , 

 we have dG(vi−1, v0 i ) ≤ lD or dG(vi−1, v0 i ) ≥ rD.  

(5) Therefore, the predecessor and successor queries can 

be issued on BT(vi−1) to retrieve next candidate with two 

boundary network distances lD and rD, respectively.  

      Predecessor query. Given BT(u), a query keyword w 

and network distance lD, we aim to find vertex v that 

contains w and dG(u, v) is smaller or equal to and closest 

to lD. First, we compute binary code H(w) for query 

keyword w. Then we start the process of searching BT(u) 

recursively from top to bottom. For a non-leaf node o, if 

H(w) ∧ H(o) is non-zero, we continue to search its 

subtrees. If lD is smaller than the routing element of o, 

only its left subtree needs to be considered. Otherwise, we 

first check if we could find v in its right subtree (if exists), 

if not, we turn to search its left subtree. For a leaf node v, 

we directly check if v contains w and dG(u, v) is smaller or 

equal to lD, therefore, false positives can be avoid. Finally, 

v is obtained. For example, a predecessor query on BT(v4) 

with keyword w2 and lD = 4. First, we have H(w2) = 

00010. The search starts from root, and as lD equals to the 

routing element 4, thus we first search its right subtree. 

After checking H(w2) with binary code of Node 18, we 

find it does not contain w2 and we turn to search Node 17. 
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As the routing element of Node 17 is smaller than lD, we 

move to search Node 15. Then we check H(w2) with the 

binary code in Node 12, and find Node 12 does not contain 

w2. After checking with Node 11, we have v3 as result of 

the predecessor query.  

           Successor query. Likewise, we have BT(u), a 

query keyword w and network distance rid, the goal is to 

find vertex v that contains w and dG(u, v) is greater or 

equal to and closest to rD. For a non-leaf node o, if H(w) ∧ 

H(o) is non-zero, the subtrees of o need to be considered. 

If rD is smaller or equal to the routing element of o, we 

search the left subtree to see if v could be found, if not, we 

turn to search the right subtree (if exists). Otherwise, we 

simply search the right subtree (if exists) to locate v. For a 

leaf node v, if v contains w and dG(u, v) is greater or equal 

to rD, v is reported as result. For example, a successor 

query on BT(v4) with keyword w2 and rD = 4. We first 

check the root with H(w2) = 00010, and rD equals to the 

routing element, which means we first search Node 17 to 

see if it contains w2, then search Node 18. As the routing 

element of Node 17 is smaller than rD, we only need to 

check Node 15. Then, since the routing element of Node 

15 is same as rD, we turn to search Node 11. Finally, we 

obtain v3 as result of the successor query.  

          As mentioned before, we process a predecessor and 

a successor queries on BT(vi−1) with lD and rD 

respectively to locate candidate at level i. If both 

predecessor and successor queries find candidate vertices, 

we compare their matching distance and report the smaller 

one as result. If only one of them finds candidate vertex, 

we directly report it. Otherwise, no candidate is found. 

Note that, in the process to replace vi with v 0 i , we must 

skip vi in the tree traversal to avoid infinite loop caused by 

the special case d i m(vi) = d i m(v 0 i ).  

Lemma 2. The expected number of nodes visited in a 

predecessor or successor query on AB-tree is O( log |V 

|·|W|·|Φ(V )| |V |·h·|Vwk | ). 

 Proof. Assume W is the keyword set of G and the 

keywords are evenly distributed. The hash function maps 

each keyword w ∈ W to a binary code with h bits based on 

its modulus, which might lead to false positives. We 

denote the average number of conflicting keywords as |W| 

h and the average keyword frequency as favg = |Φ(V )| |V | 

. Therefore, the probability of false positive can be 

computed as p = 1 − |V |·h·|Vwk | |W|·|Φ(V )| . When 

encountering a false positive at the leaf node, the 

predecessor query traces back from the right subtree and 

continues to search the left subtree to find another leaf 

node. In this case, O(log |V |) tree nodes will be visited for 

each trace back at the worst case. The algorithm terminates 

when it reaches a true positive. Hence, the expected 

number of trace backs is equivalent to the expected 

number of false positives before a true positive, which is 1 

1−p = |W|·|Φ(V )| |V |·h·|Vwk | . In total, the expected 

number of tree nodes visited in a predecessor query is O( 

log |V |·|W|·|Φ(V )| |V |·h·|Vwk | ). Assume the time cost 

for ∧ operation on two h length hash codes is O(h), thus 

the time of searching ABtree is O( log |V |·|W|·|Φ(V )| |V 

|·h·|Vwk | ) · O(h).  

Example 5. In the running example, given query Q = (v7, 

{(w1, 6, 0.5),(w2, 4, 0.5),(w4, 5, 0.5)}), assume we already 

have stack (v7, v4, v3). At level 2, we intend to remove v3 

and find an alternative. Given d 2 m(v3) = 0, we apply a 

predecessor and successor queries on BT(v4). For the 

predecessor query, we take (w2, 4, 0.5) and 0.0 as input. 

As v3 is previous result, we skip it and return v8. For the 

successor query, no vertex is found. Therefore, we report 

v8 as our next candidate with d 2 m(v8) = 0.5. 5.3  

5.3 Keyword-based Label Approach  

Even though AB-tree is able to answer findNext() query 

fast, the index space cost is still high and could only be 

stored in disk, which results in undesired I/O consumption. 

In this section, we introduce a main memory based index 

structure, namely Pivot reverse Binary tree (PB-tree), to 

deal with findNext() query.  

 

5.3.1 Pivot Reverse Binary Tree  

As introduced in Section 2.2, we know 2-hop label 

possesses the nature to process distance queries between 

any two vertices in network with fast response time, whilst 

keeping the size of the generated label index as small as 

possible. The problem of reducing label size is orthogonal 

to our work, thus we fully utilize the stateof-the-art results 

to build a small index in this work. As we know, in 2-hop 

label, the distance between any vertex pair (u, v) can be 

computed correctly through a common pivot o, in other 

words, each vertex u can reach any other vertex v in 

network through a pivot o. Therefore, based on this 

intuition, we modify the structure of original 2-hop label to 

construct a pivot reverse index, i.e., P R index [34] which 

stores all label entries (o, ηv,o) ∈ S v∈V L(v) regarding 

vertex o as pivot into the P R label of vertex o, i.e., (v, 

ηv,o) ∈ P R(o). In P R(o), we assume that all the label 

entries (v, ηv,o) are sorted in ascending order of distance.  

Algorithm 4: Procedure findNext() with AB-tree Input: 

Query vertex vi−1, clue wi and di, threshold θ Output: 

Next candidate vi with d i m(vi)  

1 Obtain BT(vi−1);  

2 lD ← di − di · θ; rD ← di + di · θ;  

3 vp and dp ← BT(vi−1).predecessor(lD, wi) ;  

4 vs and ds ← BT(vi−1).successor(rD, wi) ; 

 5 if di − dp ≤ ds − di then 6 return vp with dm(vp); 7 else  

8 return vs with dm(vs); Procedure Predecessor(lD, w, 

Node) 1 if Node is a leaf node then 2 Obtain vp and dp of 

current node; 3 if vp contains w and dp ≤ lD then 4 return 

vp and dp; 5 else 6 return false; 7 else 8 Generate H(w);  

9 if H(w) ∧ H(Node) = 0 then 10 return false;  

11 if lD < Node.routing then 

 12 lNode ← index of its left subnode;  

13 return Predecessor(lD, w, lNode);  

14 else  

15 rNode ← index of its right subnode;  
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16 lNode ← index of its left subnode;  

17 if rNode exists then  

18 if Predecessor(lD, w, rNode); 

 19 then  

20 return vp and dp 

 21 else  

22 return Predecessor(lD, w, l Node);  

23 return Predecessor(lD, w, l Node); example, we have 

(v3, 0) ∈ L(v3) and (v3, 4) ∈ L(v1). Through the 

transformation, we have P R(v3) = {(v3, 0),(v1, 4)}. In 

order to find vertex by keyword and distance information, 

each P R(o) is organized as same as the binary tree 

mentioned before, thus forms P B(o). The structure is 

shown in Figure 4, it is worth to note that any network 

distance dG(u, v) is divided into two parts, the first part 

dG(u, o) between u and its pivot o can be found in L(u), 

and the other part dG(o, v) between pivot o and target v 

can be found in P B(o). Therefore, combined with original 

label index whose label entries are also sorted in ascending 

order by network distance, PB-tree could be used to 

answer predecessor and successor queries more efficiently 

than AB-tree with a much smaller size.  

Lemma 3. Given G = (V, E) and label index L(v) for all v 

∈ V , the space cost of PB-tree is O(|L| · h). Proof. For 

each v ∈ V , we have |L(v)| label entries, thus each P B(v) 

has an index size O(|L(v)| · h). It is easy to see the size of 

PB-tree is O(|L| · h) where |L| is the size of label index.  

5.3.2 Predecessor and Successor Queries on PB-tree 

With the construction of PB-tree, we discuss the 

predecessor and successor queries on top of it. Given P 

B(vi−1), we aim to find candidate vi that contains wi and 

dG(vi−1, vi) is smaller or equal to lD, or greater or equal 

to rD. As we know, dG(vi−1, vi) can 

 
be divided into two parts dG(vi−1, o) and dG(o, vi). 

Therefore, straightforwardly, we can apply predecessor 

and successor queries on P B(o) for each pivot o ∈ L(vi−1) 

with two bound network distances lDo and rDo, 

respectively. Therefore, for dG(o, vi),      lDo = lD − 

dG(vi−1, o),  

rDo = rD − dG(vi−1, o),  

we have dG(o, vi) ≤ lDo or dG(o, vi) ≥ rDo. (6) 

 For each P B(o), we are supposed to obtain a temporary 

candidate. Through comparison, we can finally find the 

next candidate vertex vi . 

        Fortunately, it is worth to note that we are not 

necessarily to access all P B(o)s to process predecessor and 

successor queries. Basically, we know d i m(vi) must not 

exceed upper bound matching distance, therefore current 

UB can be utilized to prune the search space. That is to 

say, vi could only be found if dG(vi−1, vi) is greater or 

equal to lB, or is smaller or equal to rB.  

lB = di − di ∗ UB,  

rB = di + di ∗ UB,  

we have dG(vi−1, vi) ≥ lB or dG(vi−1, vi) ≤ rB. (7) 

Particularly, for each P B(o), the bound distances can be 

computed as  

lBo = lB − dG(vi−1, o), 

 rBo = rB − dG(vi−1, o). (8)  

Therefore, the search space can be narrowed down into 

[lBo, lDo] and [rDo, rBo]. For current pivot o being 

processed, if we have rB < dG(vi−1, o), we are impossible 

to find a candidate in P B(o) since rBo is negative. In other 

words, the network distance between vi−1 and any vertex 

in P B(o) is definitely greater than rB thus is not qualified. 

As we know, the pivots in L(vi−1) are sorted in ascending 

order of network distance, the rest pivots o 0 after o do not 

need to be considered since they have even greater 

network distances to vi−1 than o. Therefore, the process 

terminates.  

             Predecessor and successor queries. Given P B(o), a 

query keyword w and two network distance bound ranges 

[lBo, lDo] and [rDo, rBo], we aim to find a temporary 

candidate vertex in P B(o). In particular, the difference 

between AB-tree and PBtree is that, given a query vertex 

u, any target v only shows up once in AB(u), but it might 

appear in multiple P B(o)s. Moreover, if we find a 

candidate v in P B(o), dG(u, o)+dG(o, v)  is not necessarily 

equal to dG(u, v) since the network distance can only be 

calculated by the pivot with minimum distance summation. 

Therefore, we use original label index to check if P(u, . . . , 

o, . . . , v) is the shortest path SP(u, v). As mentioned 

before, if rB ≥ dG(vi−1, o), we first apply a successor 

query on P B(o). After we obtain a temporary vertex vtmp 

locates in [rDo, rBo], we check if o is on the shortest path 

SP(vi−1, vtmp) by comparing dG(vi−1, vtmp) with 

dG(vi−1, o) + dG(o, vtmp). If so, vtmp is reported as a 

temporary successor result on P B(o). Otherwise, we 

update rDo by dG(o, vtmp) and continue to apply a new 

successor query. This process is repeated until we find a 

result. After successor query, we compare dG(vi−1, o) 

with lD to determine if we need to apply a predecessor 

query on P B(o). Based on the same intuition, if lD ≥ 

dG(vi−1, o), the predecessor query is applied in a similar 

approach as successor query. Finally, we compare the 

results of predecessor and successor queries, and obtain the 

temporary candidate found in P B(o). It is worth to note 

that we can further narrow down the search space by 
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updating lB and rB. That is, after processing pivot o, if we 

find a temporary candidate vtmp, lB can be updated by 

dG(vi−1, vtmp) and rB by 2 ∗ di − lB, which benefits the 

processing of rest o 0 .  

Lemma 4. The expected number of nodes visited in a 

predecessor or successor query on PB-tree is O(log |L| |V | 

· |W|·|Φ(V )| |V |·h·|Vwk | ).  

Proof. According to the proof in Lemma 2, the expected 

number of false positives before a true positive is 1 1−p = 

|W|·|Φ(V )| |V |·h·|Vwk | . As we know, the height of each 

PB-tree is log |L| |V | . Therefore, expected number of 

nodes visited in a predecessor or successor query on PB-

tree is O(log |L| |V | · |W|·|Φ(V )| |V |·h·|Vwk | ). Given 

that ∧ operation on two h length hash codes costs O(h), 

thus the time of searching PB-tree is O(log |L| |V | · 

|W|·|Φ(V )| |V |·h·|Vwk | ) · O(h). 

 Example 6. In the running example, given query Q = (v7, 

{(w1, 6, 0.5),(w2, 4, 0.5),(w4, 5, 0.5)}), assume we already 

have stack (v7, v4, v3). At level 2, we intend to find the 

next candidate. Initially, θ is set as 0.0, therefore we have 

lD = rD = 5. As current UB = 0.4, we have lB = 4 and rB = 

6. As shown in Figure 4, we first check P B(v3) with 

dG(v3, v3) = 0. Then we have lDv3 = rDv3 = 5, lBv3 = 4 

and rBv3 = 6. A successor query is applied and no vertex 

is found, and a predecessor query returns v1. As dG(v3, 

v1) = 4 does not exceed lBv3 , v1 is taken as the temporary 

result for pivot v3. Then we continue to search P B(v4) 

with lDv4 = rDv4 = 1, lBv4 = 0 and rBv4 = 2 but no vertex 

is found, neither in P B(v6). Finally, we report v1 with d 3 

m(v1) = 0.4.  

 

VI. DYNAMIC MAINTENANCE 

 

In this section, we discuss how to maintain the PB-tree for 

road network updating. To avoid recomputing the index 

structure from scratch, we propose a semi-dynamic 

mechanism to adjust the PBtree with a low overhead. As 

we know, PB-tree is built based on label index, thus the 

updating is divided into two phases, the updating of label 

index and the updating of PB-tree. Instead of recomputing 

a new label index, [4] introduces a dynamic label index 

scheme for distance queries on time-evolving graphs, and 

we adopt the algorithm for the first phase label index 

updating.  

Algorithm 5: Procedure findNext() with PB-tree Input: 

Query vertex vi−1, clue wi and di, threshold θ Output: 

Next candidate vi with d i m(vi)  

1 lD ← di − di · θ; rD ← di + di · θ; 

2 lB ← di − di · UB; rB ← di + di · UB; 

3 for each pivot o ∈ L(vi−1) do 

4 Obtain P B(vi−1), lDo, rDo, lBo and rBo; 

5 if dG(vi−1, o) > rB then 

6 break; 

7 else 

8 rDo ← rD − dG(vi−1, o); 

9 while P B(vi−1).suck(rDo, wi) and dG(o, vtmp r) ≤ rBo 

do 

10 Obtain vtmp r; 

11 if dG(vi−1, vtmp r) 6= dG(vi−1, o) + dG(o, vtmp r) 

then 

12 rDo ← dG(o, vtmp r); 

13 else 

14 Obtain temp suc result on P B(o); 

15 break; 

16 if dG(vi−1) < lD then 

17 lDo ← lD − dG(vi−1, o); 

18 while P B(vi−1).pred(lDo, wi) and dG(o, vtmp l) ≥ lBo 

do 

19 Obtain vtmp l; 

20 if dG(vi−1, vtmp l) 6= dG(vi−1, o) + dG(o, vtmp l) then 

21 lDo ← dG(o, vtmp l); 

22 else 

23 Obtain temp pre result on P B(o); 

24 break; 

25 if di −dG(vi−1, vtmp l) ≤ dG(vi−1, vtmp r)−di then 

26 lB ← dG(vi−1, vtmp l); rB ← 2 ∗ di − lB; 

 27 vi ← vtmp l;  

28 else  

29 rB ← dG(vi−1, vtmp r); lB ← 2 ∗ di − rB; 

 30 vi ← vtmp r; 31 return vi with d i m(vi); 6.1  

Semi-Dynamic Index Structure  

Basically, we have 4 operations to update the network: 

insert a new vertex with an edge connecting to an existing 

vertex, delete a vertex with only one edge, insert an edge 

and delete an edge. As the deletion operation is much 

harder than insertion, and it seems impossible to find an 

efficient approach to support deletion in label generation. 

Moreover, it is rare to see deletion happens in road 

networks, thus we only take insertion into consideration. 

As the newly updated vertex is isolated, its label can be 

viewed as an empty set. Inserting a new vertex can be 

easily done by inserting an edge connecting to it, thus we 

only need to focus on edge insertion. As keyword updating 

is easy to implement, thus we omit it here.  

                 Label index updating. Assume we insert an 

edge (a, b) into G, some shortest paths in old network may 

change by passing (a, b). Based on the label generation 

algorithm, we do not have to remove outdated distances in 

label but resume BFSs of affected vertices and add new 

label entries into index. It is worth to note that only the 

pivots in L(a) and L(b) are affected by network updating, 

and it suffices to conduct resumed BFSs originally rooted 

at pivot vk if vk ∈ L(a) ∪ L(b). Different with previous 

pruning method, a prefixal pruning method is proposed to 

apply in BFS with a new parameter k, where k is the vertex 

ordering of vk. The prefixal method is to answer the 

distance query between vk and u from the pivots in 

L(vk)∩L(u) whose vertex orderings are at most k. 

Interested readers can refer to [4] for algorithm details.  

            Pivot-based forest. To propose a semi-dynamic 

index structure, we present a general framework to convert 



   International Journal of Computer Sciences and Engineering                                     Vol.6(7), Jul 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        518 

PB-tree into pivot-based forest (PF), which is inspired by 

the logarithmic method [5]. Given P B(o) with m label 

entries, we divide it into l = blog mc + 1 partitions P0, . . . 

Pl−1. Each partition Pi either has 2 i label entries or is 

empty. We first compute a l-bit binary value of m. 

Interestingly, whether Pi is empty or not is determined by 

the ith bit, if ith bit is 0 then Pi is empty. For non-empty Pi 

, we follow the method introduced in Section 5.2.1 to 

construct a binary tree P F(o)i on these 2 i label entries. 

Finally, all these binary trees together form the pivot-based 

forest structure.  

           PF index updating. After label index updating, we 

add new label entries or rewrite distances of existing label 

entries. Assume we add a new label entry (v, dG(o, v)) into 

P B(o), we first find the smallest i such that P F(o)i is 

empty. If i equals to 0, we simply build P F(o)0 with only 

one label entry (v, dG(o, v)). Otherwise, we union all label 

entries of P F(o)o, . . . , P F(o)i−1, together with (v, dG(o, 

v)), into P F(o)i . It is worth to note that P F(o)i now has 2 

i elements and P F(o)o, . . . , P F(o)i−1 become empty. As 

we know, the label entries in original P B(o) are sorted in 

ascending order of distance. In P F(o), we do not consider 

the global distance order but instead consider a local order 

in each P F(o)i when we rebuild the index. To rewrite 

distances of existing label entries, we only need to update 

the P F(o)i they belong to.  

                       Query processing on PF index. Given 

query vertex vi−1 and a clue µ(wi , di), we introduce how 

to answer findNext() on PF index. As we know, both the 

predecessor and successor queries are decomposable. 

Therefore, we simply apply the predecessor and successor 

queries on all non-empty P F(o)i . Fortunately, it is not 

necessary to process queries on all P F(o)is. If the query 

distance is smaller than the minimum network distance 

stored in P F(o)i , the predecessor query is not required, 

where the similar case holds for successor query. Finally, 

we merge these intermediate results to obtain the result.  

 

VII. EXPERIMENTS 

 

In this section, we conduct extensive experiments on real 

road network datasets to study the performance of the 

proposed index structures and algorithms.  

 

7.1 Experimental Settings All these algorithms 

introduced in this paper were implemented in GNU C++ 

on Linux and run on an Intel(R) CPU i7-4770@3.4GHz 

and 32G RAM. 

 Datasets. We use two real datasets, the road network 

datasets of Beijing and New York City from the 9th 

DIMACS Implementation Challenge1 . Each dataset 

contains an undirected weighted graph that represents a 

part of the road network. The weight of each edge in a 

graph represents the distance between two endpoints of the 

edge. We obtain the keywords of vertices from the 

OpenStreetMap2 . As shown in Table 2, for D1 in Beijing, 

we have 168,535 vertices and 196,307 edges. We also 

have 88,910  

1.http://www.dis.uniroma1.it/challenge9/download.shtml  

2.https://www.openstreetmap.org  

distinct keywords contained by vertices with the total 

occurrence 1,445,824. For D2 in New York, we have more 

vertices and edges than D1 in road network with almost 

twice the size of D1, and the number of keywords 

contained is larger than D1 as well.  

 
Algorithms. We evaluate the performance of three 

algorithms, greedy clue search algorithm (GCS), clue-

based dynamic programming algorithm (CDP) and branch-

and-bound algorithm (BAB). In CDP, we use two different 

distance oracles DO to compute network distance, i.e., all-

pair and 2-hop label. In BAB, we evaluate the 

performances of three index structures, i.e., ABtree, PB-

tree and PF.  

 
Parameter settings. We randomly generate 100 queries 

for each set of experiment and measure their performance 

by average. To evaluate the algorithms under various 

settings, we vary the value of some parameters in the query 

to study the performance, as shown in Table 3. For default 

settings, we choose 16K for dataset cardinality (the 

number of vertices), 4 for the number of clues in query, 

and 64 for hash code length.  

       We assume a keyword at most shows up once in a 

vertex, thus the frequency of a keyword w is the number of 

vertices that contain w, i.e., |Vw|. The statistics of keyword 

frequency are shown in Table 4, which demonstrates the 

percentages of keywords with different frequencies. In the 

query, the keyword frequencies, the average distances and 

the confidence factors in clues are randomly generated. 
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More specifically, assume the average keyword frequency 

for evaluation is |Vw|, thus the keyword frequencies we 

chose in a clue are in the range [0.9 ∗ |Vw|, 1.1 ∗ |Vw|], 

which is the similar case with average distance and 

average.  

 

7.2 Performance Evaluation  
Table 5 shows the performance comparison of proposed 

algorithms and index structures on query time, index size 

and index construction time. The construction time of all-

pair and 2-hop label, which have been studies by existing 

works, are excluded  

 
in our performance comparison. For the query time 

evaluation, it is easy to see that BAB well outperforms 

GCS and CDP. Besides, applying all-pair in CDP has a 

shorter response time but a larger space cost than utilizing 

2-hop label, and using PB-tree in BAB has a better 

performance than using AB-tree and PF. For index size 

and construction time, label based approaches have a much 

smaller size and less time than all-pair based approaches. 

As NY has a larger size than BJ, more time and space costs 

are required. For the rest experiments, we only 

demonstrate the performance on BJ due to the space limit, 

where the performance on NY is similar to that on BJ.  

 

7.2.1 Accuracy Measurement of GCS 

 Figure 5 shows the accuracy measurement of GCS by 

varying the parameters in the query, such as the number of 

clues, average keyword frequencies, expected distances 

and . We study the accuracy by two criteria: the matching 

ratio Amatch and hitting ratio Ahit. Amatch = dm(C, 

FPgcs) optimal matching distance dmopt Amatch is the 

ratio of estimated matching distance of GCS on the 

optimal matching distance. A smaller Amatch means a 

better accuracy.  

Ahit = |FPgcs ∩ FPopt| |C| Ahit focuses on the percentage 

of match vertices in FPgcs contained by the optimal 

feasible path FPopt. A greater Ahit means a better 

accuracy. As we can see in Figure 5, when we enlarge the 

parameters, Amatch increases as the result of GCS 

becomes more inaccurate; and Ahit decreases, as less 

match vertices in optimal feasible path are hit. Both these 

two criteria becomes less sensitive when the keyword 

frequency gets larger than 500 in Figure 5(b). Moreover, 

Ahit keeps steady in Figure 5(c) and 5(d) since GCS is not 

sensitive to average distance and .  

 

7.2.2 Query Efficiency Measurement  

Effect of the keyword hash code length h. In this set of 

experiments, we study the effect of keyword hash code 

length h on performance of AB-tree, PB-tree and PF index 

structures. As shown in Figure 7, the pivot-based indices 

well outperform AB-tree on index construction time, index 

size and query time. The space of AB-tree is O(|V | 2 · h) 

and PB-tree is O(|L| · h). When we enlarge h, both the 

index size and construction time linearly increase. For 

query time, there are more false positives in tree traversal 

when h is small, however, the bit operation costs less time 

than larger h, which is the case when h is set to 64 

comparing with higher values. When we set h to 32, even 

though we have less bit operation costs, the number of 

false positives increases such that the query time increases.  

Effect of the dataset cardinality. Let us take Beijing 

dataset for example, we randomly extract 5 subgraphs with 

equal number of vertices from the original Beijing road 

network where the performance is measured by average 

for each experiment. For each subgraph, the connectivity 

and keyword information of each vertex are kept the same 

as the original road network. In this set of experiments, we 

vary the size of these subgraphs to study the performance 

of proposed algorithms and index structures, as shown in 

Figure 8. Obviously, the index size and construction time 

increase when we enlarge the size of datasets. It is worth to 

note that the size of AB-tree increases exponentially with 

the number of vertices, and the sizes of PB-tree and PF 

increase gently especially when the size is enlarged from 

120K to 160K due to the property of 2-hop label. For the 

query time, the BAB algorithm outperforms CDP by a 

large margin. 

 Effect of the number of clues. In this set of experiments, 

Figure 6(a) shows the performance of algorithms by 

increasing the number of clues in CRS query. Not 

surprisingly, the response time increases when we enlarge 

the number of clues of all proposed algorithms. For GCS, 

the response time increases gently since only more rounds 

of network expansion are induced. For CDP, when we 

enlarge the number of clues, more iterations are triggered 

for the computation. For BAB, the number of candidate 

vertices and feasible paths increase thus takes more 

computation time.  

Effect of the average frequency of keywords. In this set 

of experiments, we study the performance of algorithms by 

varying the frequency of query keywords, as shown in 

Figure 6(b). It suffices to say that for low frequency 

keywords, say the frequency less than 500, it is more 

efficient if we adopt CDP with all-pair, and for high 

frequency keywords, BAB with PB-tree has a much better 

performance on both response time and index size. This is 

because, for CDP, there are not too many combinations to 

consider if the frequency is low, but when we enlarge the 

frequency, the response time increases exponentially to the 

frequency. For BAB, there are lots of false positives if the 

frequency is low, and when we enlarge the frequency, the 
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performance becomes much better since we can quickly 

locate the candidate by using PB-tree.  

Effect of the average expected distance. In this set of 

experiments, we study the effect of average expected 

distance on the performance of proposed algorithms, as 

shown in Figure 6(c). As we know, we apply the network 

expansion algorithm in GCS, which makes it sensitive to 

the expected distance. When the distance increases, more 

vertices are involved that results in more computation cost. 

For CDP with all-pair or label index, they both have a 

small dependency on the query distance. Therefore, the 

computation time of CDP keeps almost steady as the 

distance increases. For BAB, the effect is still not obvious 

but if the distance is small, we are supposed to find the 

next candidate more quickly since there are only a small 

portion of vertices after filtered by distance.  

Effect of the average . In this set of experiments, we study 

the effect of average  on the performance of proposed 

algorithms, as shown in Figure 6(d). When we enlarge the 

average , more match vertices are considered as 

candidates, thus the time costs of CDP and BAB increase. 

For GCS, we can do less network traversal to find the 

current best match vertex, so the query time reduces when 

we enlarge .  

Evaluation of index updating. Here we evaluate the cost 

of index  

 

 

 
 

 

keyword hash code 101 102 103 Query time (ms) AB-tree 

PB-tree PF 32 64 128 256 512 Length of keyword hash 

code 100 101 102 103 104 Index size (GB) AB-tree PB-

tree PF Fig. 7. Effect of the keyword hash code length h 

TABLE 6 Evaluation of index updating Dataset Update 

time Updated pivots Beijing 78 ms 3.6 NY 127 ms 5.7 

updating. It is easy to observe that the average update time 

cost is much smaller than reconstruction the index from 

scratch. The cost comes from two parts, the updating of 

label index and updating of PF. For each update, we only 

have to update a very small number of pivot forest 

structures, that is, the semi-dynamic update is done  
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VIII. RELATED WORK 

 

In this section, we introduce two lines of related work, top-

k spatial keyword search and travel route search. 

 

 8.1 Top-k Spatial Keyword Search 

 Searching geo-textual objects with query location and 

keywords has gained increasing attention recently due to 

the popularity of location-based services. In Euclidean 

space, queries. IR-tree [12] is an R-tree augmented with 

inverted files that supports the ranking of objects based on 

a score function of spatial distance and text relevancy. Cao 

et al. [7] proposes a location-aware top-k prestige-based 

text retrieval (LkPT) query, to retrieve the top-k spatial 

web objects ranked according to both prestige-based text 

relevance (PR) and location proximity. [10] provides an 

all-round survey of 12 state-of-art geo-textual indices and 

proposes a benchmark that enables the comparison of the 

spatial keyword query performance. Zhang et al. [31], [32] 

proposes the m closet keyword query (mCK query) which 

aims to find the closest objects that match the query 

keywords and their distance diameter is minimized. 

Recently, Guo et al. [15] propose approximation 

algorithms to solve the mCK query with a ratio of ( √ 2 3 + 

). Cao et al. [8] propose a collective spatial keyword query, 

in which a different semantics is taken such that the group 

of objects in the result covers the query keywords and has 

the lowest cost. Li et al. [23] studies the problem of 

directionaware spatial keyword search, which aims at 

finding the k nearest neighbours to the query that contain 

all input keywords and satisfy the direction constraint. 

Rocha et al. [27] address the problem of processing top-k 

spatial keyword queries on road networks where the 

distance between the query location and the spatial object 

is the length of shortest path. ROAD [21] organizes the 

road network as a hierarchy of subgraphs, and connects 

them by adding shortcuts. For each subgraph, an object 

abstract is generated for keyword checking. By using 

network expansion, the subgraphs without intended object 

are pruned out. G-tree [36] adopts a graph partitioning 

approach to form a hierarchy. Within each subgraph, a 

distance matrix is kept, and for any two subgraphs, the 

distances between all borders of them are stored as well. 

Based on these distances, it efficiently computes the 

distance between query vertex and target vertices or tree 

nodes. Jiang et al. [17] adopt 2-hop label for handling the 

distance query for kNN problem on large networks, and 

facilitates KT index to handle the performance issue of 

frequent keywords. Liu et al. [25] formalize the spatio-

textual context information of the querying POI as clues 

and use them to identify the most promising PoIs, which is 

closely related to our CRS problem. Different with their 

work, we aim to find a feasible route on road networks by 

using clues. In addition, the spatial distance considered in 

our work is network distance so that the algorithms in [25] 

can not be applied.  

 

8.2 Travel Route Search  
The travel route search problem has been substantially 

studied for decades. Traveling Salesman Problem (TSP) 

[11] is the most classic problem in route planning. TSP 

aims to find the round trip that has the minimum cost from 

a source point to a set of targets. Li et al. [22] study the 

problem of Trip Planning Query (TPQ) in spatial 

databases, where each object is associated with a location 

and a category. With a starting point S, a destination E and 

a set of categories C, TPQ retrieves the best trip that starts 

at S passes through at least one point from each category, 

and ends at E. TPQ can be considered as a generalization 

of Travelling Salesman Problem (TSP), thus two 

approximation algorithms are proposed. [28] studies the 

problem of optimal sequenced route (OSR), which aims to 

find a route of minimum length starting from a source 

point and passing through a number of typed locations in a 

specific sequence imposed on the types of the locations. 

They propose a LORD and R-LORD algorithms to filter 

out the locations that cannot be in the optimal route, thus 

improves the search efficiency. [9] studies the problem of 

multi-rule partial sequence route (MRPSR), which aims to 

find an optimal route with minimum distance under some 

partial category order rules defined in the query. They 

propose three heuristic algorithms to search for near-

optimal solutions for the MRPSR query. [20] proposes a 

greedy algorithm to find a route whose length is smaller 

than a specified threshold while the total text relevance of 

this route is maximized. [19] studies the problem of 

finding a route that visits at least one satisfying entity of 

each type in an interactive approach. In each step, a 

candidate is given to user to provide a feedback specifying 

whether the entity satisfies her. [29] studies the problem of 

multi-approximate-keyword routing query, which 

complements the standard shortest path search with 

multiple keywords and an approximate string similarity 

function. For each keyword, the matching point is 

supposed to have an edit distance smaller than a given 

threshold. [6] defines the problem of keyword-aware 

optimal route query, which is to find an optimal route such 
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that it covers a set of user-specified keywords, a specific 

budget constraint is satisfied, and the objective score of the 

route is optimized. [24] Proposes two different solutions, 

namely backward search and forward search, to deal with 

the general optimal route query without a total order. [30] 

Proposes the problem of personalized trip 

recommendation, which aims to find the optimal trip that 

maximizes users’ experiences for a given time budget 

constraint and also takes the uncertain traveling time into 

consideration.  

 

IX. CONCLUSION AND FUTURE DIRECTIONS 

 

In this paper, we study the problem of CRS on road 

networks, which aims to find an optimal route such that it 

covers a set of query keywords in a given specific order, 

and the matching distance is minimized. To answer the 

CRS query, we first propose a greedy clue-based algorithm 

GCS with no index where the network expansion approach 

is adopted to greedily select the current best candidates to 

construct feasible paths. Then, we devise an exact 

algorithm, namely clue-based dynamic programming CDP, 

to answer the query that enumerates all feasible paths and 

finally returns the optimal result. To further reduce the 

computational overhead, we propose a branch-and-bound 

algorithm BAB by applying filter-and-refine paradigm 

such that only a small portion of vertices are visited, thus 

improves the search efficiency. In order to quickly locate 

the candidate vertices, we develop AB-tree and PB-tree 

structures to speed up the tree traversal, as well as a semi 

dynamic index updating mechanism. Results of empirical 

studies show that all the proposed algorithms are capable 

of answering CRS query efficiently, while the BAB 

algorithm runs much faster, and the index size of PB-tree 

is much smaller than AB-tree. Several directions for future 

research are promising. First, users may prefer a more 

generic preference model, which combines PoI rating, PoI 

average menu price, etc, in the query clue. Second, it is of 

interest to take temporal information into account and 

further extend the CRS query. Each PoI is assigned with a 

opening hours time interval [To, Tc], and each clue 

contains a visiting time t, where the resulting query aims to 

find a path such that the time interval of each matched PoI 

covers the visiting time. Third, requiring users to provide 

exact keyword match is difficult sometimes as they are just 

providing “clue”, which may be inaccurate in nature. Thus, 

it is of interest to extend our model to support the 

approximate keyword match. Hence, the matching distance 

can be modified by incorporating both spatial distance and 

textual distance together through a linear combination. 
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