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Abstract: The research introduces a novel approach, Depth-based Extended Isolation Forest Feature Importance (DEIFFI), to 

enhance the interpretability of Extended Isolation Forest (EIF) algorithm in anomaly detection (AD). Anomaly detection is 

critical for identifying rare and significant deviations from norm in data. However, understanding the reasons behind classifying 

instances as anomalies poses a challenge. DEIFFI addresses this challenge by providing valuable insights, empowering users of 

EIF-based AD to conduct thorough root cause analysis. A noteworthy feature of DEIFFI is its capacity to improve 

interpretability without imposing heavy computational burdens. This is crucial for real world applications requiring efficient 

AD, particularly in situations demanding real-time decision-making. DEIFFI achieves remarkable results with low 

computational costs, making it an appealing option for practical implementations. With an accuracy of 0.914 and 0.942, 

precision of 0.607 and 0.64, recall of 0.773 and 0.96, and an F1 score of 0.68 and 0.768 on real and synthetic datasets, 

respectively. DEIFFI provides interpretable insights alongside competitive performance metrics, solidifying its suitability for 

real-time decision support. Importantly, DEIFFI contributes to AD by enhancing interpretability and assisting in unsupervised 

feature selection. This dual capability highlights practical utility of DEIFFI, improving EIF’s capabilities and extending its 

applicability across diverse AD scenarios. 
 

Keywords: Anomaly Detection, Explainable Artificial Intelligence, Extended Isolation Forest, Feature Selection, 

Interpretability, Outlier Detection.

 
 

1. Introduction  
 

Anomaly detection (AD) in Wireless Sensor Networks 

(WSNs) [10] aims to identify deviations from normal 

behavior or patterns in the collected sensor data. Traditional 

rule-based approaches often struggle to handle the dynamic 

and complex nature of WSN data, making Machine Learning 

(ML)-based techniques an attractive solution.  ML algorithms 

have the ability to learn from historical data patterns and 

detect anomalies based on learned patterns or statistical 

deviations. The effectiveness of AD techniques holds 

significant importance across a wide range of application 

domains, including WSNs [17], industrial cyber-physical 

systems [20], healthcare [16], driving systems [19], 

agriculture, environmental monitoring and biology [4]. 
 

The extensive applicability of AD algorithms originates from 

their capability to be trained and utilized in unsupervised 

environments. This trait is especially beneficial in situations 

where manually annotating data by human experts is both 

expensive and time intensive. In such cases, a human-

centered design principle is crucial to minimize human efforts 

while ensuring effective AD. 

In recent years, research has increasingly focused on using 

machine learning algorithms for anomaly detection tasks, 

particularly those involving supervised algorithms such as 

Random Forests, Support Vector Machines (SVM), and k-

Nearest Neighbors (k-NN) [11]. However, obtaining labeled 

training data in WSNs can be challenging and may not always 

be feasible. Because of these considerations, traditional AD 

approaches, such as clustering-oriented algorithms [18] (e.g., 

K-means, DBSCAN, Hierarchical Clustering) continue to be 

useful in a wide range of applications. These approaches can 

identify clusters of similar instances and identify anomalies as 

data points that are not associated with any cluster. Density-

based methods such as Local Outlier Factor (LOF) [18] and 

Gaussian Mixture Models (GMM) effectively detect 

anomalies based on the density distribution of data points and 

Angle-Based Outlier Detector [14] and Isolation Forest (IF) 

[15]. 
 

While AD algorithms have proved substantial value and 

efficacy, widespread application in companies and 

organizations with adequate infrastructures remains 

unrealized. The lack of confidence stems from the absence of 

labeled data points, which are necessary for proper testing 

and validation of the AD algorithms. This forces users to 

choose between blindly trusting the algorithm’s conclusions 

and not using it at all, both of which have bad consequences. 

The second issue concerns getting extra knowledge regarding 
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the specific work at hand. Understanding the underlying 

causes of anomalies is critical since it can lead to actionable 

insights for troubleshooting and root cause analysis. In 

response to these obstacles, the concepts of eXplainable 

Artificial Intelligence (XAI) [8], become relevant. XAI 

endeavors to enhance the comprehensibility of black-box ML 

models for human understanding. By applying XAI 

principles, AD algorithms can be made more transparent and 

interpretable, allowing users to gain insights into how the 

algorithms arrive at their conclusions and enabling a better 

understanding of the underlying causes of anomalies. 

 

This research work focuses on the interpretation of the EIF 

[9], one of the most popular and effective extension of the 

original IF approaches for AD. EIF builds upon the 

fundamental principles of the IF algorithm while 

incorporating additional features and improvements. The key 

features on which EIF operates are the isolation, extension 

level, randomness and path length. The proposed method 

offers a cost-effective and computationally efficient solution 

to address this problem effectively. 

 

The authors review the available literature on AD and XAI in 

the subsections that follow.  The following section presents a 

complete review of the research’s primary contributions as 

well as the underlying motivations driving the proposed 

interpretability approaches. Section 2 of the paper is 

dedicated to presenting and analyzing the interpretability 

methods proposed in this research work. It provides a detailed 

description and in-depth analysis of these methods. Section 3 

presents the experimental results obtained from applying the 

proposed interpretability methods. Section 4 summarizes the 

key findings and draws overall conclusions based on the 

research conducted. 

 

In the following subsections, the authors examine the 

existing literature in the fields of AD and XAI. This section 

provides a comprehensive overview of the main 

contributions of this research and the underlying 

motivations that drive the proposed interpretability 

methods. Section 2 of the paper is dedicated to presenting 

and analysing the interpretability methods proposed in this 

research work.  It provides a detailed description and in-

depth analysis of these methods. Section 3 presents the 

experimental results obtained from applying the proposed 

interpretability methods. Section 4 summarizes the key 

findings and draws overall conclusions based on the 

research conducted. 

 

2. Related Work  

 
2.0.1 Anomaly Detection 

As noted in Section 1, AD methods play a significant role in 

numerous applications, characterized by distance-based 

algorithms, density-based algorithms [13], approaches 

utilizing SVMs [22], and tree-based methods [15, 9]. This 

study aims to interpret the extended form of the original EIF 

[9]. The extensive usage and effectiveness of the EIF [9] 

algorithm has motivated the development of various 

adaptations and variants to address complex application 

scenarios and incorporate new methodological principles. The 

Functional Isolation Forest (FIF) [21] expands the application 

of the original Isolation Forest (IF) model from finite-

dimensional observations to functional data. Various 

extensions of the IF algorithm have been proposed to address 

specific challenges and data types. For example, the k-means-

based IF [12] integrates k-means clustering to establish 

division counts for each decision tree node. Additional 

adaptations, such as iForest ASD [5] and RS-Forest Isolation 

Mondrian Forest [23], have emerged for the analysis of 

streaming data. Amid the various IF model variations, this 

study opts to concentrate on the EIF algorithm in particular. 
 

2.0.2 Interpretability 

The main objective of Explainable AI (XAI) is to uncover the 

internal mechanisms of machine learning models, especially 

in regression and classification tasks. XAI prioritizes making 

algorithms, such as Deep Neural Networks (DNNs) and 

ensemble methods, more interpretable. These algorithm 

classes are known for their outstanding accuracy but are often 

difficult to understand from a human perspective [24]. This 

process involves extracting meaningful insights and 

explanations from complex models to understand how and 

why the model arrived at a specific outcome. It helps 

stakeholders, including domain experts, regulators, and end-

users, to grasp the underlying factors, features, and patterns 

influencing the model’s predictions. Considering the 

remarkable performance of DNNs in various challenging 

tasks such as time series forecasting, text classification, and 

image classification, it is understandable that a significant 

amount of research in the field of XAI has been dedicated to 

addressing the interpretability of DNNs. Interpretability of 

DNNs can be approached in two main ways. The first 

approach aims to provide explanations for the model’s 

predictions or outputs, shedding light on the reasoning behind 

the decisions made by the model. This involves generating 

human-understandable explanations that can help users 

comprehend and trust the predictions made by the DNN. The 

second approach focuses on interpreting the internal 

representations learned by the DNN when processing the 

input data. This involves unraveling the complex internal 

structures and patterns captured by the DNN during its 

training process. By understanding the internal 

representations, researchers can gain in-sights into how the 

DNN processes and understands the data, leading to a deeper 

understanding of its decision-making process. 
 

Although this research has largely focused on Random 

Forests (RFs) [2], it is crucial to note that many other 

studies in the literature focus on interpreting other 

ensemble approaches, like Gradient Boosting Decision 

Trees. Random Forests (RFs) are classification or regression 

tree ensembles that use bagging to reduce prediction 

variability. RFs, as opposed to isolated Decision Trees, 

frequently provide improved accuracy at the sacrifice of 

interpretability. Many research efforts have been directed 

towards enhancing standard feature importance score 

methods in the context of RFs. As an instance, one study 

suggests augmenting the permutation importance metric 

through the introduction of a conditional permutation 

approach. A modified version of the Mean Decrease 
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Impurity (MDI) feature significance metric is presented in 

another research article to address the issue of bias in 

feature selection by MDI. These improvements aim to 

provide more reliable and meaningful feature importance 

scores within the RF framework. Moreover, recent research 

has also focused on detecting interactions between features, 

recognizing their importance in capturing complex 

relationships in data. These studies explore methods for 

identifying and quantifying feature interactions, which can 

provide valuable insights for understanding the underlying 

data patterns. In EIF, similar considerations can be 

applied to evaluate feature importance and explore 

interactions within the IF framework. It would be 

beneficial to investigate how these techniques can be 

adapted and incorporated into the EIF algorithm to enhance 

interpretability and provide deeper insights into the 

detected anomalies and their underlying causes. 

 

Model-specific methods, which include the interpretability 

techniques previously discussed, are created especially for 

specific machine learning models. These techniques are very 

transparent, suggesting that they heavily depend on the ML 

model’s internal structure. Conversely, flexible approaches 

have garnered significant attention because of their 

considerable mobility, which enables their application to a 

broad variety of machine learning models. These methods are 

known as model-agnostic methods. They offer the advantage 

of being applicable to different models without requiring 

specific adaptations for each model type. Conversely, model-

agnostic techniques like accumulated local effects plots and 

partial dependency plots are examples of methods that are 

used to illustrate the overall behavior of the machine learning 

model. Even while model-agnostic methods seem portable, 

it’s crucial to remember that choosing interpretability 

methods frequently comes after deciding on a particular 

model type. Model-agnostic methods become valuable in 

cases where there is a lack of model-specific alternatives for 

certain classes of ML models. Consequently, rather than 

being specialized to a single model, the value of model-

agnostic approaches is in their capacity to offer 

interpretability across a variety of model types. It’s crucial to 

recognize that model-agnostic techniques do have a few 

significant drawbacks, though: 

 

 Limited exploitation of the model’s inner structure: 

Since model-agnostic methods do not leverage the 

specific structure of the examined model, there may be 

concerns that the provided explanations are 

oversimplified and do not fully capture the genuine 

fundamental connection between the input and the 

output. This can raise doubts about the reliability and 

accuracy of the interpretability method. 

 Manipulation of inputs and stability issues: Numerous 

model-agnostic techniques entail altering inputs and 

assessing the resultant impacts on corresponding 

predictions. This procedure demands care, as artificially 

generated input instances might not faithfully mirror the 

inherent data distribution. This can introduce instability 

and uncertainty into the interpretability process, 

potentially compromising the validity of the information 

conveyed by the method. 

 Reliance on assumptions and methodological choices: 

Model-agnostic methods often require the adoption of 

restrictive assumptions or involve opaque 

methodological choices. For example, some methods 

assume independence between features or create perturbed 

input instances. This places a burden on the user to trust 

the interpretability method without fully 

comprehending its theoretical foundations. 

Consequently, the trust shifts from the model itself to the 

interpretability method, potentially raising concerns 

about the reliability and transparency of the method. 

 

These limitations highlight the trade-offs involved in 

using model-agnostic methods for interpretability. While 

they offer flexibility and applicability across various 

models, users need to consider these shortcomings and 

critically evaluate the interpretability provided by such 

methods. In light of the increasing attention being paid to 

AD techniques that draw inspiration from the IF model 

and the shortcomings of model-agnostic interpretability 

approaches, this work presents novel model-specific 

interpretability strategies specifically designed to help 

comprehend the internal workings of the EIF. 

 

2.2 Contributions 

The EIF model, like the original IF, is highly valued 

and extensively utilized due to its excellent detection 

performance. The EIF often achieves remarkable results 

even when using default hyperparameter values, requiring 

minimal or no tuning. Additionally, it retains the 

computational efficiency that makes the IF model widely 

preferred in AD tasks. 

 

However, similar to other ensemble learning methods, 

concerns and uncertainties regarding interpretability [7] 

may arise with the EIF: indeed, the EIF does not provide 

any information about the underlying logic behind its 

predictions. Additionally, it doesn’t provide any guidance 

on what elements are most crucial to completing the AD 

assignment. To overcome the aforementioned challenges, 

the writers of this study effort propose the model-specific 

techniques. In particular, this research suggests: 

 A variant of the DIFFI method offers Local Feature 

Importances (LFIs). The goal of LFIs is to interpret the 

distinct predictions generated by the EIF model during 

testing. An easy-to-use and effective solution for 

unsupervised feature selection in AD situations is the 

DEIFFI method. 

 An appropriate proxy job for assessing interpretability 

methods in AD situations is unsupervised feature selection 

[6], which enables a useful assessment of these approaches 

without any prior information about the significance of the 

features. 

 

All the contributions listed above adhere to the human-

centered concept that guides this effort, which seeks to meet 

the user’s needs to the greatest extent feasible. This guiding 

principle led us to prioritize certain characteristics, such as 

efficient computational times and simple hyperparameter 
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tuning procedures. It operates on simple computations using 

numbers that come naturally from the principles that underpin 

the EIF model. The method’s details will be presented in the 

following sections, which distinguishes itself by avoiding any 

artificial manipulations of data points as well as the need for 

fitting interpretable local surrogate models. Unlike previous 

approaches, the DEIFFI method operates directly on the 

original model and data points, without the need of local 

approximations or data perturbations. This method provides 

an exact and fully transparent portrayal of the EIF’s internal 

structure. Model-independent interpretability approaches, on 

the other hand, cannot achieve this degree of accuracy and 

transparency. 

 

2.2 Motivations 

By including the assessment procedure into the issue 

formalization process, the necessity for interpretable 

algorithms in the domain of AD is aligned with the inherent 

relationship between interpretability and incompleteness. This 

connection becomes particularly relevant in the context of 

AD, where the scarcity of labeled datasets limits the ability to 

test AD algorithms in unsupervised settings. To bridge this 

gap and overcome the potential reluctance towards adopting 

automated systems, it is essential to provide proxies that can 

assess the trustworthiness of these algorithms. These proxies 

serve as tools to interpret the inner workings of the model and 

evaluate whether it aligns with the expected behavior. 

 

The alignment between the estimated feature importance 

scores and human prior knowledge is crucial in fostering 

users’ confidence. When the importance scores align well 

with the existing understanding of the problem domain, users 

are more likely to rely on the EIF model’s predictions and 

grant it greater autonomy, especially in non-critical scenarios. 

The goal of this effort is to close the gap between the EIF 

model’s internal functioning and human understanding, 

allowing users to obtain insights about feature importance 

and, eventually, increase their faith in the EIF-based anomaly 

detection system. By addressing the interpretability needs 

specific to the EIF algorithm, DIFFI contributes to the 

broader objective of promoting the acceptance and adoption 

of the EIF model in various practical applications. 

 
The impetus for DIFFI’s model-specificity stems from a 

desire to identify the actual underlying logic controlling the 

EIF’s behavior. This need presents a possible source of 

suspicion, as the surrogate model’s fidelity to the original 

model may be questioned. By focusing on the specific 

characteristics and behavior of the EIF model, DIFFI aims to 

provide a more comprehensive and faithful interpretation that 

aligns with the EIF’s inherent logic. This approach recognizes 

the limitations and challenges associated with using generic 

model-agnostic techniques in capturing the intricate workings 

of the EIF model. 

 

DIFFI is a post-hoc method; This study aimed to provide 

global and local feature significance assessments computed a 

posteriori while retaining the performance of a proven and 

successful AD technique. Given the balance that exists 

between accuracy and interpretability [1], constructing a 

model that was innately interpretable would have entailed 

sacrificing some predictive capability. DIFFI’s post-hoc 

method allows us to gain meaningful insights into the EIF’s 

inner workings while not jeopardizing its robust AD 

capabilities. This research work therefore provides 

interpretable reasons for the EIF’s forecasts while keeping its 

high accuracy in detecting abnormalities. 

 

Ultimately, through the introduction of an interpretability 

approach, this research guarantees optimal adaptability. This 

empowers users to select the most fitting solution for their 

unique scenarios, considering factors like desired granularity 

or the available time for results analysis. 

 

3. DEIFFI: Depth-based Extended Isolation 

Forest feature importance  

 

The EIF [9] algorithm’s underlying essential ideas has been 

briefly summarized in this section, along with the appropriate 

notation. The DEIFFI approach, which is especially suited for 

the interpretability [7] requirements of the EIF, is then further 

examined. This research work thoroughly reviews and 

evaluates each part of the DEIFFI approach, explaining its 

underlying assumptions. 

 

This research work proposes a methodology called 

DEIFFI, which is intended to understand each 

prediction produced by the EIF model. This variation 

improves the model’s interpretability at an instance level 

by enabling a more fine-grained knowledge of the 

variables driving particular predictions. This strategy has 

two advantages: it makes it easier to identify the most 

significant characteristics without prior knowledge of the 

problem, and it also serves as a “proxy task” for 

evaluating the correctness of the feature importance scores 

assigned. In relation to unsupervised Anomaly Detection, 

this paradigm for evaluating feature significance scores can 

be utilized as a functionally based evaluation technique. It 

also discusses and evaluates each component of the 

DEIFFI approach, clarifying its underlying 

assumptions. 

 

This study enhances the EIF algorithm’s interpretability 

and practical utility by providing these all-encompassing 

methodologies and methods, particularly in instances when 

prior knowledge about the problem is not immediately 

available. In the context of unsupervised AD, this 

paradigm to assess feature relevance scores can be 

employed as a functionally grounded evaluation technique. 

 

3.1 Background: Extended isolation Forest 

The EIF [9] is an enhanced version of the popular IF 

algorithm [15] that is widely used for AD tasks. The EIF 

algorithm retains the key principles of the IF algorithm, 

such as the use of random partitioning to isolate 

anomalies but incorporates additional improvements to 

enhance its performance and interpretability [7]. One of 

the key enhancements in the EIF algorithm is the 

consideration of the depth of each data point in the 

isolation process.  By taking into account the depth at 
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which a data point is isolated, the EIF algorithm captures 

more nuanced information about the anomalies present in 

the data. This depth-based approach provides a finer 

granularity in quantifying the outlying behaviour of data 

points. Because branching is determined by how closely it 

resembles BST, this bias is the root cause. Because the 

branching points are parallel to one of the axes, bias is 

introduced. The general case requires a random slope at 

each branching point. It selects an arbitrary slope n for 

the branching cut and an intercept at random p over the 

feature and value. With boundaries derived from the sub-

sample of data to be divided, the slope may be calculated 

using the N (0,1) Gaussian distribution and the intercept 

from the uniform distribution. The following are the 

branched conditions for data splitting at a certain point 

x: 

(x − p) ∗ n ≤ 0 (1) 

 

This introduces a new generalization hyperparameter, 

extensionLevel. extensionLevel forces random items of 

n to be zero. The EIF algorithm’s hyperparameter” 

extensionLevel” ranges from 0 to (P-1), where P is the 

dataset’s number of dimensions or features. Setting the 

value to 0 means that all splits will be parallel to all 

axes, which is consistent with the behaviour of the 

original IF. A larger extensionLevel value specifies that 

the divides will be parallel to the specified number of 

axes. When extensionLevel is set to the maximum 

value of P-1, it indicates full extension. This means 

that the slope of the branching point is randomized for 

each split. This provides maximum flexibility in the 

EIF model. It is recommended to use a fully extended 

EIF. However, in cases where the range of minimum and 

maximum values differs significantly across features, a 

lower extensionLevel may be more appropriate. This 

allows the algorithm to adapt to the varying scales of the 

features and capture their importance accurately. The 

choice of extensionLevel in EIF is determined by the 

dataset’s specific characteristics and the algorithm’s 

desired behaviour in capturing feature importance and 

accommodating varied feature sizes.  

 

The EIF algorithm has been formally described in the 

paragraphs that follow: 

Algorithm-specific Parameters: 

 extensionlevel: The value between [0, P1], where P is the 

overall feature count. IF behaviour is represented by the 

hyperparameter’s default value of 0, which is its lowest 

value. The maximum, P1, denotes a complete expansion. 

The bias of a conventional IF decreases as the extension 

level is raised. 

 sample size: The total number of observations that were 

randomly selected and utilised to train each EIF tree. Its 

default value is 256. 

 ntrees: Specify the number of trees. This option defaults 

to 100. 

During the training phase, the algorithm creates a tree by 

iteratively selecting a random dimension and comparing 

the value of each point to a randomly generated cutoff 

value for the selected dimension. According to the 

algorithm’s criteria, the data points are then routed down 

the left or right branch. Anomaly scores are assigned by 

creating numerous trees and calculating the average depths 

of their branches. Any newly observed data point then 

follows these trained criteria to traverse down each tree. 

Equation 2 converts the overall depth of all the branches 

that the data point travels through into an anomaly score. 

 

        (2) 

 

E(h(x)) is the average depth reached by a single data point (x) 

across all trees. The normalising factor, c(n), represents the 

average depth of an unsuccessful search in a Binary Search 

Tree (BST). 

 c(n) = 2H (n − 1) − (2(n − 1)/n)         (3) 
 

H(i) is the harmonic number, which may be approximated 

using ln(i) + 0:5772156649 (Euler’s constant), and n is the 

number of points utilized in tree construction. 
 

For more detail on the EIF algorithm and its properties, 

see [9]. Finally, it is worth mentioning that the EIF, as 

a tree-based ensemble model, has an inherent structure 

similar to the RF. However, random selections inside the 

EIF have a significantly larger influence. This is because, 

unlike RF, EIF selects properties associated with internal 

nodes at random rather than using established splitting 

criteria. Such a problem may appear overwhelming to 

academics seeking to improve the EIF’s interpretability. 

However, the current study shows that a solution to this 

problem is indeed possible. p-dimensional vectors, 

where the jth component reflects the CFI (for inliers or 

outliers) of the jth feature. 
 

Consider Path (x, t) as the trajectory from the root node 

to the relevant leaf node associated with data point x in 

tree t. This inquiry focuses on understanding the CFI 

update rule for inliers (II), with the extension to 

outliers (IO) being a natural progression. Initially, the 

CFI for inliers, indicated as II, is initialized as a p-

dimensional vector of zeros, denoted by 0p. The CFI for 

inliers is then adjusted additively. This update method 

iterates over all trees in the forest and, for each tree t 

and the subset of predicted inliers It, conduct the 

following steps. 

 

Finally, for the projected inlier xI ∈ It, the inner 

nodes in the path Path (xI, t) are iterated. When the 

splitting attribute associated with a specific internal 

node v is marked as fj, the jth element of II is updated 

by adding a unique value. 

                           (4) 
 

The expression ht(xI) denotes the depth of the leaf node 

linked to data point xI in tree t. This statement describes 

two variables that lead to DEIFFI. The update rule for 

IO is identical to the one given above, but with a few 

modifications. Instead of iterating over It, use Ot. In 

addition, λI(v) is substituted by λO(v) during the update. 
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3.2 DEIFFI 

DEIFFI uses two basic hypotheses that guide the evaluation 

of feature significance: 

 Hypothesis I: Significant features tend to separate outlier 

data points from shallower depths for trees constructed with 

the EIF model. In contrast, normal data points are moved to 

deeper levels of trees. This hypothesis is based on the 

intuition that anomalies have particular characteristics that 

lead to their isolation closer to the roots. 

 Hypothesis II: Split tests of significant characteristics result 

in greater imbalance between abnormal data points 

compared to normal data points. This intuition indicates 

that salient features make a clearer distinction between 

abnormal and normal cases, thus aiding detection. 

 

An Extended Isolation Forest (EIF) is trained by 

generating an ensemble of decision trees, each specialised 

in isolating anomalies. The basic idea underlying EIF is to 

establish isolation paths for data points, where the path 

length indicates the level of isolation inside a tree. While 

the exact training procedure consists of multiple parts: 

For a dataset D = {x1, x2, . . ., xn}, where each xi is a 

data point of d-dimensional feature vector: For each tree t (t 

= 1 to T): 

 Randomly select a subsample Dt from the dataset D 

using bootstrap sampling. 

 Choose a random feature subset Ft of size f, where f is 

the number of features to be considered for splitting at 

each node. 

 Select the best split feature jt and split value vt based 

on a splitting criterion. 

 Divide the data into left and right subsets: Dl(xi 

where xi[jt] ≤ vt) and Dr (xi where xi[jt] > vt). 

 If the stopping criteria are met, create a leaf node. 

 Otherwise, continue recursively on Dl and Dr to 

create child nodes. 

 

To understand individual predictions produced by the 

EIF, this research effort employs an approach similar to 

that described in [3], with variations due to the challenges 

in computing particular values in the local case (i.e., when 

assessing one sample at a time). Specifically: 

 Cumulative Feature Importance (CFIs) are computed 

separately for inliers and outliers, represented as real-

valued values. These quantities are subsequently 

appropriately normalized and merged to generate the 

ultimate feature importance scores. The CFIs are 

incrementally updated by utilizing data points in an 

additive manner, ensuring that the significance of 

features is accurately captured. 

 The update mechanism is based on two metrics that 

reflect the two aforementioned intuitions: the depth of 

the leaf node where a given data point terminates 

(intuition I1) and the Induced Imbalance Coefficient 

(IIC) associated with a specific internal node (intuition 

I2). 

 

Further information regarding CFI and GFI algorithm 

and its properties, can be referred in [3]. 

4. Experimental Results  
 

This section discusses the outcomes of experiments using 

synthetic and real-world datasets. These experiments aim to 

evaluate the efficacy of the DEIFFI version, which generates 

feature importance ratings that are connected to individual 

predictions. Furthermore, this study examines the DEIFFI 

technique utilizing synthetic data to gain insights into the 

importance of each ingredient. All testing procedures were 

carried out on a standard consumer laptop with an Intel Core 

i5-8750H 2.20 GHz CPU and 8 GB RAM. 

 

The DEIFFI approach was used to analyze individual 

predictions from the EIF [9] model. The DEIFFI approach’s 

effectiveness has been evaluated using synthetic and real-

world datasets. Both datasets provide prior knowledge of the 

most relevant aspects for the AD to address, which is critical 

for assessing DEIFFI’s effectiveness. The experimental 

arrangement used in this work is based on a real-world 

scenario that is relevant to a wide range of applications. In 

this scenario, a trained EIF model is used in online settings, 

with the user looking for predictions and matching local 

feature importance scores for each processed particular data 

point. 

 

4.1 Synthetic Dataset 

 

This study initially examines the performance of the DEIFFI 

approach in controlled tests on synthetic data. The synthetic 

dataset was created by first working with two-dimensional 

data points, that were then enlarged by adding more noise 

features. Specifically, the generic data point xi is represented 

as a p-dimensional vector. 

 

xi = [ρ cos(θ), ρ sin(θ), n1, . . ., np − 2] T   (5) 

 

The variables nj ∼ N (0, 1) for j = 1, . . ., p − 2 denote white 

noise samples. The parameters p and θ are random variables 

with continuous uniform distributions. For regular points of 

data, the estimated distributions of those variables are 

organized as follows: θ ∼ U (0, 2π); ρ ∼ U (0, 3). In contrast, 

anomalous data points have distributions as follows: θ ∼ U 

(0, 2π) and ρ ∼ U (4, 30). 

 
Figure 1. Synthetic outliers projected on the f1 − f2 plane. 
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For the experiments, a training set of 1000 data points with 6 

dimensions was created, including four noise features. 

Approximately 10% of the data points were identified as 

abnormalities. Ten instances of the EIF algorithm were 

trained with 100 trees and a subsampling size of ψ = 256, 

which are standard values for the EIF hyperparameters [9]. 

The resulting models had an average F1-score of 0.768 on the 

training data, indicating excellent detection ability. This 

indicates that the informative features, notably p cos(θ) and p 

sin(θ), are effectively used to address the problem at hand. 

The ranking of attributes based on these scores matches the 

prediction, with the coordinates of each point being selected 

as the two most essential characteristics. 

 
However, removing IIC and focusing solely on projected 

outliers presents considerable issues. Without the IIC 

contribution, the distinction between relevant and noise 

features becomes less obvious, making it impossible to 

distinguish between them. When only predicted outliers are 

included, p cos(θ) fails to appear amongst the top two most 

significant features for three out of ten models, but p sin(θ) 

does in two out of ten models. 

 
Ignoring the IIC contribution (with λI (v) = 1) minimizes the 

difference between the normalized relevance scores of 

informative and noisy features, which makes it more difficult 

to discriminate between them. Similar difficulties arise when 

only the impact of predicted outliers is examined (i.e., when 

II/CI equals 1). In this situation, p cos(θ) cannot be found 

amongst the top two most important features for three (out of 

ten) models, while p sin(θ) does not appear for two (out of 

ten). The F1-score and accuracy on training data are 0.768 

and 0.942, respectively. For the training stage, 300 extra ad-

hoc anomalies were produced as shown in Figure 1 (projected 

onto the subspace of important features): 

 
A total of 100 data points is positioned on the x-axis (blue 

points), the y-axis (orange points), and the bisector (green 

points). In the context of this Anomaly Detection (AD) job, it 

is determined that only feature f1 is relevant for outliers on 

the x-axis, only feature f2 is important for outliers on the y-

axis, and both f1 and f2 are significant for outliers on the 

bisector. All other features, which function as white noise 

samples, are considered unimportant in all cases. After 

obtaining predictions for the created test outliers, this study 

uses the DEIFFI algorithm to calculate local feature 

importance scores and rankings. Figure 2 shows color-coded 

features, with columns denoting the y-axis. DEIFFI finds both 

f1 and f2 to be significant in the third row, which is connected 

to points along the bisector, which is consistent with past 

findings. Interestingly, it is noted that, in contrast to the 

situation with outliers on the axes, the feature importance 

ratings supplied by DEIFFI for f1 and f2 are somewhat close 

in this case. 

 

 

 

 
Figure 2 DEIFFI-based feature rankings for the synthetic dataset: 

outliers on the x-axis, y-axis, and bisector. 

 

The height of each bar related to a feature shows the 

percentage of expected anomalies in which that feature 

has a particular rank. For instance, in the upper left plot 

of Figure, feature f1 consistently ranks first for all 

projected anomalies. Feature f 2 has rank 2 for around 40. 

The first column (the most important feature according to the 

interpretability technique) in the first two rows (where 

correctly predicted outliers are taken into account) always 

matches the accurate feature, that is, f1 for outliers on the x-

axis and f2 for outliers on the y-axis. DEIFFI finds both f1 

and f2 to be significant in the third row, which is connected 

to points along the bisector, which is consistent with past 
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findings. Interestingly, it is noted that, in contrast to the 

situation with outliers on the axes, the feature importance 

ratings supplied by DEIFFI for f1 and f2 are somewhat close 

in this case. 

 

4.2 Real-World Datasets 

This study makes use of an altered version of the Glass 

Identification UCI dataset (referred to as [glass]), which was 

first created for multiclass classification tasks. There are 213 

glass samples in the collection, and each one is represented 

by a 9-dimensional feature vector. One of these 

characteristics is the refractive index (RI), while the others 

stand for the concentrations of calcium (Ca), iron (Fe), 

sodium (Na), potassium (K), magnesium (Mg), silicon (Si), 

and barium (Ba). To create the class of regular data points, 

classes 1, 2, 3, and 4 (window glass) are combined in the 

completed tests. The three remaining classes ‘‘glass 

containers (class 5), glass dinnerware (class 6), and glass 

headlights (class 7)” are considered anomalous data points 

because they do not include window glass. The assessment is 

centred on evaluating the performance of DEIFFI using 

anticipated outliers from class 7, which serve as the test data 

points. 

 

 
Figure 3 Based on DEIFFI scores, the glass dataset’s feature 

rankings are as follows: class 7 outliers (headlamps glass). 

 

Drawing on previous research on headlamp glass, two key 

characteristics are considered:  

The calcium concentration, which is used for the reflecting 

coating, and the sodium concentration, which is involved in 

the properties that make the glass heat resistant. These 

characteristics are expected to play a significant role in 

differentiating headlamp glass from window glass. A 

subsampling ratio of ψ = 64 and 100 trees were used to train 

an EIF instance. 

 
Table 1. Results of Algorithm on Real-World Datasets 

Evaluation Matrix Original Method Proposed Method 

Accuracy 0.870 0.914 

Precision 0.469 0.607 

Recall 0.682 0.773 

F1-Score 0.556 0.680 

 

Table 1 displays the performance of the proposed 

approach with improved interpretability to quantify the 

feature importance for AD quantitatively using the EIF 

algorithm. The study of the training data yielded 

encouraging results: an F1-score of 0.68, accuracy of 

0.914, precision of 0.607, and recall of 0.773 indicate 

that the model can correctly identify important patterns 

and forecast events. Figure 3 presents the findings from the 

analysis. In line with the accepted knowledge for the task, 

DEIFFI regularly identifies salt and calcium concentrations as 

the most significant features for the bulk of predicted 

abnormalities. 

 

In summary, the statistical evaluation of DEIFFI on the 

EIF model demonstrated good accuracy and a high F1-

Score. These findings highlight the DEIFFI 

methodology’s effectiveness in accurately detecting and 

classifying abnormalities, especially in the context of AD. 

By decreasing the number of false positives and false 

negatives, the model shows that it can support strong threat 

mitigation and progress the AD landscape. 

 

6. Conclusion and Future Scope  
 

This research work presents Depth-based Extended Isolation 

Forest Feature Importance (DEIFFI), an approach that 

enhances interpretability in the context of the EIF, which 

is a popular and effective AD algorithm. By providing 

insightful information, DEIFFI empowers end users of 

EIF-based AD solutions to gain deeper insights into the 

underlying process and facilitate root cause analysis. 

This promotes a better understanding of anomalies and 

enhances the overall interpretability of the EIF 

algorithm.  

 

Surprisingly, DEIFFI attains these praiseworthy 

outcomes with significantly reduced computational 

costs, making it especially appealing for practical operational 

deployments, such as real-time situations. Furthermore, 

DEIFFI exhibits its ability to support unsupervised 

feature selection, which promotes the development of 

computationally efficient and maybe more accurate AD 

solutions. This demonstrates the concrete benefit of DEIFFI 

in enhancing the potential of the EIF algorithm and 

increasing its applicability in various AD settings. 
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