

 © 2022, IJCSE All Rights Reserved 41

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 10, Issue.1, January 2022 E-ISSN: 2347-2693

SecurityTAG’S

Boddepalli Kiran Kumar

1*
, Korla Swaroopa

2

1,2Associate Professor, Dept. of CSE, Aditya College of Engineering, Surampalem Affiliated to Jawaharlal Nehru

Technological University Kakinada, East Godavari, India

*Corresponding Author: kirankumar_cse@acoe.edu.in, Tel.: +91-9030029990

 DOI: https://doi.org/10.26438/ijcse/v10i1.4144 | Available online at: www.ijcseonline.org

Received: 21/Jan/2022, Accepted: 25/Jan/2022, Published: 31/Jan/2022

Abstract— In this paper, initially we describe the present antivirus in aspects like –memory[1] they are consuming, and

how efficiently they are protecting the system. In the next section of this paper we briefly discuss the design methodologies

that are practiced presently, their drawbacks and limitations. Finally we describe an effective design methodology which

uses SecurityTAG to protect the system. SecurityTAG is generated by the SecurityTAG generator which takes some

parameters as inputs and gives the SecurityTAG as the output. This gives better protection against any virus and detection

of infected files is very easy and effective.

Keywords—SecurityTAG, generator, key, virus

I. INTRODUCTION

PRESENT ANTIVIRUS PACKAGES

All software, including ready-to-wear software, should be

sufficiently reliable and secure in delivering the service

that is promised of them. There are various ways in which

this reliability and security can be achieved in practice,

such as the use of various validation and verification

techniques in the software development phases, statistical

testing of the final product before delivery, issuance of

patches and service releases for the product in operation, as

well as the use of software fault/intrusion tolerance

techniques. The fault tolerance techniques can range from

simple “wrappers” of the software components [2] to the

use of diverse software products in a fault-tolerant system

[3]. This latter strategy of implementing fault tolerance

was historically considered prohibitively expensive, due to

the need for development of multiple bespoke software

versions. However, the wide proliferation of ready-to-wear

software for various applications has made the use of

software diversity an affordable option for fault tolerance

against either malicious or non-malicious faults.

In this section we aim at describing the present antivirus

package, collected from various resources available on the

web and experimental studies we did on various packages

in the following aspects.

i. Memory space utilized by the AV package.

ii. Efficiency of the AV package.

Memory space utilized by the AV packages:

Here we give you information about 29 AV package. All

are free- ware and shareware.

Table 1: Memory usage table[4]

AV package name

Memory

usage

during

idle(KB)

Memory

usage

during

scan(KB)

PC Tools AntiVirus

Free Edition 4.0.0.26

5680 23948

Norton Antivirus

2009

6000 51312

Kaspersky Antivirus

2009 v8.0.0.357

6565 50892

Spyware Terminator

v2.2.3.444

7624 64292

Quick Heal

AntiVirus Plus 2008

v9.50

151660 201660

BitDefender 10 Free

Edition

9668 42492

Avira AntiVir

Personal 8

10072 70072

Kaspersky Internet

Security 2009

v8.0.0.3578

16180 44216

Rising Antivirus

20.44

16252 59704

DriveSentry 3.1 16992 18504

avast! 4 Home

Edition

23100 63416

CA Anti-Virus 2008 37756 47556

AVG Anti-Virus

Free Edition 8.0.138

38244 88244

ESET NOD32

Antivirus 3.0.669

40364 46012

ESET Smart

Security 3.0.669

42640 39284

 International Journal of Computer Sciences and Engineering Vol.10(1), Jan 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 42

Trend Micro

AntiVirus plus

AntiSpyware 2008

42680 63704

ZoneAlarm

Antivirus 7.0.483

52772 97200

BitDefender

Antivirus 2008 v11

56440 73720

Comodo AntiVirus

2.0.17.58

56668 76668

Trend Micro Internet

Security 2008

59140 79688

F-Secure Anti-Virus

2008

61972 178824

Moon Secure

Antivirus 2.2.2.163

71528 71528

Panda Antivirus

2008

76344 101416

McAfee VirusScan

Plus 2008

87632 140484

Norman Antivirus &

Antispyware

99856 201660

Windows One

LiveCare 2.5

102868 107868

eEye Blink 4.04

Personal Edition

117972 131412

G DATA AntiVirus

2008

130544 175176

In the above table we have collected data from the

freeware and shareware versions only as they are available

freely but the professional versions may consume more

memory compare to the free versions because of the extra

features and protection system.

If you consider a PC, that now a days used will contain

minimum of one GB of memory. Out this one GB,

depending on the operating system used the memory

consumption varies from 20% to 40% of the total memory.

Which is very useful in providing good user interface and

easy to work environment. This 20% to 40% is

considerable for operating system-with out which we

cannot use it. But coming to the AV package, here we are

running a program which is not having any personnel use

and only for the protection of our system from threats.

Efficiency of the AV package

Generally the time complexity of these will directly

proportional to the memory space they are using and in

some exceptional cases it depends on the code i.e., if it has

so many recursive functions and loops, though it is a small

program its time complexity is very high. If we consider

the memory as the measure to compute the proportionality

relational equation. complexity then we can find out the

time complexity by using the If you observe the memory

consumed in above table, in the idle time only they are

resident in the considerable amount of memory which can

degrade the performance of the system.

The other thing we have to observe in the AV package is,

how far the AV package is defending the new viruses.

Almost all the AV packages are able to find out the

existing and known virus only. If the system is effected

with the new virus then they are not able to detect them.

This is the main drawback of the all the existing AV

packages. The efficiency of different AV packages can be

obtained from various web sites in all the aspects.

II. EXISTING METHODOLOGY

Antivirus is a good way to protect against viruses, but we

still have disadvantages. First of all, an antivirus used

signature in his database that means that he is unable to

discover new attacks; this can be remedied by updating

periodically the database. Beside antivirus stays helpless

against different kinds of attacks like hijacking, Denial of

Service, and other. That is why we need other software‟s,

along with the use of antivirus

Mostly three techniques were used in the AV package:

 i. Pattern matching technique.

 ii Checksum method

 iii Signature analysis

Pattern matching technique:

In this method[5] the previously known virus patterns are

matched while scanning. If any similar pattern occurs the it

will remove or modify it depending upon the level of virus

effect.

A more elegant and more transparent solution to the

pattern matching scan is a memory resident piece of

software, which checks for viruses again by pattern

matching each time an attempt to execute a program is

made, or when a new removable disk is introduced to the

system. This method is effective in stopping the spread of

viruses, and has little performance overhead relative to the

loading time of the program

Checksum method:

Check summing [5] is a method based on calculating CRC

[Cyclic Redundancy Check] checksums and is a

modification of signature analysis. The method was

developed to overcome the main disadvantages of the

signature method, large databases and frequent false

alarms. Checksumming accounts for not only the search

string [or, to be more precise, a checksum for the string]

but the location of the string in the body of a malicious

program. The location is used to calculate the checksums

for the entire file. Thus, instead of a 10-12 byte search

string [and this is a minimum size], the checksum takes

four bytes and the location data also take four bytes.

However, checksumming is more time consuming than

signature analysis.

Signature analysis

A signature is a unique sequence of bytes that is specific to

a piece of malicious code. Signature analysis, or a

modification of it, was [and remains] one of the first

methods used in anti-virus engines to detect viruses and

 International Journal of Computer Sciences and Engineering Vol.10(1), Jan 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 43

other malware. Evident advantages of this method are its

high speed [especially with the use of special algorithms]

and the possibility of detecting several threats using one

signature. On the other hand, a serious disadvantage of this

method is that for reliable detection of malicious code, the

signature must be large, at least 22-40 bytes [anti-virus

producers usually use longer signatures, of up to 64 bytes,

to improve the detection level]. So the size of the anti-virus

database also increases. Another challenge to this method

is that much contemporary malware is written in high level

languages such as C++, Delphi or Visual Basic. These

programs contain fragments of code that do not change

[the so-called Run Time library]. If a wrong signature is

used, this leads to false alarms, where a clean file is

reported to be infected. The false alarm problem can be

solved by using extremely large signatures, or by

restricting detection to certain data areas like relocation

tables or text strings, which is undesirable.

Techniques for detecting polymorphic viruses

Self-encryption and polymorphism are used in most types

of virus to maximize the difficulty of their detection.

Polymorphic viruses are extremely difficult to detect

because they do not have signatures, that is, there‟s no

constant fragment of virus specific code. In most cases,

two samples of the same polymorphic virus do not have a

single coinciding fragment.

There are many kinds of polymorphic viruses, from boot

and DOS file viruses to Windows viruses, macro and script

viruses. Polymorphic „envelopes‟ are also used to hide

Trojan programs.

Viruses are called polymorphic if their body is self-

changing during replication to avoid the presence of any

constant search strings. Polymorphic viruses can not be

detected [or can be detected only with great difficulty]

using so-called virus signatures or masks, sequences of

unchanging virus-specific code. Polymorphism is achieved

by encrypting the main code of the virus with non-constant

keys containing random sets of decryption commands, or

by changing the executable virus code. There are also other

rather exotic examples of polymorphism. For example the

DOS virus Bomber is not encrypted, but the sequence of

instructions, passing control to the body of the virus, is

completely polymorphic.

It is problematic to use signatures [sometimes called

„search strings‟], as outlined above, to detect polymorphic

viruses. Since the code changes with each infection, it

becomes impossible to select the correct signature. Even a

very large signature can not be used to identify an

encrypted virus uniquely without giving false alarms. It‟s

not difficult to see why. The polymorphic virus encrypts its

body, converting the virus code into a variable. And

variable code can not be selected for a signature.

So for detection of polymorphic viruses, additional

techniques must be used.

Reduced masks

If the encryption algorithm used by the virus is not

sufficiently advanced, it‟s possible to use elements within

the encrypted body of the virus to take the encryption key

out of the equation and obtain static code. The signature, or

mask, can then be taken from the resulting static code.

Known plaintext cryptanalysis

Known plaintext cryptanalysis, another method for dealing

with polymorphic viruses, works like this. Using the

known original virus code and the known encrypted code

[or suspicious code that looks like an encrypted virus

body], the engine reconstructs the keys and the algorithm

of the decrypting program. The engine then decodes the

encrypted virus body by applying this algorithm to the

encoded fragment. The use of a system of equations to

decode an encrypted virus body is similar to the classical

cryptographic problem of decoding an encoded text

without keys.

However, there are two key differences. First, most of the

data required for the solution is known. Second, the

solution must be solved using available RAM and with

limited time. In general, this method is less time

consuming and uses a smaller amount of memory than

emulation of virus instructions [see below]. However, this

solution implies constructing a system of equations and it

becomes rather complicated. The main problem is the

mathematical analysis of the equation or the system of

equations constructed.

III.. PROPOSED METHOD: SECURITYTAGS

We have proposed a method which can efficiently detect

the new virus and it will take considerably less memory

and computational time when compared to the previous

AV packages. One of the major advantage of this

SecurityTAG method is tracing the effected file is very

easy, which we have demonstrated in the following

sections.

What is a SecurityTAG?

Security TAG is a unique identification number generated

by the Security TAG generator to each and every file,

directory and system in a tree hierarchical order. The

following figure will illustrate this clearly.

SYSTEM

Figure:1 Hierarchical order of SecurityTAG generation

 International Journal of Computer Sciences and Engineering Vol.10(1), Jan 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 44

Security TAG generator:

Security TAG generator will generate a unique security

TAG. This algorithm takes the parameters like size of the

file, file extension, file checksum, and parity as inputs for

generation of the Security TAG.

Figure: 2 SecurityTAG generator

As we are using the hierarchical order in generation of the

tags, the whole system will have a unique Security TAG

which is to be monitored continuously. These tags will be

changing upon the modifications the files or directories,

which will again lead to the change of the whole system

SecurityTAG.

Detecting the threats and tracing the effected file:

First of all we will discuss the main characteristics of any

virus

i. Replication of data.

ii. Modification of data.

These are the two main characteristics of any virus which

will lead to degrade the performance of system and

sometimes lead to crashing the system.

Using our SecurityTAG we can easily find any type of

modification of the file as we are considering all the

parameters of the file. Suppose any file is affected by some

virus then ultimate target of the virus is to change the data

or replicate it. If any change in the data then there will be a

change in the corresponding SecurityTAG which will lead

to the change of the SecurityTAG of the corresponding

directory, that will lead to the change of the SecurityTAG

of the system which is monitored continuously by

monitoring engine.

Tracing of the virus is very easy as we are using the tree

structured SecurityTAG generation. The following figure

will demonstrate the procedure for tracing infected

drive/file, which would be very easy when compared to

previous techniques

Change file

SecurityTAG

Change

DIR/FILE

SecurityTAG

Change System

SecurityTAG

Figure:3 Tracing the infected file

Coming to the performance aspects of this SecurityTAG

protection method, in the idle mode it is only monitoring

the system SecurityTAG only which will take hardly 512

KB of memory and in the back end the generating

algorithm is observing and modify SecurityTAG of the

changed files which are used by the user and new tag is

generated after the changes made by the user. This back

end observing and modifying algorithm will take hardly 2

to 3 MB. So in idle this method is using hardly 3.5 MB.

Initially it will consume some time to generate

SecurityTAG for all the files in the system. Later on the

monitor and generator will run as back end process

continuously to protect the system.

Note: We are implementing the above method which may

lead to some further minor modifications in the proposed

algorithm.

IV. FUTURE WORK

To the above mentioned method if we add the known virus

definitions and detecting them with the method of pattern

matching and checksum methods then we can develop an

effective AV package which gives better performance in

all the aspects that are mentioned above.

REFERENCES

[1] Memory- memory refers to the main memory or physical

memory.

[2] van der Meulen, M.J.P., et al. Protective Wrapping of Off-the-

Shelf Components. in the 4th International Conference on COTS-

Based Software Systems (ICCBSS '05). Bilbao, Spain: Springer.

2005.

[3] Strigini, L., Fault Tolerance Against Design Faults, in

Dependable Computing Systems: Paradigms, Performance

Issues, and Applications, H. Diab and A. Zomaya, Editors. J.

Wiley & Sons. p. 213-241, 2005.

[4] http://www.raymond.cc/blog/archives/2008/07/11/ -free-antivirus-

is-the-lightest-on-system-memory-usage/

[5] Fred Cohen, “Computer Viruses”, Computers €4 Security 0, 22-

35.

[6] Computers & Security 7, Specid Issue on Viruses.

[7] Marvin Minsky, Computation: Finite and Infinite Machines,

Prentice-Hall.

http://www.raymond.cc/blog/archives/2008/07/11/

