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Abstract— Detection and localization of active and passive targets using sensor arrays play an important role in the field of 

array signal processing. In this paper the problem of estimating the direction of arrivals of broad banded linear and quadratic 

chirp sources using both nested and co-prime arrays is addressed. Traditional uniform arrays can only detect N-1 number of 

sources with N physical sensors using high resolution beam formers like MUSIC. However the nested and co-prime arrays can 

detect more number of sources than the number of sensors by exploiting the difference co-array structure based on the 

correlation of the observations. Difference co-array is the distinct sensor locations obtained by taking all possible pairwise 

differences of sensor locations in the original array. As the chirp signal, commonly used in both radar and sonar systems is 

better processed in the fractional Fourier domain, the detection is done using fractional Fourier transform (FrFT). But as the 

traditional FrFT is limited to the analysis of linear chirps, detection using modified FrFT is found to be the apt choice for 

quadratic chirps. Subsequently, the direction of arrival estimation is achieved using subspace methods which include MUSIC 

and minimum-norm in the proposed work. The effectiveness of the algorithm is validated through different signals including 

real data obtained from a practical sonar array. It is seen from the computer simulations that nested-MUSIC combination has 

better resolution and accuracy than all other combinations. 

 

Keywords—Direction of arrival estimation,  Fractional Fourier transform, Chirp sources, Nested array, Coprime array. 

  

I. INTRODUCTION 

 

Array signal processing has been an active area of research 

employed in a wide variety of applications such as radars   

[1], sonars [2], communication [3] etc. This includes 

detection and parameter estimation of active and passive 

targets using an array of sensors separated in space. Such 

problems promise high SNR gain through beam-forming, in 

the context of direction of arrival (DoA) estimation. The 

DoA estimation method which is found to be very effective 

for narrow-band signals is the conventional beam-former 

(CBF) that does delay-sum operation [4]. But it is found that 

CBF involves high side lobe levels and hence it is not very 

effective in resolving multiple sources. Capon et al. [5] 

developed the minimum variance distortionless look 

(MVDL) by modifying the CBF weights to improve the 

resolution. As this algorithm involves the requirement of 

inverting the full-rank spatial covariance matrix dimensioned 

by the size of the aperture, it is found to be computationally 

complex. Subspace based methods also result in the high 

resolution of multiple targets which include multiple signal 

classification (MUSIC) [6], root-MUSIC [7], minimum norm 

(MN) [8] and the estimation of signal parameters via 

rotational invariance techniques (ESPRIT) [9]. 

Chirps are signals which exhibit a change in instantaneous 

frequency with time and are of particular interest in active 

and passive systems of radars [10] and sonars [11]. The 

applications also span other areas which include ultrasonic 

imaging, acoustic communications and seismic surveying. 

Natural chirp signals exist in the form of whistles produced 

by dolphins, whales, birds and bats. These sounds are 

modelled as either linear frequency modulated (LFM) chirps 

or non-linear versions which include quadratic frequency 

modulated (QFM) and hyperbolic frequency modulated 

(HFM) waveforms. For passive sensor arrays, the chirp 

signals are produced due to Doppler effect when the 

sinusoidal source is accelerating [12]. Some active radars and 

sonars system use chirp signals for transmission, providing 

good detection response of low Doppler targets with long 

range resolution [13]. 

Traditional methods of DoA estimation cannot be used as 

such for chirp sources because the array response vector is 
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continuously changing with time. Passive  chirps follow the 

usual approach of separating the data into several narrow-

band frequency bins and perform the DoA estimation for 

each frequency bin, where the final estimate is the statistical 

average of all bins [14], [15]. In the case of active chirp, each  

frequency is focused to a reference focusing frequency and 

then a single correlation matrix is obtained by adding these 

focused correlation matrices, to which the traditional DoA 

estimation methods could be applied [16], [17], [18]. But the 

performance of first method suffers severely at low SNR, 

while the other method is likely to depend on the selection of 

the focusing frequency [19]. In this context, for the chirping 

signals, the beam-forming using fractional Fourier transform 

(FrFT), where the FrFT parameters are chosen based on the 

chirp signal, can improve the performance of DoA estimation 

in terms of computational efficiency, accuracy and 

resolution. Also by using FrFT, the detection at low SNR 

gets improved, since the FrFT with the matching parameters, 

converts the broad-band signal into its narrow-band 

representation in the fractional domain. 

FrFT is a linear transformation having low computational 

complexity and high noise resilient property [20]. It extends 

the capabilities of conventional Fourier transform and 

decomposes the signal into an orthonormal basis of linear 

chirps. As the process involved is the linear rotation of the 

time-frequency plane, the use of FrFT is limited to the class 

of linear chirps. Therefore new techniques need to be 

developed for non-linear chirps. Sahay et al. [21] introduced 

the modified FrFT called the „generalized time frequency 

transform‟ (GTFT) for the analysis of higher order chirps. 

The kernels of FrFT and other transforms such as Fresnel 

and affine transform can be obtained as a special case of 

GTFT [22]. But the parameters of the signal have to be 

searched for the incoming unknown chirps which becomes a 

tedious task. The parameter search problem becomes too 

complex for the higher order chirps as the number of 

parameters of a given chirp is proportional to the order 

number. The polynomial curve fitting can solve the problem 

to some extend since the parameters of the chirp are related 

to the coefficients of the polynomial representing the chirp. 

Peng et al. developed a new time-frequency representation in 

this regard known as polynomial chirplet transform (PCT) 

[23] which can extract the coefficients of both linear and 

nonlinear chirps. PCT is a modified version of the 

conventional chirplet transform (CT) [24] as the latter fails to 

analyze the nonlinear chirps. 

Traditional uniform arrays such as uniform linear array 

(ULA), uniform planar array (UPA) and uniform circular 

array (UCA) can only detect N-1 number of sources using N 

number of physical sensors. Therefore additional sensors are 

required to detect more number of sources which will 

increase computational complexity and cost. The sparse 
linear arrays such as nested [25] and co-prime [26] 
arrays have the attractive capability of providing enhanced 

degrees of freedom. Therefore these are capable of 

resolving more sources than the number of sensors by 

exploiting the so called “difference co-array” based on the 

correlation of the observations. Difference co-array is the 

distinct sensor locations obtained by taking all possible 

pairwise differences of sensor locations in the original array. 

By exploiting the co-array structure, an augmented sample 

covariance matrix can be constructed and subspace methods 

can be applied to identify more sources than the number of 

sensors. The traditionally used ULA which is analogous to 

uniform sampling is found unsuitable as the difference co-

array is not creating any additional element with respect to 

the original array.  

In this paper, the DoA estimation of broad banded linear and 

quadratic frequency modulated chirps using nested and co-

prime arrays is presented. The analysis is done using 

simulated chirps as well as real data obtained from a practical 

sonar array. As conventional FrFT is limited to the analysis 

of linear chirps, detection using modified FrFT is found to be 

the apt choice for higher order chirps by the proper selection 

of the kernel. The parameters of the quadratic chirp signal is 

extracted using the PCT approach and the DoA estimation is 

compared using various subspace methods. 

The rest of the paper is organized as follows. In Section II, 

the signal model for LFM chirp sources is presented, in terms 

of the FrFT. Then the modified signal model based on 

difference co-array is mentioned in Section III. Subspace 

DoA estimation methods based on FrFT is discussed in 

Section IV. Extension of these ideas to QFM chirps is 

mentioned in section V. In Section VI, the numerical results 

of the performance of the DoA estimation methods are 

presented for different signals including real data obtained 

from a practical sonar array. The conclusions and directions 

for further work are summarized in Section VII.  

Notations: Matrices are denoted by uppercase letters in 

boldface (e.g., A). Vectors are denoted by lowercase letters 

in boldface (e.g., a). Superscript 
H
 denotes Hermitian or 

transpose conjugate. The symbol 1j  denotes the 

imaginary part of a complex number.  

 

II. SIGNAL MODEL FOR LFM SOURCES 

 

Nested array is a chain of two ULAs specified by the 

following sensor array arrangement 

Sn = {1, 2, …, N1, (N1+1), 2(N1+1), … N2(N1+1)}            (1) 

Out of the total sensors, half of the sensors upto N1 form a 

ULA with unit distance spacing and the next half of the 

sensors are spaced directly proportional to the number of 

sensors in the first half [25]. By placing the antenna elements 

in this fashion, effect of first ULA can be recreated in 

between second ULA.   

Co-prime array is a combination of two ULAs which utilizes 

the properties of co-prime pair of numbers given by  

Sc = {0, C, 2C, … , (D-1)C, D, 2D, ... , (2C-1)D}              (2) 
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Here C and D are chosen as the co-prime pair. The first 

uniform sub array will have D number of sensors with C unit 

distance and the second uniform linear sub array will have 

2C number of sensors spaced at D unit distance making a 

total of 2C+D-1 senors for the co-prime array [26].  

 

Assume P broad-band LFM chirp signals from directions θ1, 

θ2, … θP impinging on a sparse array given by (1) or (2) 

having a total of N isotropic non-uniform linear antenna 

array elements. The time series of data at the q
th

 sensor is 

given by 

                     tntstx qiqi

P

i

q 



1

                  (3) 

where  τq(θi)  is the time delay of the i
th

 broadband chirp at 

the q
th

 sensor given by 

                   i

q

iq
v

d
 sin










                              (4) 

The sensors are placed on a linear grid with dq denoting the 

position of the q
th

 sensor which is an integer multiple of the 

smallest spacing, dmin in the underlying grid. The parameter 

„v’ represents the signal speed and the spacing dmin is taken as 

λmin/2 to prevent aliasing in the spacing domain where λmin is 

the minimum wavelength of the combined incoming sources.  

The broad-banded linear chirp is represented by the 

following equation   

                     ctfbtjts  0

22exp                    (5)            

where ‘b’ is the chirp rate, f0 is the start frequency and ‘c’ is 
the initial phase of the chirp. The term bt

2
 + f0t + c defines 

the phase and its first derivative 2bt + f0 represents the 

instantaneous frequency (IF). Therefore three parameters 

define a linear chirp completely viz. start frequency, chirp 

rate and the duration over which ‘t’ is defined. 

In frequency domain representation the received data vector 

in (3) with the broad-banded signal as input has the form 

                   )()(),()( kkkk ffff nsAx                  (6) 

where A(θ, fk) = [a(θ1, fk) a(θ2, fk)….. a(θD, fk)] represents 

the array steering matrix for the k
th

 bin and a(θi, fk) is the 

steering vector of the i
th

 source represented as 

 
T

i
Nk

i
kki

v
dfj

v
dfjf 
















sin
2exp(

sin
2exp(1),( 2a   (7) 

s(fk) = [s1(fk) s2(fk) …… sD(fk)]
T
 represents the k

th
 FFT 

coefficient of the signal vectors and that of  noise is given by 

n(fk) =[n1(fk)  n2(fk) …. nN(fk)]
T
. The term A(θ,fk)s(fk) 

represents inverse beam-forming vector which delays the 

plane wave to reach the spatially separated sensors. 

The FrFT is a time varying filter and is a one parameter 

generalization of the classical Fourier transform. Namias 

introduced the idea of FrFT in the area of quantum 

mechanics for the solution of differential equation problems 

[27]. The discrete implementation of FrFT was put forward 

by Ozaktas [28] where the fractional transform is broken into 

a chirp multiplication followed by a chirp convolution 

followed by another chirp multiplication. Since then, a 

number of applications have been developed, mostly in the 

field of optics [29]. Recently it has been applied to the area 

of sensor arrays [30], [31]. 

The FrFT of a signal s(t) is defined as  

  dttsutKtsFuS )(),()()( 




                             (8) 

where ϕ is the anticlockwise rotation angle of the transform 

varying from 0 to π/2. When ϕ = π/2, FrFT reduces to the 

classical Fourier transform and the inverse FrFT is obtained 

by substituting ϕ = -π/2. ‘p’ is the order of FrFT, which can 

be any real number between 0 and 1 and is related to the 

rotation angle as ϕ = pπ/2. 

Kϕ(t,u) is the kernel of the FrFT defined as: 

      csc2cotexp, 22 tuutjSutK     (9) 

where  cot1 jS  . 

The relationship between the chirp rate „b’ and the optimum 

order popt is given by 

                   







 

b
popt

2

1
tan

22 1




                       (10)                                   

However the true relationship depends on the digital 

sampling scheme [32], [33] used and is given by 

                    












 

bM

f
p s

opt
2

tan
2

2

1


                            (11) 

where fs is the sampling frequency and M is the number of 

samples. Conversely, given the true order, this can be used to 

compute the chirp rate. A one-dimensional search is required 

to find the optimum order for unknown signals in the case of 

passive sensor arrays, whereas for active arrays the complete 

information is available with the transmitter [20]. 

Using (8), the FrFT of the chirp signal represented in (5) 

with zero initial slope can be obtained as 

      

     dtuftjbtj

ujStsFuS

T





csc2exp2cotexp

cotexp)(

0

0

2

2






(12) 

where T is the pulse width of the chirp. The chirp signal 

represented at its optimum order produces impulses which is 

given by the peak point of (12). The theoretical peak point 

which transforms the natural frequency to fractional 

frequency is given by u = (f0 + bT)sinϕ  =  fmid sinϕ where  

fmid represents the mid-frequency of the incoming chirp.        
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Also (12) represents the FrFT of the chirp signal at the first 

sensor which is the reference sensor. For the q
th

 sensor, the 

FrFT of the i
th

 signal which is delayed by τq(θi) can be 

obtained as per the property of FrFT as 

 

  

      

     

 

sin2cossinexp

cos

2

iqiq

iqiqi

uj

uStsF




         (13) 

As the time delay between two sensors τq(θi)  is a small value 

and so also is its square, the above equation can be 

approximated as 

            sin12exp iiqi
uqjuStsF   (14) 

Therefore the array steering vector for the N sensors in the 

FrFT domain can be written in terms of  δ= 2πuτ(θi)sinϕ as 

   
T

i

Nki
v

dfjju 




















sin
2expexp1,a    (15) 

 

III. MODIFIED SIGNAL MODEL BASED ON 

DIFFERENCE CO-ARRAY 

 

As the sensor array of interest is non-uniform in nature, 

subspace methods like MUSIC cannot be directly applied to 

find the direction information. But it was found that 

uniformity is observed in the difference co-array domain 

because of the special array structure employed in both 

nested and co-prime arrays [25], [26]. In the difference co-

array structure, it is found that all the missing sensor 

locations are recreated and hence the aperture is expanded. 

This results in more degrees of freedom so that more number 

of sources can be detected with less number of sensors, 

unlike ULA which is not capable of creating new additional 

points in the co-array. As the covariance sequence depends 

only on the difference in the sampling instances, converting 

the data to their second order statistics can build the 

difference co-array.  

The spatial covariance matrix of the sensor output in the 

FrFT domain is given by 

                 



L

l

H

ll

H uu
L

uuEu
1

1
xxxxRx       (16)                          

The dimension of Rx(u) is NxN as x(u) is an Nx1 vector 

because of N physical sensors.  Here L is the number of data 

blocks taken having T duration each which is the chirp pulse 

width and xl(u) is the FrFT of the l
th

 chirp block. However as 

the FrFT of the chirp signal at its optimum order produces 

impulse at uopt irrespective of the bandwidth, it is worth 

enough to take the peak point alone to calculate Rx(u) as the 

other values are all negligible or zeros in the fractional 

domain. The matrix Rx(u)  is vectorized to yield a long vector 

)(
~

ux  which is precisely the difference co-array of the 

original array. The method of vectorization is numerically 

explained by taking a nested array with N = 4 (N1, N2 = 2). 

The resulting covariance matrix Rx(u) showing the entries as 

r(i,j) with the difference in the spatial sampling instances (i-j) 

as subscript is shown in (17). 
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rrrr

uxR     (17)                             

Here all the differences in the spatial sampling instances 

from -5 to 5 are created, giving the effect of a virtual ULA 

(difference co-array) )(
~

ux of size 11x1 given by 

            Trrrrru 54045

~

.....  x     (18) 

 

The entries corresponding to the same sensor separation is 

averaged to avoid redundancy. For example, the central 

element r(.)0 is given by the average of five entries in the 

covariance matrix given by 

 
         








 


5

5,54,43,32,21,1
. 00000

0

rrrrr
r       (19) 

To estimate the DoAs a Hermitian Toeplitz matrix 

)(
~

uR given by (20) is constructed from )(
~

ux [34].  )(
~

uR  

is a positive semi-definite matrix suitable for the subspace 

decomposition.  
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IV. METHODS OF DIRECTION OF ARRIVAL 

ESTIMATION 

The DoA estimation using subspace methods include 

MUSIC [6] and MN [8] methods. The spatial energy 

spectrum for MUSIC and MN beam-formers can be re-casted 

in the following way for chirp signals represented in FrFT 

domain. 

            
   uu

E
p

H

nn

H
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,,
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where e is a vector of all zeros except a 1 at the first position 

and Un is the noise eigenvector obtained from the eigen 

decomposition of )(
~

uR , the Hermitian Toeplitz matrix given 

by (20). 

V. EXTENSION TO QFM SOURCES 

 

The quadratic frequency modulated (QFM) chirp is 

represented by the following equation 

            ctfbtatjts  0

232exp)(                (23) 

where ‘a’ is the additional parameter w.r.t. LFM which 

controls the curvature of the quadratic chirp term. Here the 

IF trajectory of the signal is a non-linear function of time 

given by 

                 0

2 23)( fbtattf                                 (24) 

The modified FRFT of the QFM signal s(t) is defined as 

      dttsutKtsFuS )(),()()( ,,, 




              (25) 

where Kϕ,ѱ(t,u) is the modified kernel for quadratic chirp 

given by 
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The parameters are related to the polynomial coefficients as 

      bTuf
M

f
ba s  


 csc;

tan2
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           (27) 

Therefore modified FrFT of the QFM chirp signal 

represented in (23) with zero initial slope is obtained as  

       

   dttuutj

tjtsujStsF
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

 



(28) 

Therefore the following operations are implemented on the 

signal.  

(i) Multiplication of the quadratic chirp s(t) with another 

quadratic chirp exp[-j2πѱt
3
] which results in a linear chirp to 

which conventional FrFT can be applied. The evaluation of 

the FrFT would result in a function of ‘u’.  

(ii) Multiplication of the above function in ‘u’ with another 

quadratic chirp exp[j2πѱu
3
]. 

Here the ѱ and ϕ values which are proportional to the 

polynomial coefficients are searched over the range values 

which becomes a time consuming process. The coefficient 

values can also be extracted using the polynomial chirplet 

transform (PCT) approach [23], thus avoiding the search 

procedure. 

 

Introducing a delay for the IF expression of QFM given by 

(24) yields 

                  ''23 0

2 ftbattf                           (29) 

where the new chirp rate and start frequency get modified as 

2b’ = 2b - 6aτ and f0’ = f0 +3aτ
2
 – 2bτ respectively; but the 

quadratic chirp parameter ‘a’ remains unchanged. As 2b = 

cotϕ given by (10) and because of the shift in the start 

frequency, the rotation angle and peak value changes to β 

and u’ respectively as shown below. 

                   a6cotcot                                     (30)                                                  

             cot3csccsc' 2  auu                  (31) 

Result: The array steering vector for the i
th

 source in the 

modified FrFT domain can be written as 
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 ττ

τ

a    (32) 

where τ(θi) is the inter-element delay vector for the N 

sensors whose q
th 

term is given by (4). 

 

Proof : The proof is quite involved and can be found in [35]. 

VI. RESULTS AND DISCUSSION 

A. Simulated Sources 

Simulation experiments using seven LFM chirp sources (C-1 

to C-7) of same bandwidth and different center frequencies 

with both nested and co-prime array configurations are 

discussed here. The sensor arrangement used for nested and 

co-prime arrays are denoted by Sn and Sc respectively as  

 

Sn = {1, 2, 3, 4, 8, 12} ; Sc = {0, 2, 4, 3, 6, 9}                  (33) 

 

Table I shows the details regarding the chirp sources used 

where f0 and f1 represent the start and end frequencies 

respectively of the individual chirp. The sources are located 

at far field impinging on the sparse array with N = 6 sensors 

for both nested (N1 = N2 = 3) and co-prime (C = 2, D = 3) 

from DoAs (-30
0
, -20

0
, -10

0
, 0

0
, 10

0
, 20

0
, 30

0
) with all equal 

power. The sampling frequency taken is 12,800 Hz with a 

total of 25610 time samples and the pulse width of chirp as 

200 ms. The samples of the impinging signal are divided into 

L=10 blocks with each block having M = 2561 snapshots. In 

each block the 2561 samples are converted into FrFT which 

are then processed using the modified subspace beam-

forming algorithms (21, 22). The signal is corrupted with an 

AWGN noise with SNR = -15 dB. The popt value is obtained 

as 0.9850 from (11) with chirp rate 750 Hz/s. The FrFT 

scheme involving MUSIC and MN beam-formers is able to 

clearly resolve seven sources which are closely located at 

very low SNR with only six physical sensors. This is clearly 

illustrated by Figure 1 and Figure 2 for nested and co-prime 
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arrays respectively. It can also be shown that using six 

sensors, nested array can resolve upto a maximum of 36    

(N
2
 = 6

2
) sources, whereas co-prime array can only resolve 

12 (2CxD = 4x3) sources. This is due to the peculiar array 

geometry of nested array creating a larger difference co-array 

in comparison with the co-prime array [34]. The high spatial 

energy is seen for MUSIC with both nested and co-prime 

cases and is reduced when it comes to MN. 

Table 1. Chirp signals used for sparse array. 

Chirp 

Signals 

 

C-1 

 

C-2 

 

C-3 

 

C-4 

 

C-5 

 

C-6 

 

C-7 

f0 (Hz) 1000 1500 2000 2500 3000 3500 4000 

f1 (Hz) 1300 1800 2300 2800 3300 3800 4300 

 

 

 
Figure 1. MUSIC and minimum norm energy spectrum using nested array 

for DoA estimation of seven chirp sources located at angles (-300, -200, -100, 
00, 100, 200, 300 ) with  FrFT beam-formers for N=6, L=10, SNR = -15dB. 

 
 

 
Figure 2. MUSIC and minimum norm energy spectrum using co-prime array 

for DoA estimation of seven chirp sources located at angles (-300, -200, -100, 

00, 100, 200, 300 ) with  FrFT beam-formers for N=6, L=10, SNR = -15 dB. 
 

The beam-former performance is evaluated mainly using two 

factors - resolution and accuracy. The resolution is clearly 

evident from the energy spectrum plot and the accuracy is 

measured using root mean square error (RMSE) plot. The 

RMSE for the different DoA estimations is given by (34) 

where G and P represents the number of Monte-Carlo 

simulations and the number of sources respectively. 
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2
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                (34) 

 gp



  is the estimation of the true angle  p   for the g
th

 

Monte Carlo trial. The variation of RMSE as a function of 

SNR for combined seven sources having azimuth angles      

(-30
0
, -20

0
, -10

0
, 0

0
, 10

0
, 20

0
, 30

0 
) with FrFT MUSIC 

spectrum for various array geometries is shown in Figure 3, 

averaged over G = 100 Monte Carlo simulations. For 

comparing the RMSE performance with nested and co-prime 

arrays having 6 elements each given by (33), twos ULA with 

12 and 8 elements are also used. It is seen from the plot that 

the RMSE performance of nested array is comparable with 

that of ULA with double sensor elements and the two graphs 

merges with each other beyond  SNR = -8 dB. The error is 

observed more for the co-prime case as compared to the 

nested structure due to the larger span of hole free difference 

co-array seen for the nested array [34]. The large virtual 

linear array thus created by the nested array introduces more 

spatial samples, in bringing down the RMSE value to zero 

even at -4 dB SNR. 

 

 
Figure 3. RMSE vs SNR plots of the DoA estimations using two ULAs and 

two non-ULAs with FrFT MUSIC spectrum. 
 

B. Signal collected using sonar array 

The linear chirp signal of 3ms duration shown in Figure 4 (a) 

is transmitted in the frequency range 2-24 kHz and the 

transmitter is driven by a 200W linear power amplifier. The 

back scattered signals are acquired by two rows of eight 

linear hydrophone array elements with a sampling frequency 

of 100 kHz. The inter-element separation in each row is 

0.0325m. Figure 4 (b) is a plot of the raw data acquired using 

one of the hydrophones in the array. The whole system called 

Buried Object Detection Sonar (BODS) for finding targets in 
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the seabed has been developed by National Institute of Ocean 

Technology (NIOT), Chennai, India and is mounted in a 

floating tow body having a speed range of 1-3m/s [36]. 

 

The sea trial for testing the BODS system with buried objects 

was performed at Royapuram Harbor, Chennai, India. A 

water column depth of 4.5 to 5 m was available at the site. 

The sediment type at the site was clay mixed with sand and 

concrete blocks were selected to be buried at the test site 

about 0.47 m in the seabed. Twenty concrete blocks are 

arranged in five rows and four columns, where each block 

has a dimension of 0.3 m x 0.3 m x 0.02 m, hence the entire 

concrete block set is of the dimension l.5 m x l.2 m x 0.02 m. 

The raw data from each channel corresponds to 1536 

samples. For the current study, the raw data was taken from 

eight sensor channels with ten block repetitions which 

altogether makes 1536 x 8 x 10 samples. Also to realize the 

effect of sparse array, a two level nested array with N = 4 

sensors (N1 = N2 = 2) is considered by taking the data from 

1
st
, 2

nd
, 3

rd
 and 6

th
 sensors only. 

 

 
Figure 4. a) Transmitted chirp  b) Reflected chirps which is captured using 

one of the hydrophones in the array.  

 

 
Figure 5. a) Estimated IF for the reflections obtained from the buried 

concrete blocks b) Peak detection of the reflected chirp obtained from 

concrete blocks using modified FrFT. 
 

Figure 6 shows the time-frequency plot of the raw data 

(given by Figure 4 (b)) using PCT approximation with a third 

order fit. Two strong reflections are marked in the plot, of 

which the first one is the reflection from the air-water 

interface and the second one is from the concrete blocks. 

Figure 5 (a) represents the peak data using PCT after fourth 

iteration for the concrete reflection alone. It is clear from the 

plot that the response is non-linear even though the 

transmitted chirp was linear. This is due to the absorption of 

some of the frequency contents by the material and the 

reflected chirp falls in the frequency range of 5 kHz to 10 

kHz within a time gap of 1.5 ms. Table 2 also strengthens the  

above fact which represents the estimated coefficients using 

third order PCT approximation. The last column shows the 

polynomial coefficients after fourth iteration and the IF given 

by a+2bt+3ct
2
, comes to 10 kHz where t = 1.5 ms. Therefore 

detection using modified FrFT has to be performed which 

results in a peak as given by Figure 5 (b). 

 

 
Figure 6. Time-frequency distribution of the raw data given by Figure 4 (b) 

using polynomial chirplet transform. 

 

 

Figure 7. a) DoA estimation of the concrete reflections using MUSIC 

spectrum with an eight element ULA. b) DoA estimation of the concrete 

reflections using MUSIC spectrum with a four element nested array. 
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Table 2. Estimated coefficients using third order polynomial chirplet 

transform for the concrete reflections. 

Coeff. 1 2 3 4 

a 6223 5549 5160 5008 

2b 3265564 5086915 6066146 6483634 

3c -318555610 -1278732825 -1797243811 -2023053641 

 

 

Finally DoA estimation is performed using the FrFT peak 

detection and the MUSIC spectra is shown for ULA with 8 

sensors (Figure 7 (a)) and nested array (Figure 7 (b)) with 4 

sensors. The DoA estimated using an 8 element ULA spreads 

from -44
0
 to -48

0
 as given by Figure 7 (a). This is due to the 

behavior of the object as a surface rather than a point one. 

Also an improvement in SNR of about 2 dB is observed 

compared to the traditional FFT method [37] which reflects 

the power of FrFT detection at deeper penetration. Reduction 

in beam-width is observed with improved SNR in the case of 

nested array as shown by Figure 7 (b). This shows the noise 

resilience property of nested array in comparison with the 

traditional ULA with more number of sensors. Moreover, the 

depth of the object can be visualized from Figure 6 using 

conversion of time information to distance.  
 

VII. CONCLUSION AND FUTURE SCOPE 

In this paper, the efficacy and performance of applying FrFT 

for LFM chirp and modified FrFT for QFM chirp sources 

using nested and co-prime array is presented, restricting the 

beam-former to the point where the spectrum peaks. It is 

seen that more number of chirp sources can be detected with 

less number of sensors using both nested and co-prime arrays 

with better accuracy and resolution. The performance has 

also been tested over a large range of SNR and is observed 

that nested-MUSIC combination outperforms all other 

combinations. The effectiveness of the algorithm is 

experimentally validated using real data obtained from a 

practical sonar array which highlights the noise resilience 

property of nested array in comparison with the traditional 

ULA having more number of sensors. It will be of 

considerable interest to reduce the effect of mutual coupling 

as the spacing between the array elements becomes too 

small. Beam-forming with EFM chirps having Doppler 

invariant property, which is going beyond FrFT, is another 

open research area. FrFT beam-forming can also lead to 

better object classification and underwater imaging as 

compared to the conventional matched filtering type [36]. 
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