
 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        66 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                                Volume-6, Issue-2                                           E-ISSN: 2347-2693 

                 

Reverse Biorthogonal Spline Wavelets in Undecimated Transform for 

Image Denoising  
 

T.N. Tilak
1*

, S. Krishnakumar
2 

 
1*

Dept. of Electronics, School of Technology and Applied Sciences, Mahatma Gandhi University, Edappally, India  
2
Dept. of Electronics, School of Technology and Applied Sciences, Mahatma Gandhi University, Edappally, India  

 
*Corresponding Author:  tilakd7@gmail.com,   Tel.: +91 9746105280      

 

Available online at: www.ijcseonline.org 

Received: 30/Jan//2018, Revised: 09/Feb2018, Accepted: 21/Feb/2018, Published: 28/Feb/2018 

Abstract— Reverse biorthogonal wavelets are highly regular wavelets with compact support and symmetric filters and they 

have explicit construction. This paper explores the performance of the reverse biorthogonal spline wavelets in denoising 

images differentiated by the detail-contents in the images.  The transform used in the study is the Undecimated Wavelet 

Transform which is a translation-invariant transform. The selected images are corrupted by adding white Gaussian noise to 

produce noisy test images. The study shows that the denoising effect depends on the amount of details in the image. It is also 

seen that reverse biorthogonal spline wavelets are highly effective in denoising dense-detail images like fingerprints. These 

wavelets also give good denoising for low-detail images like human face. The best wavelet in the family for each of these 

purposes has been sorted out. Rbio 3.1 is found to be an odd member of the family. These wavelets are found to give poor 

results in denoising medium-detail images. The study finds application in Forensic science and in restoration of facial images 

and when the images encountered in such applications contain several types of noise distributions simultaneously.   
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I.  INTRODUCTION  

 Corrupt images may lead to wrong medical diagnoses, 

wrong defence decisions, errors in the field of space research 

and forensic science applications and so on. Therefore image 

denoising is an important research concern. 

 

Wavelets are little waves generated by means of dilations 

and translations of a basic function [1].  Image processing 

using time domain and frequency domain techniques fail to 

provide time localization of the spectral components of an 

image, whereas wavelet based processing succeeds in this. 

This is made possible by the unique feature of wavelets by 

which they can be dilated (stretched and compressed) and 

translated. This feature also enables one to observe an image 

at different scales and hence to investigate the fine as well as 

coarse details in the image.  A “scaling function” which 

creates the different approximations of the analysed image 

helps to produce the wavelet basis. There are innumerable 

wavelets and they belong to different families. The features 

of wavelets belonging to different families vary widely. It 

has been commented that “denoising is at the heart of signal 

representation” [2]. In this paper we investigate the denoising 

capabilities and shortcomings of the whole family of the 

„Reverse Biorthogonal Spline Wavelets‟ („Rbio Wavelets‟).  

 Rest of the paper is organized as follows:  Section II shows 

the related works, Section III contains the methodology of 

the study,  Section IV describes the results and discussion 

and Section V concludes the research work. 

 

II. RELATED WORK  

Much research has been conducted on wavelet based 

denoising. To cite a few, it has been determined that bior 1.3 

is the most suitable wavelet for denoising medical images 

[3], symlet wavelet with wiener filter gives good denoising 

results [4] and reported that “the best choice for medical 

imaging is not clear” [2] and finding out the best wavelet 

suitable for any particular application continues to be a 

challenge for research [5]. Such reports point to the fact that 

the possibilities in the field of wavelet based denoising have 

not been explored fully and that there is much to unveil. 

III. METHODOLOGY 

A. Rbio wavelets  

Rbio wavelets are dual spline wavelets which have compact 

support, biorthogonality and symmetric Finite Impulse 

Response (FIR) filters. Spline wavelets are highly regular 

and have explicit construction as opposed to the vast 

majority of wavelets [6]. The rbio wavelet family comprises 

a total of 15 wavelets listed as: rbio 1.1, rbio 1.3, rbio 1.5, 
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rbio 2.2, rbio 2.4, rbio 2.6, rbio 2.8, rbio 3.1, rbio 3.3, rbio 

3.5, rbio 3.7, rbio 3.9, rbio 4.4, rbio 5.5 and rbio 6.8. 

The inner product of two functions x(t) and y(t) is defined as: 

                            ( )  ( )     ∫  ( )  ( )               (2) 

where   ( )  is the complex conjugate of y(t).  Two bases    

and  
 
 together make a set of biorthogonal functions [2],[7] 

if their inner product satisfies the relation: 

 

                              
     (   )                              (3) 

 

where  (   ) is the Kronecker delta function described as: 

                          (   )  {
            
            

                          (4)                                                                                                      

 

We always desire symmetric filters because they provide 

phase linearity, minimize perceptual error and enable better 

handling of boundaries. We cannot obtain filter symmetry if 

we employ the analysis filters for synthesis also [8] except in 

the case of Haar wavelet which has a filter length of two [1]. 

When we employ biorthogonal wavelets for signal 

processing the decomposition (analysis) of the signal is 

carried out with one wavelet and reconstruction (synthesis) is 

carried out with a different wavelet. This enables one to use 

symmetric filters of non-trivial lengths and to obtain 

consequent desirable properties in addition to getting 

flexibility of design [9]. The matrices of biorthogonal 

wavelets are invertible and enable perfect reconstruction [2].    

 

B. Algorithm for Wavelet Based Denoising  

Investigation of denoising characteristics of a wavelet family 

essentially consists of the following algorithm: 

  1.   Add noise of desired features to a suitable noiseless test 

image.  

2.    Apply the prescribed wavelet transform using the first  

member of the wavelet family. The wavelet transform then 

convolves  the image with the wavelet filters  to decompose 

it in to „wavelet coefficients‟ viz., „approximation 

coefficients‟ and „detail coefficients‟. 

  3.  Apply the prescribed threshold rule to the detail 

coefficients, to remove noise. 

  4.  Reconstruct the image using the approximation 

coefficients and the coefficients that survive thresholding, 

applying the inverse wavelet transform. 

  5.   Estimate the performance metrics values MSE and 

PSNR. 

  6.   Repeat steps from 2 to 5 with the next member of the 

wavelet family. 

  7.   Repeat steps from 1 to 6 with the next test image. 

C. Test Images  

We select three test images for the investigation; these are 

„Lena‟, „cameraman‟, and „fingerprint‟ which belong to three 

categories of images viz., low-detail, medium-detail and 

high-detail types respectively. In this study we assume that 

the image „Lena‟ represents all low-detail images, 

„cameraman‟ represents all medium-detail images and the 

image „fingerprint‟ represents all dense or high-detail 

images. Each of these images has a size 512x512 pixels.  

 

D. Additive White Gaussian Noise(AWGN)   

The noise used for the investigation is „0‟ mean AWGN with 

a variance of 0.05 in a 0-1 scale. Gaussian noise is selected 

for the purpose because  it is the most common type of noise 

found in digital images [10]. The term „white‟ implies that 

the noise has a constant power spectrum [11]. The mean 

value „0‟ for the noise simplifies the computations. Being 

„additive‟, the random values of the noise get added to the 

pixels of the noiseless test images to produce the corrupt 

images required for the investigation. The Gaussian 

probability density function (pdf) can approximate an 

ensemble of different pdfs [12]. Hence this study extends its 

application to such cases in which the image contains noise 

of different distributions together.  

 

E. Undecimated Discrete Wavelet Transform(UDWT)    

The commonly used Discrete Wavelet Transform (DWT) 

involves decimation (down-sampling) which makes it not 

translation-invariant. Hence DWT based denoising may 

produce artifacts like those arising from Gibbs phenomenon
 

[13]. Therefore we make use of the UDWT which is a 

translation-invariant transform; it avoids decimation and 

incorporates upsampling at each stage [14],[15],[16]. We 

perform three-level decompositions using UDWT for the 

„Lena‟ and „cameraman‟ images.  It is observed that at 

decomposition levels exceeding two the reconstructed 

„fingerprint‟ image becomes too blurred to be of any use. 

Hence only two-level decomposition is made for the 

„fingerprint‟ image.  

F. Soft Fixed Form Threshold   

We use the Soft Fixed Form threshold rule for denoising; it 

gives better performance than the other popular threshold 

rule viz., the hard threshold rule [17]. Soft threshold rule is 

described by the expression: 

 

                    {
   (   )(|   |   )    |   |       

                                         |   |                        
(5)                                                                                               

 

where     and     represent the wavelet coefficients before 

thresholding and after thresholding respectively and „t‟ is the 

value of the threshold [18],[19],[20].     (   ) denotes the 

signum function. The fixed form value of the threshold  „t‟ is 

the „universal threshold‟ given by:  

 

                               √       (  )                              (6)                                                                    
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where σ is the standard deviation,    the noise variance, and 

[M,N] the image size [21].  

 

G. Performance Measures 

The denoising performance can be measured by calculating 

the Mean Squared Error (MSE) between the original 

noiseless image and the denoised image using the formula: 

                  
 

    
    

     
 ( (   )     (   ))              (7)                                                                      

where I and    are the original image and the reconstructed 

image respectively; m and n indicate the number of columns 

and rows in the image. I (i,j) represents the pixel in image I 

at the i
th

 row and j
th

 column.   

The Peak Signal-to-Noise Ratio (PSNR) is another 

performance metric closely related to the MSE and is given 

[22],[23] 
 
by:  

                                   (
    

   
)                            (8)                                        

 

We make use of the MATLAB software for carrying out this 

study.                      

IV. RESULTS AND DISCUSSION 

 

The original images „Lena‟, „cameraman‟ and „fingerprint‟ 

are shown in Figures 1(a), 1(c) and 1(e) respectively and the 

corrupted versions of these images are shown in Figures 

1(b), 1(d) and 1(f) respectively. Table 1 shows the MSE and 

PSNR values of the noisy images. 

Figures 2, 3 and 4 show the plots of MSE values of denoised 

images vs. the rbio wavelets for the images „Lena‟, 

„cameraman‟ and „fingerprint‟ respectively. In hese figures 

the X-axes show divisions labelled as 1.1, 1.3,..,.6.8. These 

values stand for the rbio wavelets „rbio 1.1‟, „rbio 1.3‟, 

...,‟rbio 6.8‟ respectively. The Y-axes show the MSE values 

obtained on denoising with the different rbio wavelets. It can 

be seen that in denoising with any particular wavelet in the 

family the MSE of the denoised image increases as the 

details in the analysed image increases. As such the MSE 

values obtained for „Lena‟  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
     (e)                                             (f) 

   Figure 1.  Original imagesa) „Lena‟, (c) „cameraman‟, (e) „fingerprint‟,  
    and corrupt  images (b)  „Lena‟, (d) „cameraman‟ and (f) „fingerprint‟. 

 

have the lowest values and those obtained for „fingerprint‟ 

have the highest values. The MSE values obtained for 

„cameraman‟ fall in between these values. This feature arises 

from the following fact:  „Lena‟ being a low-detail image, a 

large part of the corrupt image contains only noise. Hence a 

large fraction of the coefficients that result by decomposition 

of the image have very small amplitudes. Coefficients with 

small values mostly represent noise in the image and the 

remaining coefficients correspond to the signal part [24].  

These little-valued coefficients which carry most of the noise 

get removed on thresholding. Hence the denoising is good 

and the MSE is low. In the  case of the dense- detail image 

„fingerprint‟, most of the coefficients that result on 

decomposition have high values. Hence only a small number 

of coefficients fall below the threshold and get removed. This 

implies that only a small part of the noise is eliminated. The 

additive noise that still remains with the remaining 

coefficients gives the denoised image a high MSE value. In 

the case of the medium-detail image „cameraman‟, 

decomposition produces little-valued coefficients and a more 

or less equal number of high-valued coefficients. Removal of 

the little-valued coefficients amounts to removal of part of 

the  noise. Hence for denoised „cameraman‟ image the MSE 

values fall in-between the MSE values obtained for „Lena‟ 

and „fingerprint‟. Therefore we reach the conclusion that 

values of MSE for denoised images are related to the detail 

contents of the original images. For denoised images the 

MSE values of low-detail images are low while those of 

high-detail images are high and the MSE values of medium-

detail images fall in between these two ranges of values.  

 
Table 1. MSE and PSNR  values of noisy images 

Image „Lena‟ „cameraman‟ „fingerprint‟ 

MSE 36.49 36.33 109.10 
PSNR dB 32.51 32.53 27.75 

 

Now we will look in to the variation in denoising 

performance with variation in the rbio wavelet used in the 

                                
(a)                                      (b) 

     
 (c)                                (d)              
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wavelet transform. From Figures 2, 3, and 4 we can observe 

the following: 

1.   For all the three images rbio 3.1 gives an abrupt shoot up 

in MSE value. Figures 5(a) and 5(b) show the scaling 

function and wavelet function respectively, of the 

synthesis wavelet of rbio 3.1. As seen in these figures 

both these functions lack smoothness. The odd 

behaviour of rbio 3.1 by which it gives a shot up MSE  

is a consequence of the lack of smoothness of its 

synthesis functions. Due to this odd nature we skip this 

wavelet in the discussions that follow. 

2.    With the other wavelets the MSE values have a zigzag  

       variation as we go from rbio 1.1 through rbio 6.8 in the 

       case of all the three images. 

3.   The overall lowest MSE and hence the best denoising        

performance of the rbio family  is given by rbio 1.1. 

4.  For „Lena‟, the lowest MSE value is obtained on 

denoising with rbio 1.1. This lowest MSE value is 11.82 

and the corresponding PSNR is 37.40 dB. The  increase 

in PSNR obtained here is 4.89 dB. The smallest increase 

in PSNR obtained in the family is 4.15 dB. This shows 

that all the members in the rbio wavelet family give 

appreciable denoising for the image.   

5.    For „fingerprint‟, the lowest MSE value 34.74 obtained  

       on denoising with level-2 UDWT is got with the same  

       wavelet rbio 1.1. The corresponding PSNR is 32.72 dB 

       and represents an increase by 4.97 dB from the PSNR   

       of the input image. The smallest increase in PSNR 

obtained in the family is 4.21 dB. This indicates that all 

the members in the rbio wavelets give good denoising 

for „fingerprint‟. 

6.    But denoising the medium detail image „cameraman‟ 

       gives lowest MSE  27.44 when rbio 6.8 is used. This  

 

    
Figure 2.  MSE vs  rbio wavelets  for denoised „Lena‟ image 

   
Figure 3.  MSE vs  rbio wavelets  for denoised „cameraman‟ image 

    
Figure 4.  MSE vs. rbio wavelets for denoised „fingerprint‟ image 

 

 MSE value corresponds to a PSNR of 33.75 dB and a  low 

gain of 1.22 dB in PSNR.  

This wide difference in the denoising behaviours of the 

wavelets can be reasoned as detailed below:     

 

Table 2. Effective lengths of high pass and low pass decomposition filters of 
rbio wavelets 

Wavelet Effective length of  HD Effective length of  LD 

rbio 1.1 2 2 

rbio 1.3 6 2 

rbio 1.5 10 2 

rbio 2.2 5 3 

rbio 2.4 9 3 

rbio 2.6 13 3 

rbio 2.8 17 3 

rbio 3.1 4 4 

rbio 3.3 8 4 

rbio 3.5 12 4 

rbio 3.7 16 4 

rbio 3.9 20 4 

rbio 4.4 9 7 
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rbio 5.5 9 11 

rbio 6.8 17 11 

 

 

First, we consider denoising of the low-detail image „Lena‟. 

As mentioned earlier a large number of pixels of the corrupt 

„Lena‟ image contain noise only. Table 2 shows the effective 

lengths, or equivalently the number of non- zero filter taps of 

the high pass decomposition (HD) filters and the low pass 

decomposition (LD) filters of the various rbio wavelets. 

When the wavelet used has a good number of non-zero taps 

for its HD filter the decomposition of the  image results in a 

large number of coefficients at the high pass filter output. A 

good part of these coefficients have very small values since a 

large number of pixels of the corrupt image contains noise 

only. We apply threshold only to the high pass filtered 

components [17]. Application of threshold rule to these 

coefficients removes the small coefficients whose values fall 

below the threshold. Thresholding operation always results 

in removal of a part of the signal also [2]. Since the number 

of coefficients in the high pass filter output is large the 

amount of signal removed is considerable. Reconstructed 

image therefore has more error as what can be seen from the 

high MSE values obtained with rbio wavelets having large 

HD filter lengths. On the other hand the wavelet rbio 1.1 has 

the lowest number of filter taps which is two, for its HD 

filter. Hence convolution of the image with its filters results 

in only a lesser number of coefficients than those produced in 

the case of wavelets with more HD filter taps. Consequently 

application of threshold takes away only a little part of the 

signal. Hence the reconstructed image has the lowest MSE. 

Now consider denoising of the dense-detail image. This 

image has high values for majority of its pixels since the 

detail-content is high. When the image is decomposed using 

a wavelet with a large number of HD filter taps the process 

produces a large number of high pass filtered coefficients 

just as in the case of low-detail image. But here most of these 

coefficients have high values unlike with low-detail image. 

When thresholding operation is applied to these coefficients 

it is accompanied by attenuation of a part of the signal, as 

usual. Now the signal attenuation is large, larger than the 

signal attenuation in the case of low-detail image because 

now there is larger number of coefficients with high values.  

This results in a higher MSE value for the reconstructed 

image. But when we use rbio 1.1 it has only two taps each 

for its HD and LD filters.  Since the number of taps for the 

HD filter is low the decomposition results in only a small 

number of high pass coefficients. The thresholding operation 

affects only this small number of coefficients. The associated 

signal attenuation is therefore small when compared with the 

signal attenuation induced by rbio wavelets having longer 

effective lengths for HD filters. Consequently the MSE value 

of the denoised image is lowest with rbio 1.1 for high-detail 

image also.  

 

 

        
                     (a)                                                                (b) 

 
Figure 5.  Synthesis functions of rbio 3.1 (a) Scaling function 

                     and (b) wavelet function. 

 

Now let us take the case of medium-detail image. This image 

has large number of pixels with little values or noise only 

and a more or less similar number of high value pixels. 

Convolution with the HD filters of rbio wavelets results in a 

number of high pass filtered coefficients. When the number 

of HD filter taps is large the number of these high pass 

coefficients is also large. Since the image is of medium detail 

the high pass coefficients having high values is more or less 

equal in number to the high pass coefficients having small 

values. Removal of the little coefficients by thresholding 

results in removal of a good part of the noise thus lowering 

the MSE. But the associated signal attenuation which affects 

the high pass coefficients having high values keeps the MSE 

from lowering to the MSE values of low-detail image. When 

the number of HD filter taps is small, the number of high 

pass coefficients is small. Being medium-detail image the 

number of high pass coefficients with low values is still 

smaller. Hence there is no significant reduction in MSE on 

their removal by threshold application. Also any increase in 

MSE due to signal attenuation accompanying thresholding 

only adds to this.  

 

The number of taps for LD filter is not without any effect in 

denoising. Instead, it has a significant role in the denoising of 

the medium-detail image „cameraman‟. From figure 3 we can 

see that the wavelet rbio 6.8 gives the lowest MSE value for 

„cameraman‟. For both the other  images viz., „Lena‟ and 

„fingerprint‟ rbio 1.1 gave the the lowest MSE values. The 

reason for this difference becomes clear from what follows. 

From table 2 we can see that the number of taps of the LD 

filters increases at a high rate for wavelets rbio 3.9 through 

rbio 5.5. This implies that these wavelets introduce more low 

pass filtering. The low pass filtered components hold the 

major part of the signal. Low pass filtering removes most of 

the noise or high frequency components in the signal to 

which it is applied. Convolution of the medium detail image 

„cameraman‟ with the low pass filter having large number of 

taps contributes to a good number of coefficients devoid of 

noise since the number of LD taps is high. This reduces the 

MSE of the denoised image. In the case of rbio 6.8 there are 

17 HD filter taps and 11 LD filter taps as shown in table 2. 

The large number of HD filter taps produce a large number 

of high frequency coefficients a good part of which are of 

low values because the image is of medium detail. Most of 
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these low value coefficients fall below threshold value and 

get removed. This results in a low MSE for the denoised 

image. The large number of LD filter taps introduces large 

low pass filtering causing high reduction in MSE. Hence rbio 

6.8 gives the denoised image with lowest MSE for the 

medium-detail image „cameraman‟. 

 

   

 

 

 

 

 

 

 

 
                              (a)                                  (b) 

Figure 6.  Denoised images  with lowest MSE values (a) „Lena‟ and (b)   

    „fingerprint‟  

 

The high rate of increase in the number of LD filter taps for 

wavelets from rbio 3.9 onwards  does not produce a similar 

result either with the low-detail image „Lena‟ or with the 

high-detail image „fingerprint‟. „Lena‟ image on convolution 

with the LD filter taps produces only a far lesser number of 

low pass filtered coefficients (devoid of noise) because the 

image is of low-detail type and greater part of the image is 

comprised of high-frequency or noise components only. 

Hence the reduction in MSE due to the jump in number of 

LD filter taps is not noticeable. The „fingerprint‟ image, on 

the other hand, is dense in detail content. The majority of 

pixels have high values. Signal attenuation accompanying 

application of threshold affects this vast majority of pixels. 

This results in high MSE values. This effect outweighs any 

decrease in MSE due to increase in number of LD taps. 

 The results show that rbio wavelets are very good for 

denoising high-detail images and also low-detail images. The 

highest percentage reductions in MSE for the three images 

are: 67.60%, 68.16% and 24.46% respectively for Lena, 

Fingerprint and cameraman. Rbio 1.1 gives the best 

denoising performance for both low-detail and high-detail 

images. Especially rbio 1.1 gives drastic noise reduction 

performance when applied to a fingerprint image as verified 

by the large reduction in MSE. This has far-reaching 

significance especially in forensic science. Also the 

promising result obtained with rbio 1.1 in denoising the low-

detail image „Lena‟ shows that this wavelet can be applied 

for denoising corrupt facial images. Since we get only 

approximately a low 24.5% maximum reduction in MSE on 

denoising  „cameraman‟ image  we can conclude that the 

denoising performance is poor for medium-detail images. 

Figures 6(a), and 6(b) show the denoised images „Lena‟ and 

„fingerprint‟ with lowest MSE values, respectively. These 

images are found to be good since they preserve the edges in 

the respective original images and do not exhibit artifacts. 

Figure 7 shows rbio 1.1 which is the rbio wavelet that has 

given the best denoising performance for the low-detail 

image „Lena‟ and the high-detail image „fingerprint‟. In this 

figure the left part (a) shows the analysis wavelet and the 

right part (b) shows the synthesis wavelet of the dual 

wavelet. For this particular wavelet pair the synthesis and 

analysis wavelets coincide.  

 

 

                  
 

Figure 7.  rbio 1,1 (a) analysis wavelet and (b) synthesis wavelet 

 

V. CONCLUSION   

On denoising images using reverse biorthogonal spline 

wavelets the MSE values of denoised images are found to 

depend directly on the amount of details in the image. The 

denoising performance metric takes a zigzag variation as the 

wavelet selected for denoising any particular image is 

changed from the first member through the last member of 

the rbio wavelet family, i.e., rbio 1.1 through rbio 6.8. All 

members in the family, except rbio 3.1, give good 

performance in denoising low-detail images like face of 

humans. Rbio 1.1 gives the best denoising for such images, 

an MSE as low as 11.82 and a corresponding high PSNR of 

37.40 dB denoting an increase in PSNR by 4.89 dB could be 

obtained with this wavelet.. This is a promising result 

applicable for restoring noisy facial images.  The rbio 

wavelets are also effective in denoising dense-detail images. 

Rbio 1.1 gives the best denoising performance in the wavelet 

family for denoising of dense-detail images.  A reduction in 

MSE by 68.16% denoting an increase in PSNR by 4.97 dB 

could be obtained for fingerprint image when denoised using 

rbio 1.1. This highly promising result shows that the wavelet 

rbio 1.1 has potential scope for application in the field of 

Forensic science. It is also found that the rbio family of 

wavelets gives only poor results in denoising medium-detail 

images. The wavelet rbio 3.1 in this family is found to be 

very poor for denoising application. The results of this study 

can also be applied when the noise in an image is the joint 

effect of several types of noise distributions. 
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